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C O M P A C T W E I G H T E D C O M P O S I T I O N O P E R A T O R S 
ON SOBOLEV RELATED SPACES 

HERBERT KAMOWITZ AND DENNIS WORTMAN 

A B S T R A C T . If m is a positive integer and 1 < p < oo, 
let Wm,p denote the set of functions / on the unit interval 
[0,1] for which / , / ' , . . . , / ( m " D are absolutely continuous and 

/(»•) € LP. with wf\\WmtP = ( E r = o i i / ( s ) n ? ) 1 / p - i * 
p < oo, WmiP is a Banach space. We show that if u € 
iy m , oo ,^ : [0,1] —• [0,1],£> G Wmi00 fi C 1 , and there exists a 
positive integer N for which y?_1([o,6]) can be expressed as 
a union of N intervals for all a, 6 6 [0,1], then the weighted 
composition operator uC^ : f(x) —*• u(x)f(<p(x)) is abounded 
linear operator on Wm,p which is compact if and only if 
u(p' = 0. Further, if uC^ is compact on Wm ,p, then the 
spectrum c(uC<p) — {A|An = u(c).. .u(<pn-i(c)) for some 
positive integer n and some fixed point c of <p of order n}U{0}. 

If m is a positive integer and 1 < p < oo let WmiP denote the set of 
functions / on [0,1] for which / and the derivatives / ' , / " , . . . , / ( m _ 1 ) 
lie in AC, the space of absolutely continuous functions on [0,1], and 
f(m) € IP(0,1) = Lp. For 1 < p < oo,WmiP is a Banach space un
der the norm ||/||ivm,p = (E^Lo ll/ (5 )llp)1/P- T h e s e s P a c e s a r e closely 
related to Sobolev spaces on [0,1] (see [1,2,3]). A weighted compo
sition operator on Wm%v is a map from WmjP to itself of the form 
f(x) -> u(x)f(<p{x)), where u : [0,1] -> C and <p : [0,1] -f [0,1]. 
We denote such a map by uC^. 

In [1] Antonevich considered weighted composition operators on 
WmiP, where u,<p G Cm[0,1] and <p is a bijection of [0,1] onto itself 
and determined their spectra. In this note we study other weighted 
composition operators on Wm# and characterize those operators which 
are compact. We show that if u G Wmi00,

(P G Wmì00 fi C
1 and if 

uCtp : WmìP —• WmìP, then uC^ is compact if and only if wp' = 0. 
Further, if we let <pn denote the n t n iterate of (p and a(uCtp) the 
spectrum of wC^, then if uC<p is compact on WmiP, we have that 
a-(t/C¥?)\{0} = {A|An = u(c).. .u((pn-i(c)) for some positive integer 
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768 H. KAMOWITZ AND D. WORTMAN 

n and some fixed point c of <p of order n} 
Our first step is to determine maps u and (p which induce weighted 

composition operators on Wmip. In doing so the following result of Jose-
phy [4] will be useful. If AT is a positive integer, let JN = {E C [0, l)\E 
can be expressed as a union of N intervals } (where the intervals may 
be open or closed at either end and singletons are allowed as degen
erate closed intervals). A function / : [0,1] —» [0,1] is said to be of 
iV-bounded variation if f~x ([a, 6]) G JN for all [a, b] C [0,1]. As usual, 
BV will denote the Banach space of functions of bounded variations on 
[0,1]. 

THEOREM (JOSEPHY [4]). For g : [0,1] —• [0,1], the composition fog 
belongs to B V for all f G BV if and only if g is of N-bounded variation 
for some positive integer N. 

Combining this theorem with the fact [6, p. 250] that a continuous 
function / of bounded variation is absolutely continuous if and only 
if / maps each set of measure 0 into a set of measure 0, we have the 
following. 

THEOREM 1. / / <p : [0,1] —• [0,1] is absolutely continuous and of 
N-bounded variation for some positive integer N, then f o <p G AC for 
all f G AC. 

LEMMA 2. Let g e L1^ : [0,1] - • [0,1], y? G C1 and (p be of 

N-bounded variation for some positive integer N. Then J0 \g((p(x)) 

<p'(x)\dx<Nf*\g\. 

PROOF. Since <p' is continuous, {x\<p'(x) ^ 0} is open and can thus be 
expressed as a union of disjoint relatively open subintervals U(a«îM-
The image ip(ai,bi) of (a^, b{) is again an interval since <p is continuous. 
Write <p{V(aubi)) = I M < ^ M = U(^fc^ f c), where {(Ak,Bk)} is 
again a disjoint union of relatively open intervals. Clearly, for each 
k, (AkiBk) = U{p( a t> f e i )b( a t ,M C (Ak,Bk)}. Since, for each 
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x € \J<p(ai,bi),<p x{{x}) has at most N elements, it follows that 

* Art >*£/** M > £ £ / \g\, 
JO k JAk k i J<p(ai,bi) 

where the inner sum is on all i for which <p(cii,bi) c (Ak,Bk). 
By a change of variables, !^{a.M) \g\ = f{a.ibi) \g(<p(x))\\<pr(x)\dx = 

ìa ìoiPfaìììÌP'(x)\d%, and since £>'(#) = 0 on [0,1]\U (a^ò^), we have 

N f \9\ * E A \9(.<p{*)W(*)\d* = f \g(<p(x)W(x)\dx 
Jo i Jen JO 

as required. 
Now suppose (p : [0,1] —• [0,1], V2 G C1 and tp is of TV-bounded 

variation for some positive integer N. Let s be a non-negative integer. 
If /<•> G Lp, then | / ( 5 ) | P € L1 and, by Lemma 2, 

iv/Vs)r> /VdW))iV(*)i<k. 
JO JO 

Therefore, for such / and <p, 

JO 

Hence I K / ^ - ^ o ^ ' l l ^ i V I I ^ I I ^ 1 ! ! / ^ ) ! ^ or 

(1) Wt'-VotfXKNV'lMMM^, where 1/P+l/g = l. 

In particular, 
(2) 
if / € Wm,p, then /<m) e L" and | | /("»-i)o^y| |p < J V ^ I b ' H ^ H / ^ l 

Also, letting p = s = 1 in (1) we have that if / e AC, then 
Var ( / o <p) = ß \{f ° <P)'\ < N fo \f'\ = NVaxf. Examples of the 
form <p(x) = sin2 nirx show that N is the best bound. 
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THEOREM 3. Let m be a positive integer and 1 < p < oo. / / 
<p : [0,1] —• [0,1],£> G Wmioo H C1, <p is of N-bounded variation for 
some positive integer N and u G Wm,oo> then the map uC^ : f(x) —• 
u(x)/(^(x)) ta a bounded linear map on WmiP. 

PROOF. Suppose <p and u satisfy the hypotheses. We remark that 
the added assumption that <p G C1 is needed only when m = 1. Since 
V? is absolutely continuous and of iV-bounded variation, Cv : f(x) —• 
f(<p(x)) maps AC into itself by Theorem 1. Thus if / G Wm,p» then also 
A / " , • • •, / ( m _ 1 ) G A C and consequently /o<p, / ' o ^ , . . . , / ( m " 1 ) oy? G 
AC. 

We next show that if / G Wm,p, then (/ o £>)', (f o p)" , 
. . . , ( / o ^>)(m-1) G AC. We separate the cases m = 1,2,3 from the 
rest. For ra > 1, we have just seen that / o <p G AC. If m > 2, 
then ( / o (p)' = f'((p)<p' G AC since / ' o <p G AC and £>' G AC, 
and if ra > 3, then ( / o <p)" = /"(^)(£>')2 + f'(<p)<p" € AC since 
/ " o <p, £>', / ' o £>, £>" G AC. Further, for m > 3, it follows by induction 
that for s = 3 , . . . , ra — 1, 

(/ ° *?)W = f'{<p)<P(s) + E /(fc) (<P)PkAv', <P", • • •. V(S-1)) 
Ar=2 

+ f{sH<p)(<p'Y, 

where Pfc)S(£i,... ,£5-i) is a polynomial function for 5 > 3, & = 
2 , . . . , s — 1. Since each term on the right hand side of equation (3) 
is also a combination of absolutely continuous functions, we can con
clude that ( / o <PY8) G AC for s = 3 , . . . , ra - 1, m > 3. 

We now show that ( / o y?)(m) G L P for each ra. First, for m > 3, we 
have 

(4) + E f(k\'P{*))Pk,m{<p',...,<P(m-1)){x) 

+ f(m)(<p(z))<p'(x)m a e - w h e n £>(*) # o, 
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and 

(fo<p)^\x)=f'^(x))^mHx) 

+ E f{k\<P(x))Pk,m(<p',...,<P{m-1))(x) 
fc=2 

a.e. when <p'(x) = 0. 

We observe that each term in the right hand sides of these equations 
is in Lp-the first term in both equations is in Lp since f o ^ e AC 
and (p(m) G L°°, and the last term in the first equation is in Lp since 
f(m\<p(x))(p'(x) = ( / (m-!) o (PY(X) G Lp by (2). When m = 1 and 
m = 2, ( / o ^?)(m) e Lp for similar reasons. 

Thus, if / € WmiP, then ( / o <p)(s) € AC,s = 0 , . . . , ra - 1, and 
(/o<p)(w) G Lp. That is, the map C<p : f(x) —• f((p(x)) is a linear map 
of Wm,p into itself. It is easy to show using the closed graph theorem, 
for example, that C^ is bounded. 

Finally, if u G Wm)00, then w/ G Wm,p for all / € WmiV. Indeed if 
/ € Wm,p, then uf G AC. Also, (ti/)W = ELo(fc)^ ( f cV ( s _ / c ) and 
if s = 0 , 1 , . . . , m — 1 each term in the right hand sum is absolutely 
continuous, while if s = m, then 

(«/)(-> =«<•»>/+ (7)«<m""/'+(7)«""-"/" 

+ 
(m) 

which is a sum of functions in Lv, 
Therefore, if <p : [0,1] -+ [0,1], <p G Wmt00 n C1 , <p is of iV-bounded 

variation for some positive integer TV, and if w G W^oo? then wC ,̂ : 
/(x) —• u(x)f((p(x)) is a linear operator on WmiP which is clearly 
bounded. 

Before continuing it will be convenient for later use to write equations 
(3) and (4) in matrix form as follows: 

(5) 

f°<P 

(f°<p)" 
(f<xp)'" 
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1 
0 
0 
0 

0 
^ 
<p" 
if'" 

0 
0 

b')2 

-p2,3 

0 
0 
0 . 

b')3 

0 
0 
0 
0 

0 ,(m) 

0 
0 
0 
0 

r f o ( p 
f'otp 
f"o<p 
f'"o<p 

| _ / ( m ) OiÇ <P"'"> P2,m P3,m P^m • " WY 

We now turn to the main result that with these conditions the map 
uC<p is compact on WmiP if and only if mp' = 0. The first step is the 
following lemma. See Singh [7] for a related result. 

LEMMA 4. Let 1 < p < oo. Let u E L°°, <p E AC, (p : [0,1] - • [0,1] 
and suppose uC<p : f(x) —> u(x)f((p(x)) is a bounded linear operator on 
Lp. If {x\(f>'(x) exists and u(x)<t)'(x) / 0} has positive measure, then 
uC<p is not a compact operator on Lp. 

PROOF. Let X = [0,1]. For each measurable subset e C X, let m(e) 
denote the measure of e. Then it is well known [6, p. 261] that, for 
almost all x E e, 

lim 
/i->0 

ra(efl (x — h,x + h)) 
2h 

= 1 

An x for which this limit equals 1 is called a point of density of e. Also 
since <£> E AC, <pf{x) exists for almost all x E X. 

Now assume uC<p is a compact operator on Lp and suppose {x\<pf(x) 
exists and u(x)(p,(x) ^ 0} has positive measure. Then there exists 
6 > 0 so that E = {x\\u(x)\ > 6,<p'(x) exists and u(x)<p'(x) / 0} 
has positive measure. Let x0 E E be a point of density of E. 
For each positive integer n let En = (x0 - l/n,x0 + 1/n) and let 
fn = ipip(En)I

,(m((p(En))
1^p', where ^j? denotes the characteristic 

function of F . Then 

uz. M/* ^<p(En) 

m(<p(En)y/p 

\ i / p 

Since ixCy, is compact on Lp there exists g E Lp and a subsequence 
{/nfc} with uC<pfnk —• £ in Lp. Therefore 

u(x) 
VV(flnfc)(y>(g)) 
m(^(Fnfc))VP 

- 0 0 * 0 da: 0, 
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and so 

(*) 

and 

(**) 

{I- (*>(*«»)) 

u(x) 
m(<p(Enk)y/P TFv - gW dx - » 0 

\Jx\<p-i (#»(«« J ) 
\g(x)\pdx - 0. 

Since £„fc | {x0}t (**) implies /A:\^-i (¥ ,{ (a ;<>)>) isr(x)jpda; = 0 or 
g(x) = 0 a.e. when <p(x) ^ ^(^o)-

Then (*) implies 

/ 
w(x) 

1 M ^ \ { * . } ) ) , w » ( i P ( ^ t ) ) 1 / p 

and, since £n f c \{z0} C <p~l(<p{Enk\{x0})), 

u(x) \P 

dx-+0 

i 
JEnk\{Xo} 

Therefore 

(* * *) 
/ , 

m(<p(Enk)y/p 

u(x) \P 

dx->0. 

(Enk\{x0})nE m{ip{Enk)y/v 
dx —•> 0. 

But on E, \u(x)\ > 6. Consequently 

u(x) \P L dx>6p 

Enk\{x0})r\E\m{<p{Enk)y/v\ 

which together with (* * *) gives 

m((Enk\{x0}) n E) 
m{<p(Enk)) 

'm((Enk\{x0})nEy 
m(<p(Enk)) 

0. 

But x0 € E is a point of density of E, so that l i m ^ o m((a°- f tffi+ f t)ng) 
= 1. Hence lim^-o mU*o-h,x,+h)\{x0})nE) = ^ a n d s i n c e Enk\{Xoy = 
(xo-£,Xo + ^)\{x0}, we have 

( , .„) l i m m ( ( ^ \ K » n ^ ) = 1 
k—*oo _2_ 
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Further, since (P'(XQ) exists, lim^-,^ \{<p{x) — (p(x0))/(x — x0) -
(pf{x0)\ = 0. Fix e > 0. There exists h > 0 so that \(p{x) — <p{x0)\ < 
(\<p'(x0)\ + e) \x — x0\ when \x — x0\ < h. Therefore, if l/n^ < h 
and yi,t/2 € Enk, then \tp(yi) - <p(x0)\ < (\<fJ(x0)\ + e) \yx - x0\, and 
M2/2) - <p{xo)\ < (b'(xo)l + e)\V2 - x0\ and thus \tp(yi) - p{V2)\ < 
{\ip'(x0)\ + e) (|yi - x0\ + \y2 - x0|) < 2(l/(nfc) ( |^'(z0) | + e). Hence, 
if 1/n* < fc,then m ( ^ ( £ n J ) < (2/nk) {\<p'{x0)\ + e) or l / ( m ( p ( £ n J ) ) 
n*/(2(|^'(:r0) + e)). Therefore 

m((£nfc\{xo})n£) m((£nfc\K})n£) 
m(v?(£nfc)) 2/n f c( |^(x0) | + e) ' 

Thus 

0 = l i m m((Enk\{x0})nE) > l i m m((Enk\{x0})nE) = 1 
fc-oc m(^(£nfc)) fc-00 -2 . (1^(^)1 + g) | p ' ( z 0 ) | + c 

by (* * **). But l / ( |p ' (x 0) | + e) > 0. 
This contradiction shows that the assumption that uC<p is a compact 

operator on Lp is false. That is, if {x\<p'(x) exists and u(x)<p'(x) # 0} 
has positive measure, then the weighted composition operator uCv on 
Lp is not compact. 

We now have all the ingredients to prove the main theorem. 

THEOREM 5. Suppose m is a positive integer, 1 < p < 00, w G 
Wmt00ì(p : [0,1] —• [0,1], ip G Wmt00 D C 1 and <ç is of N-bounded 
variation for some positive integer N. Then the weighted composition 
operator uC^ : f(x) —• u(x)f((p(x)) is compact on Wm,p if and only if 
u<p' = 0. 

PROOF. Assume uCp is compact on WmjP. We will show that 
iim+1(<£>,)2m(m+1)C£> is then compact on Lp from which it follows 
from Lemma 4 that wp' = 0. To this end, let fn G Lp with 
IIAIIIP < 1 and let Fn(x) = / * J*1 • • • J ^ " 1 fn(t)dtdtm^ ...dtx. Then 
Fn(x), F„(x),..., FÙ {%) are absolutely continuous and, almost ev
erywhere, FÌm){x) = fn{x) G Lp. Thus each Fn G Wm,p. Also 
H^nllwvp < (m + l ) 1 / p for each n. 
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Since uCv is compact on WmiP, there exists a subsequence {Fnk} 
and an element G G WmìP with u(x)Fnk((p(x)) —• G(x) in Wm,p. That 
is, (uFnk(<p))^ —• G^8\s = 0 ,1 , . . . ,m in Lp-norm. Expanding, we 
obtain 

(A) £ ( S ) ^ ) ( F n f c ( ^ ) ) ( s - i ) - G ^ , S = 0 , l , . . . , m i n ^ 

We note that, formally, (Fnfc(<£>)W —• (%)^ when w(z) / 0. Also, if we 
define Gj(x) by G^z) = u* + 1 (§) ( i ) (z ) when ti(a;) # 0 and Gj{x) = 0 
when u(x) = 0, then Gy(x) E Lp,y = 0,1, • 

In matrix form, equations (A) become 
(B) 

- u 0 0 0 
it' ti 0 0 

u 0 

,ra. 

(ÎK 
u(m) (™)u(m-l) ( » y . 

G 
G' 
G" 

(?(m) J 

[m-

Ol 

-2) (mju(m-3) ... J [(Fnk o <p)(m) 

(Fnk°<p) 
(Fnk°<p)' 
(FnkO<p)" 

which is equivalent by row operations to 

(B>) 

u 
0 
0 
0 

0 

0 
V? 
0 
0 

0 

0 
0 

u3 

0 

0 

0 
0 
0 

u4 

0 

0 
0 
0 
0 

„m+1 

(Fnk O p) 
(Fnk°<p)' 
(Fnk°<p)" 
(Fnk°V)'" 

L(^n,op)(»»)J 

Gol 
G! 
G2 

G3 

LGrr, 

where the G? 's are the functions defined above. 
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Using the system (5) which appears before Lemma 4, (B') becomes 

u 0 
0 u2 

0 0 
0 0 

0 0 

Fnk ° V 

Kk°f 

FZ°<P 

0 
0 

u3 

0 

0 
0 
0 

0 

u 
0 •• 

r G ° i 
Gi 
G2 

Gz 

-Gm J 

0 
0 
0 
0 

,,ro+l 

or 
u 
0 
0 
0 

L 0 

«V 
«V 
«V" 

u m + 1 p ' m * 

which is now equivalent to 

0 
0 

^ 2 , 3 

« m + 1 i > 2 , m 

Go 
Gi 
G2 

G3 

LGm< 

0 

<p'" 

J L o v?1 (m) 

0 
0 
0 

u4(<p')3 

,m+l i 
3,m 

u 0 
0 u V 
0 0 
0 0 

w3( 

0 
0 

y)3 

0 

0 0 0 

Fnk°<P' 
Fnk°f 
nk°<P 

Fifop. 

-

r G o i 
GJ 
G% 
Gl 

•G*m. 

0 
0 
0 

«V) 
0 

5 

0 
0 

(^) 2 

^ 2 , 3 

0 
0 
0 

(<p')3 

p 2 , * ^3,m 

0 
0 
0 
0 

(^)mJ 

0 
0 
0 
0 

,m+l {<e'Y 

o 
o 
0 

um + 1(^)im(m + 1) 
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where each G* on the right side is a combination of the GJ5 0 < j < s, 
multiplied by combinations of <p(%) and u*, and thus G* are in Lp. 

In particular, t / m + 1 ( ^ , ) ^ m ( m + 1 ) F ^ ) ( ^ ) — G^ in Lp norm. But 
F £ ° ( y ) = UM a.e. and so we have that t i m + 1 ( ^ ) W " + i ) / n i f c ( p ) - • 
G^ in Lp. That is, given an arbitrary bounded sequence {/n} in Lp, we 
can find an element G^ in Lp with w m + 1 ( ^ ) i m ( m + 1 ) / n f c ( ^ ) -» G^. 
Thus the operator t/m + 1(y?')sm(m + 1)Cv , is compact on Lp. By Lemma 
4, we have wm+1(<p /)im(m+1) = 0 a.e. Since u and £>' are continuous, 
u(pf = 0. 

Before proving the converse we note that if h G WmìP and ||^||ivm,p < 
1, then Halloo < 2. Indeed, for such h G Wm,P, \\h\\p < 1 and \\h'\\p < 1. 
By Holder's inequality LP c LM|A||i < ||Ä|IP < land | | h ' | | i < ||fc'||p < 
1; hence Var/i = J* \h'\ < 1. Now if \\h\loo > 2, then \h{x0)\ > 2 for 
some XQ. But Var/a < 1 implies \h{x)\ > 1 for all x since |/i(x0)| > 2 
and |/i(z)| < 1 implies 1 < \h(x0)\ - \h(x)\ < \h(x0) - h(x)\ < Var/i. 
However if \h(x)\ > 1 for all x, then fQ \h\ > 1, contradicting \\h\\i < 1. 

Now assume wp' = 0. Since <p G G1, <p is constant on each subinterval 
on which u(x) ^ 0. Moreover, {u(p')' — u'(p'+u<p" = 0. Then, since <p is 
a constant on each subinterval where u{x) ^ 0, it follows that mp" = 0 
and hence u'ip' = 0. Thus <p is a constant on each subinterval on which 
u'(x) ^ 0. Continuing, we have that u<p' = u'<pf = • • • = i^™"1)^' = 0. 

Let E = [J^Jo1 {x\u^ (x) # 0}. Then £* is an open subset of [0,1] 
and thus E = Ui(at-,6t), a union of disjoint open intervals (where one 
of the intervals may be [0,6*) and another (at-,lj.) Let (p(x) = Ci on 

To show that uC^ is compact on Wm,v, let fn G WmiP with 
ll/n||ivm,p — •*• We w ^ P r o v e that there exists an element g G WmìP 

and a subsequence {fnk} with uC<pfnk —• # in WmiP. 
We construct the subsequence {/nfc} as follows. On the interval 

(ûi> &i), {/n(^(aO)} = {/n(ci)} is a bounded sequence of complex num
bers, and so there is a subsequence {/i,n} of {fn} and a number Ai G C 
with /i,n(ci) —> Ai. For (02,62), we find similarly A2 G C and a sub
sequence {/2,n} of {/i,n} with /2,n(c2) -* ^2- Continuing in this way, 
by induction we obtain, for each positive integer j , a complex number 
Aj and a subsequence {/?>} of {/y_ijn} with fj,n(cj) -* Aj. We then 
define fnk = /̂ ,/fc for each positive integer k and note that this con
struction implies that fnk{cj) —• A? for all y. 

Let ^(x) = Aju(x) when a: G (a,j,bj) and 0(2) = 0 when x & E = 
U(a^,6è). That is, if i*(£),ti'(:z),..., w(m_1)(a;) do not all vanish, we 

file:////h/loo
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let g(x) = Aju(x) when x G (aj,bj), while if u{x) = u'(x) = ••• = 
u^m-l\x) = 0 we let g(x) = 0. 

The following then hold 
(i) If x G E, then x G {o>j,bj) for some j , so that #(x) = Aju(x) 

and hence g{s){x) = AjU^{x),s = 0 , 1 , . . . ,ra - 1. Clearly \g{s)(x)\ < 
2\u^{x)\ for x G £ , s = 0 , l , . . . , r a - l , since | | /nJ|oo < 2. 

(ii) If x £ £ , then ^(x) = g'(x) = - • • = ^ - ^ ( x ) = 0. Indeed, if 
x £ £", then g(x) = 0 by definition. Also, for s = 1,2,..., m — 1, if 
g(x) = • - • = ^ - ^ ( x ) = 0 for ail x g £ and if x0 g £ , then 

lim 
t—>x0 

j M f i ) - ! ) ' 8 - 1 ' ^ ) 
6 X 0 

< lim 
t—>x0 

(s-l\t) 

< lim 2 
t—>x0 

t XQ 

Z XQ 
= 2\u^(xo)\ = 0. 

Therefore, g^(x0) exists and equals 0. Hence g, g',..., g(m ^ vanish 
oBE. 

(iii) If x0 $L E and vSm\x0) = 0, a proof similar to (ii) shows that 
g(™)(xo) = 0. 

The preceding two statements assert that if x & E, then u{x) = 
w'(x) = . . . = ti<m-1>(aO = 0, #(x) = g'(x) = ••• = ^ " ^ ( x ) = 0 and 
if x £ £ and u^m\x) = 0, then g{m)(x) = 0. 

(iv) {x £ £ |u ( m ) (z) exists and ii<m)(x) ^ 0} is countable. For 
suppose x0 £ E and u^m\x0) ^ 0. Then 

lim L-^-- ^ - ^ = u{m)(x0) ^ 0. 
•*» *Xo X XQ 

Since ^ m _ 1 ) ( x 0 ) = 0, there exists ô > 0 so that |w ( m _ 1 )(x) | > 
!|u(m)(x0)| |x - x0\ for 0 < |x - x0 | < 6. Therefore \u^m-^{x)\ > 0 for 
x0 — 6 < x < x0 and x0 < x < x0 + <5, and so (x0 - 5, x0) C U(at-, bi) 
and (x0 ,x0 + <5) C U(ai,6i). Since {(a,i,bi)} are disjoint, x0 is one 
of the b{S and one of the a^s. Hence {x £ E\uSm\x) exists and 
t/(m)(x) / 0} C {a i , a 2 , . . . , 6i, 62,.. • } which is clearly countable, 

(v) 

[0,1]\E = {x<£ E\u^(x) = g(m\x) = 0} 

U {x <£ E\u(m)(x) does not exist } 

o{x^E\u^m\x)^0}. 
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The last two sets on the right hand side have measure 0. 
With these facts we now show that g G WmìV and that uC(pfnk —> g 

in WmiP. 
First we show that <?, # ' , . . . , g(m~li £ AC. To this end fix an integer s 

between 0 and m — 1. Let e > 0. Since u^ € AC, there exists S > 0 so 
that if {(£fc5Î/fc)}îJ=i is a finite collection of non-overlapping intervals 
with E L i d f c - xk) < è, then E L i \u{s)(yk) - u^(xk)\ < e/2. 

There are two types of intervals (xk, 2/fc)- O n e where Xk and yk belong 
to the same subinterval of E and a second where Xk and yk do not lie 
in the same subinterval of E. In the case [xk,yk] C {a>j,bj) C E, let 
Zk = \{xk + yk), while if Xk and yk do not lie in the same subinterval 
of E, let Zk be any point in [#&, ^ ] which lies in the complement of E. 
Then in both cases 

\9{s)(yk)-9
{sHxk)\ < \9(s)(yic)-9{s)(zk)\ + \g{sHzk)-g^(xk)\. 

If [xk,Vk] C (aj,bj) for some j , then 

|<7(%fc) - ff(s)(**)| < l^ l ( l« W ( l f r ) - u^(zk)\ + |«W(*fc) - uM(x f c)|) 

< 2( |u«(y f c) - ««(**)! + |«W(«fc) - ttW(a:fc)l), 

and in the second case 

\g{s)(yk) - <7(s)(**)l < \g{3)(yk) - <?(5)(**)l + I P ( 5 ) ( ^ ) - 9{s)(xk)\ 

< 2(|f|W(yjb) - tiM(* fc)| + | ^ ) ( ^ ) _ MW(x fc)|) 

since g(*\zk) = u^(zk) = 0. 
Therefore if Efc=i(î/fc "~ xfc) < >̂ then certainly the finite collection 

of non-overlapping intervals {(xk,Zk)} U {2fc>2/fc)} that has just been 
constructed satisfies E£= i ((î/fc """ **) + (̂ fc - £*)) < 5 so 

X>w(v*)-0w(**)l 
fc=i 

< 2 ]T(|u(s)(yfc) - «w(**)l + l«W(*fc) - «W(**)D < 2 | = e. 
fc=i 
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Since e > 0 was arbitrary, we have that g^ € AC for s = 0 , 1 , . . . , m—1. 
Next, for s = 0 , 1 , . . . , m — 1, we write 

f \(uCM^ - g^\" = / \{uCvfnk)
(a) - 9(a)\v 

Jo JE 

+ [ IKV«J(8)-!?(S)I-
J[0,1]\E 

On [0,l]\E,{uCMl'H*) = ZSr=oOir)(x)(fnk(<p(xWa-r) = 0 
since u^(x) = 0 when x £ E and r = 0 ,1 , . . . ,m — 1. Moreover, 
for x £ E, g(x) = g'(x) = • • • = 0 ( m _ 1 )(z) = 0 by (ii). Therefore 

Jo JE 

= E / ' i*w (*)/»*(«) - ^«(xjpifa. 

Let e > 0. Choose Nx so large that £ 1 > J V l /<£ |wW(Ä)lPdiC < £P/8P> 
5 = 0 , 1 , . . . , m — 1. Then choose 7V2 so that 

\fnk{d) - Ai\ < ö ~ M («in » k>N2J = li..^N1. 

Then 

/ ' K u C ^ j W - g^\p = E r \(*{aH*)fnk(ci) - uM{x)Ai\p 

JO i=1 J ai 

+ E fl\u{s){x)fnk{ct)-u^{x)A^ 
%>NX

 Jai 

^^ÌU^HxWìfnACiì-Afdx 
i=l Ja* 

pbi 

+ E / iu(a)(*)i-P4P<fc-

Hence 
i /p (jr1(tic^/nfc)w-ir(a)ip) 

/ ^ r6* £Pd£ 4 P £ P \ E / V w £Pd* 4W/P 

< ( 2 ^ ) 1 / p = 21/"-, fc>AT2 
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Thus (uC^fn,)^ - • gW in L*\ s = 0 , 1 , . . . ,m - 1. 
Finally, essentially the same proof works to show that g(m) € Lp and 

(uCipfn^™) —• <^m) in Lp. The key observation is that (v) implies 
m([0,1]\£) = m({x & E\u^m\x) = gW{x) = 0}). 

Thus we have shown that if u(pf = 0 and fn € WmiP with ||/n|bvm,p < 
1, then there exists a subsequence {fnk} and an element g e VFm,p with 
uC<pfnk —» £ in Wm,p. That is, w<p' = 0 implies uC^ is a compact op
erator on Wm,p. 

Before commenting on the spectra of weighted composition operators 
we recall several definitions. If X is a set and <p : X —» X, then <pn 

denotes the n™ iterate of <p, i.e., <p0{x) = x and ^n(^) = <p{<pn-i(x)) 
for n > 0, x E X. Also if <p : X —• X, then a point c in X is called 
a fixed point of <p of order n if n is a positive integer, <pn (c) = c and 
Pfc(c) ^c,fc = l , . . . , n - 1. 

In [5] it was shown that if X is a compact Hausdorff space, u,ip G 
C(X),<p : X —* X, then a necessary and sufficient condition that 
T : f(x) —• w(x)/(^)(x)) be a compact operator on C(X) is that for 
each connected component C of {x|u(x) ^ 0} there exists an open set 
V D C such that <p is constant on V. Further, for such a compact 
operator T, (j(T)\{0} = {A|An = u(c)... u(<pn-i(c)) for some positive 
integer n and some fixed point c of <p of order n}. 

The techniques that were used in proving the results in [5] about 
the spectra can be carried over essentially unchanged to our situation. 
Specifically, using these techniques one can prove the following theorem. 

THEOREM 6. Suppose m is a positive integer, 1 < p < oc,u G 
Wm,oo> <P • [0,1] —• [0,1],^E Wmi0o H C1 and is of N-bounded varia-
tion for some positive integer N. If the weighted composition operator 
uC<p is compact on WmiP, then cr(txC^) = {A|An = u(c)... u(pn-\(c)) 
for some positive integer n and some fixed point c oj'<p of order n}U{0}. 
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