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ON ^-FILTERED VECTOR SPACES A N D THEIR 
APPLICATION TO ABELIAN p-GROUPS: II 

PAUL C. EKLOF AND MARTIN HUBER 

1. Introduction. An u-filtered vector space is ordinary vector space 
equipped with a descending chain of subspaces {Xn : n € CJ}. A 
morphism between a;-flltered vector spaces X and F is a linear map 
/ : X - • Y such that for all n, f{Xn) C Yn. The key example of an 
cj-filtered vector space - over Z(p), the field of p elements - is, of course, 

def 
the socle, G\p] = {x € G : px = 0}, of an abelian p-group. 

In [10] we began a systematic investigation of cj-filtered vector spaces 
over an arbitrary countable field. In this paper we continue that study, 
with emphasis this time on questions which can be answered with the 
help of additional set-theoretic axioms, but which cannot be settled on 
the basis of the usual, Zermelo-Franekel axioms of sets theory (denoted 
ZFC). We give applications of our results to the theory of abelian p-
groups, particularly to Crawley's Problem. 

§2 is concerned with the classification of CJI-separable w-filtered vector 
spaces of dimension Ni. Our results parallel those which have been 
obtained for cji-separable abelian groups (cf. [7, 8, 11): there is a 
satisfactory structure theory when we assume Martin's Axiom (MA) 
plus the negation of the Continuum Hypothesis (-iCH), and extreme 
pathology when we assume CH or the Axiom of Constructibility (V=L). 
Among the consequences of the structure theory (which holds under 
MA+-iCH) are (1) every weakly u>i-separable space of dimension Ni is 
u>i-separable (Corollary 2.2) and C-decomposable (Corollary 2.3) and 
(2) every ^-separable cj-filtered vector space over Z(p) of dimension Ni 
is the socle of a pw+1-projective p-group. None of these consequences 
are theorems of ZFC. 

§3 deals with dense subspaces of small codimension in an w-filtered 
vector space, and has application to Crawley's Problem on the unique 
(j-elongation of p-groups. The main theorems (3.3 and 3.8) con­
struct large numbers of dense subspaces of codimension 1 in any non-
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projective space of dimension Ni, under hypotheses consistent with but 
weaker than V=L. As a consequence, we obtain strengthenings of the­
orems of Megibben and Mekler-Shelah (Corollaries 3.7, 3.11). We also 
note that assuming only 2K° < 2 a i , every Crawley group of cardinality 
Ni must be weakly w\-separable (Corollary 3.10). 

Throughout the paper we shall consider u;-filtered vector spaces over 
a fixed countable field K. We shall assume familiarity with the basic 
definitions and results of [10]. For an introduction to ZFC, and to the 
additional axioms we use, see, for example, [6, 14, 13]; also useful are 
[3] and [23]. 

2. The s t ruc ture of c^i-separable spaces. We shall say that 
two o;-filtered vector spaces X and Y of dimension u\ are filtration-
equivalent if they have o;i-filtrations X = Uy<UJlXl/ and Y = \Jy<UJxYv 

such that, for all /z < w\, there is a level preserving isomorphism fß : 
Xp —• YM, i.e., an isomorphism such that, for every v < /i, fß{Xu) = Yv. 
(For the definition of ux-filtration and u>i-separable see [10; pp. 152f].) 

We shall state our first two results without proof since the proofs 
follow closely the proofs of corresponding results for groups, (see, 
respectively, [11; Theorem 2.1 and Theorem 2.2].) 

THEOREM 2.1. (MA-f-iCH) Filtration-equivalent weakly UJ\-separable 
w-filtered vector spaces of dimension Ni are isomorphic. 

COROLLARY 2.2. (MA+->CH) Every weakly u)\-separable space X of 
dimension Ki is C-decomposable, i.e., X ~ F © P , where P is projective 
and fin dim (P) = fin dim (X). 

COROLLARY 2.3. (MA+-iCH) Every weakly oji-separable space of 
dimension Ni is ui -separable. 

PROOF. It suffices to prove that if VF is a countable closed subspace 
of a weakly ui-separable space X of dimension c^i, then W is a 
summand of X. Let Y = X/W ® W. By choosing an ui -filtration 
of X = Uv^X,, such that W = Xx and letting Yv = (XvjW) © W it 
is easy to show that X and Y are filtration-equivalent, and moreover the 
identity map W —y W is level-preserving. I follows then from Theorem 
2.1 (or actually from its proof) that there is an isomorphism of X onto 
Y which is the identity on W. Hence W is a direct summand of X. 
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COROLLARY 2.4. (MA+-»CH) Every üJt-separable u-filtered Z(p)-
vector space of dimension Ni is the socle of a (unique) u\-separable 
p"*1 -projective p-group G. 

PROOF. This follows immediately from Corollary 2.2, Theorem 5.4 
of [10], Theorem 1.1 of [16], and the fact that, assuming MA+->CH, 
every weakly Wi-separable p—group is ^-separable [16; Theorem 2.2]. 

For the definition of P(A) see [10] (before 3.12). 

COROLLARY 2.5. (MA+-iCH) If A is a p w + 1 -injective p-group such 
that P(A) is wi-separable of final dimension Ni, then A is the direct 
sum of two subgroups of uncountable final rank. 

PROOF. Corollary 2.2 implies that P(A) — X\ ©X2 for some X\ and 
X2 of uncountable final dimension. Hence, if A\ and A2 are p w + 1 -
injective groups such that P{A{) = Xi for i = 1,2, then Ai and A<i 
have uncountable final rank, and A ~ A\ © A2 (cf. 4.1 of [10]). 

Corollary 2.2 shows that, in a model of MA+-1CH, every ui-separable 
cj-filtered vector space of final dimension Ni is the direct sum of two 
subspace of uncountable final dimension. We do not know if, in every 
model of MA+-iCH, every such space which is not projective is that 
direct sum of two non-projective subspaces, but this can be proved as 
a consequence of a stronger hypothesis, PFA (cf.[7, Theorem 2.10] and 
[17]). On the other hand, this result fails in model of V=L, as we 
now show. (The analogous result has not previously been observed for 
groups.) 

THEOREM 2.6. (V=L) There is an uj\ separable UJ-filtered vector space 
Xof dimension Ni which is C-decomposable and non-projective, but 
which is not the direct sum of two non-pro jective subspaces. 

PROOF. We shall construct X = A © F , where F is projective and of 
final dimension Ni and X has the property that if X = Y © Z, then 
either A D Y or A fi Z has countable final dimension (and hence is 
projective). Suppose that X = Y © Z and Af\Y has countable final 
dimension. Note that there is a monomorphism 

Y/(AClY)^{A + Y)/A, 

and (A -f Y)/A is projective because it is isomorphic to a subspace of 
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F. Therefore, by Proposition 1.4 of [10], Y/(A Ci Y) is projective, and 
therefore Y is projective. So it suffices to construct X with the stated 
property. 

The construction will be similar to that in Theorem 2.8 of [10], and 
just as in that theorem, we can construction X to have a given basic 
subspace B, and also a given T-invariant other than 0 or 1. 

Let Sy,B{v),B{v) etc be as defined in [10; Theorem 2.8]. Let 
E C lim(o;i) such that E ^ 0,1. Let P be a projective space such 
that 

f (P)z=f0 i f / n ( B ) < » i 
JnK J \ « o otherwise. 

For each v < CJI, let Fu be an isomorphic copy of P , and let F = 
®i/<wi-Fi/ ^ P{uJl). (Note that B ~ B 0 F). We shall inductively 
construct Av such that, for all v G lim(u;i) 

B{v) ç Ay ç UM<l/£Qu), 

and for all v < r, v 0 E implies Av is closed in AT. For all v < CJI , let 

Now, Owi (£) gives us a family of pairs (Yi,, Zu) of subsets of XUi such 
that it will be the case that, for any pair (Y, Z) of subsets of X, there 
is a stationary set of v € E such that Y C\XV = YU and ZPiX„ = Zu. 
(Define a chain of bijections of Xß with c<;/i as the Xß are defined.) 

Suppose we have a constructed AT for every r < fi. The crucial case 
is when /i = i/ + l and 

(*) v E E and there is a strictly increasing sequence rn approaching 
v such that, for all n,Tn & E, 

xTn = (Y„nxTn)®(z„nxTn), 

and, for all m, 

nn<Mr„.„ 

Then recursively define yn € (Yi,nATn)—A^^ and zn € {ZvÇ\ATn) — 
ATn_l such that v(2/n) and v(^n) are strictly greater than 

def 
kn = max{v(yn_i + (y„ DXTn_2))iv(zn-1 + ( ^ n l r r l _ 2 ) ) } . 
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(Note that kn is finite). Then let av be the limit in B{y) of {52i<n(yi + 
Zi) : nE w} and let 

A„+i = (A„ + Kav) e Sv. 

This completes the crucial inductive step of the construction. In cases 
where (*) is not satisfied, let Av+\ = Av © Sv. Of course, for limit 
a < co>i, Aa = Ul/<aAl/ and Xa — \JV<<JXV. 

Let A = i4Wl,X = XUl = A © F , and suppose I = 7 © Z where 
A n y and ADZ have uncountable final dimension. Then, for every 
m E u and every */, there exists y > v such that Y D A™ g Av and 
Z n A™ 2 A^. From this it follows easily that the set C, of /i such 
that, for all m G a; and all v < /i, 

y n i ; g J4„ and zr\A™ £ AV, 

is a cub. (For the definition of a cw6, see [10, p. 152]). Moreover, 
w.l.o.g., for every /i E C, 

xM = (ynxM)e(znx/x). 

Since i£ ^ 1, ((Ji — E) D C is unbounded, so its closure (o;i — E) n C is 
a cub. Thus there exists a limit point ^ of (OJ\ — E)C\C such that 

y n jr„ = ŷ  and z n xv = z„. 

Also, by choice of i/, v is the limit of a sequence of ordinals rn E 
(ujx - E)C\C (cf. [6. p. 92]). Thus we are in the case when (*) holds. 

Now, if av is as in the construction, av E Xv and av = y' + z' where 
y' EY,z' E Z. Since Xy/Xu has dimension < 1 by const ruction,either 
y' E Yy or z' E Zv. Say y' E Yv\ fix n such that i/' € Y^ fl X rn_!. Now 
by construction 

v{a„ - Y^iVi + Zi)) > fcn+i. 
i<n 

But 

t<n i<n i<n 

so, since 7 © Z is a direct sum (in J"V), 
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However, {T,i<nyty
f = yn + ((£i< n l / t ) - </') belongs to yn + {Yv n 

XT n_J, which has value < kn+i by definition of A;n+i, a contradiction. 

COROLLARY 2.7. (V=L) There exists a weakly uji-separable p w + 1 -
projective p-group which is not J2~cyc^c and zs n°t ^e direct sum of 
two non-J2~cyclic subgroups. 

In a similar manner one can prove the following theorem (which 
follows from Corollary 1.10 of [11] for K = Z(p)). 

THEOREM 2.8 (V=L) There is an uji-separable oj-filtered vector space 
X of dimension Ni which is not the direct sum of two subspaces 
of uncountable final dimension. In particular, X does not have a 
projective summand of uncountable final dimension. 

COROLLARY 2.9. (V=L) There is an (JJI-separable u-filtered vector 
space of dimension Ni which is not the socle of a p w + 1 projective p-
group. 

COROLLARY 2.10. (V=L) There is a p a ; + 1 -injective p-group A such 
that P(A) is LO \-separable of final dimension #i, but A is not the direct 
sum of two subgroups of uncountable final rank. 

REMARK 2.11. Theorem 2.8 implies that 2.2 and hence 2.1, is not a 
theorem of ZFC. In fact, it can be shown that 2.1 fails in all models of 
ZFC+2**0 < 2*1 (cf. the proof of an analogous result in [7; Theorem 
3.2]). We do not know if 2.2 fails in all models of CH, but we shall show 
in the next section (3.5) that 2.3 fails in all models of ZFC+2**0 < 2*1. 

3.. Dense subspaces of codimension one. Recall that Crawley 
[2] and Hill and Megibben [12] proved that if Gis a 2 " c y c ^ c P-grouP5 

then it has the unique LÜ-elongation property, i.e., for any p-group 5 , 
any two u;-elongations of G by B are isomorphic. Later, Nunke [21] 
and Warfield [24] proved a converse to this result, i.e., a separable 
p-group with the unique cj-elongation property is ^-cyclic. Crawley 
raised the question of a stronger converse. Call a p-group G a Crawley 
group if G is separable and any two o;-elongations of G by Z(p) are 
isomorphic; Crawley's Problem asks: is every Crawley group Xr c v c l i c? 
Megibben [15] showed that this question is not decidable in ZFC for 
groups of cardinality Ni: the answer is "yes" assuming V=L and "no" 
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assuming MA+-"CH. Mekler and Shelah obtained other results under 
V=L, including a result about "rigid systems" of elongations for groups 
of cardinality Ni which are not Y^'CYC^C (°f- [19; Theorem 1.3 and 
Remark 3.12]). 

By Richman's Criterion a separable p-group G is a Crawley group 
if and only if any two dense subspaces of G[p] of codimension 1 are 
equivalent (cf. [10; Criterion 3.12]). Since equivalent subspaces of 
G[p] are isomorphic as ofiltered vector spaces, it is natural to raise the 
question of how many non-isomorphic dense subspaces of nondimension 
1 an a;-filtered vector space may have; we shall show that the answer 
depends on additional set-theoretic hypotheses. 

Megibben's results [15; Theorems 3.1 and 3.2]imply that, assuming 
MA+-1CH, every ^-separable u;-filtered Z(p)-vector space X of dimen­
sion Ni has the property that any two dense subspaces of codimension 
1 are isomorphic. We shall now show that a more general result is a 
consequence of Corollary 2.3. 

THEOREM 3.1 (MA+-1CH) If X is an ujx-separable uj-filtered vector 
space of dimension Ni, then any dense subspace of countable codimen­
sion is isomorphic to X. 

PROOF. Let y be a dense subspace of X of countable codimension. 
Then Y is certainly weakly ui separable since the closure in Y of any 
countable subset is contained in its closure in X. Hence by 2.3, Y is 
wi-separable. 

By hypothesis there is a countable closed subspace Xo of X such that 
X = X0 + Y. Denote Xo H Y by YQ. We can assume YQ is dense in Xo 
(cf. proof of Theorem 3.4 of [10]), and hence Xo ^ lo-

Now Y = YQ 0 W for some subspace W of Y since lo is closed in 
Y and Y is ui-separable. But then X = X0 + Y = X0 0 W. (Note 
that the latter sum is direct by Lemma 2.9 of [10]). The result follows 
immediately. 

REMARK 3.2. Note that, in fact, the argument proves (in ZFC) that 
if X is a space of dimension Ni which contains a dense subspace Y 
of countable codimension which is u)\ -separable, then X is isomorphic 
to Y. Moreover, it can be shown that if X contains any (weakly) OJ\-
separable subspace Y of countable codimension, then X is (weakly) 
u)\-separable (but not necessarily isomorphic to 7 ) . (The proof of 
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Theorem 3.1 has been simplified by use of an idea of Alan Mekler's). 

Now we shall show that Theorem 3.1 is very far from being a theorem 
of ZFC. ($0,! (E) is the "weak-diamond" hypothesis: see [4] or [6, p. 
34]).) 

THEOREM 3.3 ($Wl(2£)). Let X be a weakly ojx-separable UJ-filtered 
vector space of dimension Ni such that T(X) = E. Then there are 2**1 

dense subspaces Y{(i < 2Hl) of codimension 1 in X such that for i ^ j 
(a) Yi is not isomorphic to Yj and (b) for any morphism 0 : X —> X, 
if6{Yi) C Yj, then 0{X) C Yj. 

PROOF. We may suppose that E Ç lim(u;i) and that there is an uii-
filtration X = Ul/<LJlXl/ such that X\ is not closed in X and, for all 
v > 1, Xv is closed in X if and only \iv^E. Fix z G X\ — X\\ note 
that z G X2. 

Let 62 be the set of all functions from 6 to 2 = {0,1}. We shall 
construct, for each £ G62(<5 G u;i), a subspace Y$ of X$ containing X\ 
such that: 

(ii) for all /I < Ô^Yçin Ç Y ,̂ and if 6 is a limit ordinal, then 
Yt = Ufi<6Y^iß; and 

(iii) if S G E, there exists ye G Xß—Xß such that ys G Yç0,ys—z G Y^ 
(where & = £ U {(<5, i)} for i = 0,1).Suppose we can do this; note that, 

def 
by(i), for any <p : UJ\ —> 2, Y^ = U$<Wl Y^\s is a dense subspace of X 
of codimension 1. Our aim is to show that we can choose 2**1 different 
functions <p : u\ —• 2 such that the corresponding subspaces Yv satisfy 
(a) and (b). 

For each 8 G E and each triple (£, p, h) where £, p G62 and /i : Y$ —• 
y^ is continuous, define 

Ff>{t,p,h) = \l ifMw)eypo 
10 otherwise. 

(Here A is the extension of h to Xß = Y$, taking values in X, the 
completion of X.) 

Now we can write E as a disjoint union, £ = LI a < u ; i ^a such that, 
for each a,$Wl(2£a) holds (see, e.g., [9; Lemma 2.8]). Then ^<JJl(Ea) 
(plus a standard coding argument) imply that there is a function 
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%l)a : Ea —• 2 such that, for all <r,r : uj± —• 2 and 0 : Ya —• Yr, 
{6 G Ea : F^(Ö- f <5,r f <5,0 f Y ^ ) = ^a(<$)} is stationary in ui. 

Let {St : i < 2Wl} be a family of subsets of u)i such that if i ^ j , then 
$ = Sj^<l> and S,- - # ^ 0. 

Define 

\ 0 otherwise. 

Let Yi = U^<U;iy¥?tf6- We shall prove that (a) and (b) hold for 
this family of dense subspaces of codimension 1. Let i / j and let 
aeSi- Sj. 

(a) Suppose there is an isomorphism 0 :Yi -» Yj. Then there exists 
6 e Ea such that if we let f = pi \ S, p = <p3- \ 6, h = 0 \ Y ,̂ 
then h(yO Ç Yp and ipQ(6) = Fs(^p,h). Notice that a £ Sj implies 
Yj flXtf+i = YPo. 

Case 1^ ^a{6) = 0. Then (pi(6) = 0 and hence y è G Y 0̂ Ç Y;. But 
0(ys) = h(s) & YPo by definition of Fs(^p,h). This is a contradiction 
since 0(y6) G Y,- n Yp C Y,- fl X m = YPo. 

Case 2. ^ a (5) = 1. Then ys -_z G Y*. Also ft(y$) e YP^Ç YÌ5 

so 0~1(h(ys)) G Yi. But ff"1^^)) = 2/5 since ^ e Y^ and 
/i f Ŷ  = 0 Ï Y .̂ This is a contradiction since ztfLYi. 

(b) Suppose there is a morphism 6 : X —• X such that 0(Y )̂ Ç Ŷ  but 
0(2) ^ Yj. Let <5, £, /9, h be as in (a), and consider the two cases. Case 
1 is exactly as before. 

Case 2. il>a(6) = 1. Then y6 - z_€ Yi. But also 0(y6 - z) = 
0{yo)-0{z) = h(y6)-6{z) £ YPo, since % 6 ) G YPo but *(*) g Y,. This 
is a contradiction since Ö(Y )̂ Ç Yj implies 0(ys - z) G Ŷ  fl Yp C YPo. 

All that remains now is to do the construction of the Y$. In fact, the 
construction, by induction on <5, is not difficult. If 6 = v + 1, where 
v & E, and £ G62, let Y 0̂ = Y^ =a maximal extension of Ŷ  in X^+i 
with the property that it doesn't contain z. If 6 = v -f 1, where v G E, 
choose 2/g G Xs —Xß. (Note that also y$—z € Xs —Xs). For any £ G62, 
we claim that 2 ^ Ŷ  + Ky$. If not, then z = y + \ys, wherej/^ G Ŷ  and 
A G K; since ^ F ^ , A ^ 0; but then y6 = A - 12 - X~xy eXx+Xs = 
X$, contradicting the choice of ys. Hence we can define Y£0to be 
a maximal extension of Ŷ  + Kys in Xs+i which doesn't contain z. 
Similarly, we define Y^ to be a maximal extension of Y$ + K{ys — z) 
in Xs+i which doesn't contain z. 
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REMARK 3.4. Part (b) of Theorem 3.3 - as well as part (b) of 3.8 -
was proved in order to give an alternate derivation (based on Richman's 
Criterion) of the "rigid system" result of Mekler and Shelah, see 3.11 
below. 

The following corollary shows that Corollary 2.3 is not a theorem of 
ZFC. 

COROLLARY 3.5. (2**° < 2Hl) There exist weakly en-separable UJ-
filtered vector spaces of dimension Hi which are not en -separable. 

PROOF. Let X be any weakly en-separable space with T(X) = 1. 
Since 2H° < 2Hl implies $Wl(wi), Theorem 3.3 and Remark 3.2 show 
that X has 2**1 dense subspaces of codimension 1 which are not in­
separable. 

COROLLARY 3.6. (2*° < 2Kl) There is a p"*1-projective p-group G 
of cardinality Ni which is weakly oji-separable but not u>i-separable. 

PROOF. Let G be the pw+1-projective group whose socle is X © £ , 
where X is weakly en-separable and of dimension en but not in­
separable, and B is a basic subspace of X. Then G is weakly in­
separable because X © B is (cf. Theorem 2.12 of [10]); but G is not 
en-separable because if it were, X®B would be ui -separable; but then 
X would be en -separable because any closed countable subspace of X 
is closed in X © B and hence would be a direct summand. 

The following corollary generalizes Theorem 3.2 of [16]. We say that 
a subset E of en is non-small if $Wl (E) holds. 

COROLLARY 3.7. Assume that every stationary subset of uiis non-
small. Then every en -separable p-group of cardinality Ni which is 
not ^-cyclic contains 2Nl pairwise non-isomorphic pure subgroups 
Hi(i < 2Hl) such that G/Hi ~ Z(p°°) and Hi is not oji-separable. 

Obviously, Theorem 3.3 also has implications for o;-elongations of 
weakly en separable p-groups, but, in view of Crawley's problem, we 
wish to deal also with separable p-groups which are not weakly en-
separable. 

THEOREM 3.8 (CH) Let X be a separated w-filtered vector space of 
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dimension Ni which is not weakly u)\-separable. Then there are 2Hl 

dense subspaces Y{(i < 2**1 ) of codimension 1 in X such that, for i ^ j , 
(a) and (b) of 8.8 hold. 

PROOF. Let X = Uv<UJlXl, be an o;i-filtration of X such that, for all 
v > 1, Xv is uncountable and such that there exists z G [X\ 0X2)—X\. 
Fix a function <f on UJ\ such that, for every triple (/, 70,71), where 
/ : Y —> Y' is a morphism of countable subspaces of X and 70,71 £M2 
for some / iGwi , there exists v > p such that S(v) = (/,70,7i)- (This 
is possible since there are 2**° = Ni such triples.) 

We shall define, by induction on <$, an ordinal Tg > 6 and for each 
a < Tg and each £ € ^2, a subspace Y$ of XG containing X\ and 
satisfying: 

(0) if 7 < <5, then r7 < Tg\ 

(i) Xo- = y$ + Kz, and z ^ Y$; and 

(ii) for all p < <r, Y ^ Ç Y$, and if <r G lim(a;i), then Ŷ  = UM<0-Y^^. 

Then, for all <p : u\ —» 2, Y^ = U ^ ^ Y ^ will be a dense subspace 
of X of codimension 1. We shall do the construction so that, for 
(po 7̂  <pi, Y<p0 and YVx satisfy (a) and (b). 

Suppose that we have defined rv and Ŷ  as above for all v < 6 and 
all £ e a 2 , where a <rv. 

If 6 is a limit ordinal we let Tg = sup{r^ : v < 6}; then Tg is a limit 
ordinal (by (0)) and, for each £ : Tg —• 2, we let Ŷ  = U/X<r6 Y ^ . 

If S = ^ + 1 for some */, we will choose Tg > TV, and then, for any 
p : Tg —• 2, define Yp extending Y ^ ^ . (Then for any <r < r$, let 
Ypr<7 = Y , n x a ) . 

Say £{v) = (/,7o,7i)> where for some // < ^ ,70 ,71 € ^ , 7 0 7E 7 I 
and / : Ky0 —• Y7l. (If £(i/) is not of this form, let Tg = TU + 1, 
and let the Yp be defined in any way which satisfies (i) and (ii).) Let 
/ : Yl0 —» Y7l be the (unique) extension of / to the closure, Yl0, of 
Yl0 in X, the completion of X. 

Case I. We can find Tg and y € (XT6 PI Yl0) - XTv such that /(y) £ X 
o r /(?/) € ^V$ — XTv. Consider three subcases. 

Subcase I A. p \ p = 70. Let Yp be a maximal extension of Yp^Tu +Ky 
in XT6 with the property that z & Yp. (Note that z & Yp\Tu + Ky.) 
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Subcase IB. p t M — 7i and f(y) G XT6 — XTu. Let Yp be a maximal 
extension of Yp\Tu + K{f{y) - z) in JfT6 with the property that z (jL Yp. 

Subcase IC. (not Subcase A or B.) Let Yp be a maximal extension of 
Yp\rv in XT6 with the property that z £ Yp. 

Case II. f(Yl0) Ç XT„. Define an equivalence relation ~ on Yl0 —XTv 

by j/i ~ 2/2 if and only if yx - y2 G -Yr„. Then, since y l 0 - XTv is 
uncountable and XTv is countable, there exist inequivalent yi and 2/2 
such that /(2/1) = /(îte)- Hence 2/1 - y2 belongs to Yl0 — XTu and 
f(yi - 2/2) = 0. Let y = (î/i - 2/2) H- *. We have y G F 7 o - XT|/ and 
f(y) = f(z). Let Ts be such that 2/ G XTé, and define yp such that if 
P r A* = 7o, then y G yp. 

This completes the construction. Now we must verify (a) and (b). 
Let (po # <pi : wi —• 2. 

(a) Suppose, to obtain a contradiction, that there is an isomorphism 
F : y^o —• Y<Pl. Then there is p G wi such that <£>o f M 7̂  <Pi t V 
and F ( y ^ o r m u ) = y^t /*. Let 70 = <Po Ì ^ ,7i = <Pi Iß and 
/ = F \ Yl0 : Yl0 —• y 7 l . Then there exists 1/ > p such that 
£ M = (/> 7o? 7)- Now if £ = v + 1, we constructed Y<p0 pT6 and Y^ pT6 

so that there exists y G Y^Q in n y 7 o such that /(y) £ Y ^ . (Note that 
we are in Case I since / is one-one and YlQ is uncountable.) But this 
is a contradiction since f(y) = F(y) G Y^x. 

(b) Suppose, to obtain a contradiction, that there exists 9 : X —• X 
such that 0(Y(po) Ç Y(pi but 9{z) $. Y<Pl. Then there exists p such 
that <p0 \ p £ <px\ p, 9{Y<Poiß) Ç y^,ltM and 9{z) G l r Y^^. Let 
7o = £>o r /*, 71 = Pi f A*, and / = 9 \ Yl0 : Yl0 - • y 7 l . There 
exists ^ > p such that £(*/) = (/, 70,7i)- If we are in Case I, then the 
contradiction occurs exactly as in (a). Otherwise, in Case II, we have 
constructed Y^0 so that y G Y^0, but 9{y) = f(y) = f(z) = 9(z) & YVx. 
This contradicts the hypothesis. 

For G with countable basic subgroup, the following result is contained 
in [24; Corollary 3.3]. 

COROLLARY 3.9. (CH) / / G is a separable p-group of cardinality Ni 
which is not weakly OJI-separable, then there exist 2*1 UJ-elongations of 
GbyZ(p). 
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We have not been able to prove Theorem 3.8 under the hypothesis 
$^(0;), i.e., 2**° < 2**1. However, under this weaker hypothesis, using 
methods similar to those in the proof of Theorem 3.3, we can obtain the 
conclusion of Theorem 3.8 with 2**1 replaced by ^2- As a consequence 
of this and Theorem 2.12 of [10], we have 

COROLLARY 3.10. (2*° < 2*1) Every Crawley group of cardinality 
Ni is weakly Mi-separable. 

This corollary parallels Chase's result that, under 2**° < 2**1, e 
very Whitehead group is strongly uj\ - free [1]. Note also that - just 
as for Whitehead's problem - Crawley's problem (even for groups of 
cardinality Ni) is not decidable in ZFC+GCH: see [17]. 

Theorems 3.3 and 3.8 yield (under weaker hypotheses than in [19]) 
the following "rigid system" theorem. 

COROLLARY 3.11. Assume that 2**° = Ni and that every stationary 
subset of UJI is non-small. Then, for every separable p-group G which 
is not J2'CVC^C> there exist 2**1 u-elongations Hi(i < 2Hl) of G by 
Z(p) such that if i / j , then, for every homomorphism f : Hi —> 
A r

i,/(p^ft) = {0}. 

PROOF. This follows from 3.3(b) and 3.8(b) since if / : H{ - • Hj, 
then / induces $ : X -+ X with 0(y<) C Yh where X = G[p] and 
Yi = P(He){£ = i,j)\ see [10, p. 163f]. Then it is not hard to see that 
0{X) C Yj implies that /(p^fl,-) = {0}. 

REMARK 3.12. Recently, Mekler and Shelah [20] have completely 
solved Crawley's problem in L. However, for groups G of cardinality 
> Ni, the result is much weaker than that for groups of cardinality Ni; 
specifically, they show that if G is not ^-cyclic then there exist at least 
two GcJ-elongations of G by Z(p). 
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