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CONES IN THE GROUP ALGEBRA RELATED 
TO SCHUR'S DETERMINANTAL INEQUALITY 
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A B S T R A C T . Let c : Sn —• C be a complex valued function 
on the symmetric group. For A = (ot-j-), an ra-by-n matrix, 
define 

n 

dc{A) = ] P c{cr) J J a t f f ( t ) . 

aesn t=i 
Suppose C is the cone of all functions c such that dc (A) > 0 
for all positive semidefinite A (written A > 0). We show that 
dc(A) > c(e)det(>l) for all c € C and all A > 0, and then 
investigate the structure of C. 

1. Introduction. Denote by Hn the cone of positive semidefinite 
hermitian n-by-n matrices. In 1893, J. Hadamard proved that h(A) > 
det (A) for all A G Hn, where h(A) is the product of the main diagonal 
entries of A. In 1918, I. Schur published a dramatic improvement 
of the Hadamard Determinant Theorem: Let G be a subgroup of the 
symmetric permutation group Sn. Suppose \ is a n irreducible, complex 
character of G. If A = (a^) is an n-by-n matrix,define 

n 

(1) dx(A)=J2x(<T)Uat<T{t). 
a£G t = l 

In the recent literature, it has been customary to state Schur's 
Inequality as 

(2) dx(A)>x(e)det(A), 

A G Hn. As pointed out in [1], this inequality does not do justice to 
the full power of Schur's result. We will have more to say about this 
presently. 

The work of these authors was supported in part by ONR contract no. 85-K-
0335. 

Received by the editors on October 24, 1985. 
* AMS Subject aassification: 15A15, 15A45, 15A57, 15A69, 20C30, 52A20. 

Copyright ©1988 Rocky Mountain Mathematics Consortium 

137 



138 R. GRONE R. MERRIS, AND W. WATKINS 

Consider, now, the symmetric group algebra A = CSn consisting of 
all (formal) complex linear combinations of the n! elements of Sn. Then 
we may identify A with the algebra of complex valued functions of Sn 

under "pointwise" additions and scalar multiplication, and convolution 
multiplication. An element c G A is said to be positive semidefinite 
(write c > 0) if 

^2 x(a)c(aT~1)x{r) > 0 
<T,TeSn 

for all x G A. Another way to say this is the following: Let a —• L(a) 
be the left regular (matrix) representation of Sn. Then c > 0 if and 
only if ^2a€S c(<j)L(a) is a positive semidefinite hermitian matrix. 
Consider the cone C+ = {c G A\c > 0}. Since the field is the 
complex numbers, C+ is contained in the cone >/ = {c G ^|c(cr_1) = 
C{G),G G 5 n } , corresponding to the hermitian matrices in the left 
regular representation. If we define 

n 

(3) dc(A)= £ c(<r)n«ta(t), 
ereSn t=l 

then (see e.g., [1]) 

(4) dc(A) >c(e)det(A), 

for all c G C+ and for all A G Hn. (This result simplifies earlier work 
done in [6].) It is the main purpose of the present paper to show that 
(4) continues to hold for a larger cone C and then to study the structure 
of C. 

One way to produce examples of elements of C+ is this: Let {B(a) = 
(bij(a))\(T G Sn} be an irreducible, unitary representation of Sn of 
degree m. Then bu G C+ , 1 < i < m. Indeed, it is an exercise in group 
representation theory to show that the cone C+ is generated by these 
main diagonal entry functions from irreducible, unitary representations 
of Sn. (See the discussion following Theorem 4 below.) Consequently 
(as mentioned in [1]), inequality (4) is implicit in Schur's 1918 paper. 

We now define the cone 

C = {ce A\dc{A) > 0 for all A G Hn}. 

It is a consequence of (4) that C+ Ç. C. To see that the two are not 
equal, let p G C+ be the function which is 1 on every a G Sn (so that 
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dp = per, the permanent function). If e denotes the signum function, 
then p — e G C by (2). But, for x = £, 

] T x{a){p - e^ar-^xir) 
<J,r€S„ 

= 52 e{a){l-e{a)e{r))e{T) 
(T,T€Sn 

= £ (e(ar)-l) = -(nl)2. 

So, p- e $. C+ . 

We now come to our first main result which shows that a Schur type 
inequality is available for all c G C. 

THEOREM 1. Ifce C, then dc{A) > c(e)det(A), for all A G Hn. In 
other words, dc(A) > 0 , i € i / n , implies dc{A) > c(e)det(A), A G Hn. 

PROOF. Observe first that if A is singular, there is nothing to prove. 
If A = (aij) is positive definite, let a = det A/det A(l), where A(l)is 
the principal submatrix of A obtained by deleting row 1 and column 
1. Denote by E the n-by-n matrix with a 1 in the (1,1) position 
and zeros elsewhere. Then AQ = A — aE G Hn is singular. Define 
Ax = AQ + xE, so that Aa = A. Define a (linear) function f(x) = 
dc(Ax) - c(e)det (Ax), Then f'{x) = dc{l 0 A(l)) - c(e)det (A(l)). It 
follows by induction that f'(x) > 0 (for all x). Since /(0) = dc(Ao) > 0, 
we may conclude that f(x) > 0 for all x > 0. In particular, / ( a ) > 0. 
Since A = A a the proof is complete. 

EXAMPLE 1. Let Q = (^-) G Hn be fixed but arbitrary. For any 
ceC define CQ(<T) = c(a)tla{Q)i w n e r e 

nw)=n *-w-
Then dC g(^) = dc(Q o A), where Q o A is the Hadmard-Schur product 
of Q and A. Since Q o A E Hn for all A G üTn, it follows that CQ G C. 
By Theorem 1, 

d c (QoA)>c Q (e )de t (A) 
1 j =c(e)/i(Q)det(A). 
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Taking, for example, c = £, (5) becomes Oppenheim's inequality [8] 

det(QoA)>h(Q)det(A). 

One of the most significant outstanding problems involving the perma­
nent is the Lieb-Marcus-Minc conjecture, 

(6) x(e)per(A)>dx(A), 

A € Hn, a sort of dual to (2). As above, denote by p the principal 
(identically 1) character of Sn . For Q G Hn,pQ(a) = Yl<r(Q)i a n d 

dPQ{A)=per(QoA). 

It seems plausible to extend conjecture (6) to the pg functions. This 
would result in 

PQ (e)per(A) > dPQ{A) 

or 

h(Q)pev{A) > per (Qo A). 

This is a sort of dual to Oppenheim's Inequality which was suggested 
recently by R.B. Bapat and V.S. Sunder [1; Conjecture 2]. (Also see 
[2]-) 

2. Cones in A. Stimulated by Example 1, we consider the cone B 
in the symmetric-group algebra A generated by {PQ\Q E Hn}. Since 
dPQ(A) = per (Q o A) > 0 for all A G i7„, we see that B C C. In fact, 
more is true. 

THEOREM 2. The cone C is the dual cone of B. Moreover, B ^. C+'. 

PROOF. Order the elements of Sn in some convenient way. Then PQ 
may be expressed as an n!-tuple with ricr(ö) m ^n e ^ h place. In the 
same way, any c 6 C may be written as an n!-tuple with c(a) in the 
a-th place. Now, e e C if and only if JZaeSn c(ai TiAQ) - 0> Q e Hn-
And e E B*, the dual cone of S, if and only if Ylaesn

 c ^ TiaiQ) ^ 0, 
i.e., if and only if the scalar product, copq > 0, Q € Hn. Since Hn is 
invariant under complex conjugation, C = B*. 
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To prove that B § C+ , we first take Q € Hn. Then 

< X , T G S „ 

= E ï&)U.<,T-t{Q)x{T) 
<r,T£Sn 

n 

ar,T€Sn t=l 

But, this is a value of the quadratic form afforded by a principal 
submatrix of the n-th Kronecker power of Q. 

It remains to show that B / C+ . Note that e e C+: If x E >?, then 

where y (a) = x (<T)£((T) , aGS n « But, this is just the sum of the elements 
of a rank 1 matrix in Hn\. 

Suppose next that S G S . Then there would be a finite set K c Hn 

such that e = J2Q£KPQ- Hence 

de t (A)= ] T per(QoA), 
Q€K 

for all A G Hn. We now make two special choices for A. If A = J , 
the matrix each of whose entries is 1, then ]T)Per (Q) = 0- Therefore, 
per (Q) = 0 for all Q E K. So, every Q in K must have a row of zeros. 
But then, letting A = J, the identity matrix, we conclude 

1 = det (/) = J2 h(Q) = 0. 
QeK 

To facilitate the further study of C, it is convenient to define 

C0 = {c € C\c{e) = 0} 

and 
Ci = {ceC|c(e) = l } . 
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COROLLARY 1. The convex set C\ is a translation of the cone Co-
Specifically, C\ = Co + £, where e is the signum function. 

PROOF. This is largely a restatement of Theorem 1 in different 

notation. Let e E Co- Since e E C and C is a cone, c + e EC. But, c + e 

takes the value 1 on the identity e. Thus, c+e E C. Conversely, suppose 

e E Ci. By Theorem 1, dc(A) > c(e)det (A) = dei (A), A E Hn. But 

then dc(A) — det {A) > 0, A E Hnì and c — e E C. Since the value of 

c — e on e is 0, c — e E Co-

Note that if c £ Co, then c/c(e) E Ci. Thus, we may write 

(7) C = C0U(Ur>orC1). 

Further progress depends on the following technical lemmas whose 
long and tedious proofs will be omitted. 

LEMMA 1. Suppose e E A. If dc(A) = 0 for all A E Hn, then c is 
identically zero. 

LEMMA 2. Suppose e E A. If dc(A) is real for all A E Hn, then 
CEU, i.e., c(a~l) = C(<J), a E Sn. 

There is a natural partial order on C. If a, b E C, then a > b simply 
means that a — b E C. Note that a > b if and only if da(A) > db(A) for 
&llAEHn. 

THEOREM 3. The unique extreme point of C\ is e. 

PROOF. We begin by showing that £ is an extreme point. Suppose 
e = Oa + (1 — 6)b for some a,b E C and some 0 satisfying 0 < 6 < 1. By 
Theorem 1, a > e and b > e. Thus, 6a + (1 — 0)b > e. Now, if there is 
a single A E Hn such that da(A) > det (A), we have a contradiction. 
It follows that dc(A) = 0 for all A E Hn where c = a — e. Appealing to 
Lemma 1, we conclude that a = e. Similarly, b = e. 

To see that no other element of Ci is extreme it suffices to observe 
that a = \{2a - e) + \e for all a E Ci. By Theorem 1, a — e E Co for 
all a E Ci. Thus, both 2a — e and e are elements of Ci. 

COROLLARY 2. The only extreme ray of the cone C not contained in 
Co is (e) = {re\r > 0}. 
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EXAMPLE 2. Recall that p denotes the constant function 1 on Sn . If 
we confuse the identity of Sn with the identity of A, we may write e for 
the function which is 1 on the identity permutation and 0 on the rest 
of Sn. In particular, dp(A) = per (A) and de(A) = h(A). Both p and e 
are elements of C\. It follows from Theorem 3 that neither p nor e is 
an extreme point of C\. We claim that neither is even on the boundary 
of Ci- First consider e. Let b / e be a fixed but arbitrary element of 
C\. We wish to show that there is an element a G C\ such that a ^ e 
but e is on the line segment joining a to b. Since the main diagonal 
product of A G Hn dominates (in absolute value) any other diagonal 
product, there is a number r > 1 such that rh(A) > dt>(A), A G Hn. 
(If 6 happend to be p, then r could be taken to be n!) It follows that 
re - b G C. Should it happen that re — b G Co, then replace r with r + 1 . 
Now, we have that 

re — b 1 , , x = e H -(e - 6) = a G Ci 
r — 1 r — 1 

e = a H—ò. 
r r 

Because per (A) > /i(A), A G i / n [5]; a similar argument holds for p. 

It follows from Lemma 2 that C e ) / . In fact, these two cones are 
more closely related. 

THEOREM 4. Let e be the identity of A and write (—e) = {—re\r > 0}. 
Then M = C + (-e) . 

PROOF. Since C c X and (—e) C )/, we need only show that the 
typical element a G )/ can be written in the form b — re for some 
&€C and some r > 0. Since the main diagonal product of A G Hn is 
dominant, it suffices to choose r = Y^^eSn \a^(T)\' Then a + re = b G C. 

In fact, Theorem 4 can be placed in a more general setting. Suppose 
c G M C A. By Wedderburn's Theorem, we may view A as a direct 
sum of full matrix rings Mni, Mn2,..., Mnic. Since c is hermitian we 
may perform a unitary similarity on each marix ring so that the 2-th 
component of c is diag (A^i, A»,2? • • • ? A^ni), 1 < i < k. Being eigenval­
ues of hermitian c, the A's are real. Indeed, diagonalizing c amounts 
to choosing a particular system of unityar, inequivalent, irreducible 
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representations B^, B^,..., B^, of 5nof degrees n\, r i2 , . . . , n^, re­
spectively. Moreover, the spectral decomposition of c with respect to 
these representations may be expressed as 

(8) -LEM?-
i=l j=\ 

where bjj is the j-th main diagonal entry function of i?W. Moreover, 
c € C+ if and only if all of the À's are nonnegative. In particular, 

(9) C c ) / = C + - C + , 

where C+ - C+ = {a- 6|a, 6 € C+}. 

In fact, (9) is another version of Theorem 4. Similar arguments can 
be used to show that C+ is closed under pointwise multiplication, i.e., 

(10) C+oC+ = C+. 

It is interesting to pursue Identity (8) a step further when c is an 
element of the generating set of B. As in Example 1, let Q € Hn be 
fixed but arbitrary. Then PQ(<T) = Yla(Q)i the cr-diagonal product of 
Q, and dPQ(A) = per (QoA). From (8), 

(H) W = £ E M S ? ' 

To compute A i ; , we appeal to the "Schur Relations". (See, e.g., [7, p. 
16].) 

= 5 E ^ ) Ô M -
Thus, if c € C+ arises from the j-th main diagonal entry function of 

B , then the eigenvalue X{j of PQ satisfies the identity. 

(12) (n\/ni)XiJ=dc(Q). 
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Identities (11) and (12) can be viewed in another way. We can exhibit 
the eigenvalues and an orthogonal set of eigenvectors for the n\ square 
matrix \\{Q) whose (<r, ß) entry is given by 

n 

t = i 

= n «)> 
where <r, ji € Sn. For each i = 1 , . . . , k and j \ s = 1 , . . . , n^, the (j, s) 

entry functions of f? are orthogonal eigenvectors corresponding to 
the eigenvalue dc(Q) in Equation (12). We note, in this context, that 
the Lieb-Marcus-Minc conjecture, (6), would follow if it were known 
that per<2 is the dominant eigenvalue of n(<3)- (See [11].) 
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