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LOCAL CONNECTEDNESS OF SUPPORT POINTS 

GEORGE LUNA 

A B S T R A C T . It is shown that the set of support points of a 
boundedly weakly compact convex subset of a Banach space 
is locally connected in every dimension. If the convex set is 
also separable the set of support points is contractible. 

The present paper refines, extends and localizes the results of [2], 
The notation is the same as that in [2]; however for convenience we 
repeat some of it. 

In what follows E will be a real Banach space and E* its continuous 
dual. If C Ç 22, the set of support points of C (written: supp C) is the 
collection of points x G C for which there exists x* G Ü7*\{0} such that 

(x, x*) = sup{(x, x*) : x G C} = M(x*; C). 

The set C is boundedly (weakly) compact if Cf)B is (weakly) compact 
for each closed ball B in E. 

A space Y is said to be fc-connected if every map / : Sk —» Y is 
null-homotopic. We say Y is locally fc-connected if, for each y G Y and 
every neighborhood U of y, there exists a neighborhood Uo of y such 
that every map / : Sk —• Uo is null-homotopic in U. 

If Y is (locally) fc-connected for each k = 0 , . . . , n, then Y is said 
to be (LCn)Cn . A space is said to be (LC00)C0°, if it is (LCn)Cn for 
every n. We use the notation (x, y) for the open line segment 
{Xx -f (1 — X)y : 0 < A < 1} and the notation B(x; 8) for the open ball 
with center at x and radius 6. 

If C is a closed convex subset of the Banach space E and 0 G 
C\suppC, then 

suppC = U{Fm : m > 1}, 

where Fm = {x G C : 3x* G £*,||x*|| <m,(x,x*) = 1 = M(x*,C)}; it 
is easy to verify that each Fm is closed, so suppC is an Fa. 
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Recall that a residual set R is the complement of a first category set, 
and that in a Baire space E this is equivalent to R containing a dense 
Gö inE. 

The following lemma is a restatement of Lemma 4 of [2]; in [2] the 
proof of Lemma 4 showed that the set R{S) (see below) contained a 
dense G$, although the statement of the Lemma was only that R(S) is 
nonempty. 

LEMMA. Let C be a closed convex subset of a Banach space E. 
Suppose that intC = 0 and that 0 € C\suppC. If S Ç C is such 
that S H Fm is separable for each m > 1, then 

R(S) = {x E E\C : for each a € S we have C n (x, a) C supp C} 

is a residual subset of E. 

Typical applications of this Lemma are with S a compact subset of 
supp C or with S = supp C when C is separable. 

The following is a rather evident property of the boundary of a convex 
body. The result is used in the proof of Proposition 2. 

PROPOSITION. Let E be an infinite dimensional Banach space. If C 
is a closed convex subset of E and int C / 0, then suppC is LC°°. 

PROOF. Without loss of generality we can take 0 € intC; since 
int C T̂  0 we have supp C = bdry C. 

Let q : E —y C be defined by 

q{x) = W) 
where \x is the Minkowski functional of C. If z € bdry C and e > 0, 
choose 6 > 0 such that 

\\q(x)-q(z)\\<e 

whenever x € B(z;6); this is possible since q is continuous at z. 

Suppose / : Sn —• B{z\ 6) D bdry C is continuous. Define 

H : [0,1] x Sn - • B{z]€) HbdryC 
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by H(£, s) = q(tz + (1 — t)f(s)). This map deforms / to the constant 
map s H-> q(z) = z and the deformation takes place in B(z;e) since 
te + (1 - t)f{s) G B{z; 6) for each 0 < t < 1. 

The following Theorem is a local version of Theorem 1 of [2]. 

THEOREM 1. Let E be an infinite dimensional Banach space. IfC is 
a boundedly weakly compact convex subset of E, then suppC is LC°°. 

PROOF. If int C ^ 0, the conclusion follows by the Proposition. If 
C = supp C, then supp C is convex and the result is obvious. Thus we 
may assume that int C = 0 and 0 G C\supp C. 

Let z G supp C and e > 0; suppose 

f:Sn-+B(z;e)r\suppC 

is continuous; let S = / ( S n ) and 6 = sup{||z — a|| : a G 5} . Since S is 
compact the supremum is attained, so clearly 6 < e. 

Let R(S) be as in the Lemma; then 

Let x be an element of this intersection. We may assume [6; proof 
of Theorem 9] without loss of generality that the metric projection p is 
single-valued and continuous and that p(E\C) Ç suppC. Define the 
homotopy 

H : [0,1] x Sn -+ B(z, e) n supp C 

by H(t, s) = p{tf(s) + (1 — t)x); the map H deforms / to the constant 
map s H-> p{x). 

It only remains to show that the deformation takes place in B(z;e), 
all else being obvious. 

We have 
ii ii 6 — 6 

and \\z - a\\ < 6 for each a e S. 

Let xt = (1 — Ê)^ + taï t h e n 

II»* - P(a*)|| < ||a* - all = (1 " t)\\x - a\\ 



182 G. LUNA 

and 

| | z t - * | | = \\{l-t)x + ta-({l-t)z + tz)\\ < (l-t)\\x-z\\+t\\a-z\\. 

By combining the above inequalities with ||a: — a\\ < \\x — z\\ + \\z — a\\ 
we obtain \\z — p(xt)\\ < £ which complete the proof. 

The following Theorem summarizes our results for boundedly weakly 
compact sets. Note that in any reflexive Banach space this hypothesis 
can be replaced "C is closed." 

THEOREM 2. Let C be boundedly weakly compact convex subset of an 
infinite dimensional Banach space E. Then the following hold: 

(1) If C contains no hyperplane, then suppC is arcwise connected; 

(2) If C contains no linear variety of finite codimension, then suppC 
is C°°; 

(3) / / C contains no linear variety of finite codimension, then the 
homotopy groups of supp C are all trivial; and 

(4) suppC wLC°°. 

PROOF. Parts (1) and (2) are proved in [2]; part (3)is known to be 
equivalent to (2) [1, p. 50], and part 4 is Theorem 1 of this paper. 

The following Theorem generalizes Theorem 3 of [2] by replacing 
the hypothesis of "compactness" with that of "weakly compact and 
separable." 

THEOREM 3. / / E is an infinite dimensional Banach space and 
C is a boundedly weakly compact convex and separable subset of E 
which contains no linear variety of finite codimension, then supp C is 
contractible. 

PROOF. If intC ^ 0, then suppC = bdryC and it is known that 
bdryC is an AR(metric), if C contains no linear variety of finite 
codimension [3, Corollary 2]. If C = suppC, then the conclusion is 
obvious, so we may assume that 0 E C\supp C. 

Since C is separable metric, supp C is separable. Thus the Lemma is 
applicable with S = suppC Let x € R(S). 

By considering span C = span (C — C) we can suppose E is separable 
(since C / suppC, we know C D B[0; 1] is total). 
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Since E is separable, we may assume E is locally uniformly convex 
and hence the metric projection p : E —• C is single-valued and 
continuous. 

Let H : [0,1] x suppC —• suppC be defined by H{t,y) = 
p((l — t)y+tx). Then H deforms the identity on supp C to the constant 
map y H-> p(x) G supp C (since x G E\C). The deformation takes place 
in supp C since C D (2/, x) Ç supp C for each 2/ G supp C. 

COROLLARY. / / C is a closed convex bounded subset of the sequence 
space £p(l < p < ex»), then suppC is contractible. 

A set A is finitely convex [4] if, given any finite subset S of A and 
any e > 0, there is a continuous mapping <j> from conv S into A such 
that \\(j){x) — x\\ < e for each a: G convS. It if known [5] that if A is 
finitely convex, then cl A is convex. 

If C is a closed convex subset of a Banach space and A = supp C ^ C 
is finitely convex, then intC = 0. Is suppC finitely convex, if 
supp C ^ C and int G = 0? 

We state the following partial result in this direction. It can be 
proved by applying the Lemma inductively to the points of a partition 
of [ao^i] and using continuity of the metric projection. 

PROPOSITION. Let C be boundedly weakly compact convex subset of 
an infinite dimensional Banach space E, and suppose intC = 0. Let 
ao,ai G suppC and set at = (1 - t)ao + ta\ for 0 < t < 1. Then, for 
each e > 0, there exists a continuous map (j> : [0,1] —• supp C such that 
\\cj>(t)-at\\<e. 
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