COMPACT WEIGHTED COMPOSITION OPERATORS ON SOBOLEV RELATED SPACES

HERBERT KAMOWITZ AND DENNIS WORTMAN

Abstract

If m is a positive integer and $1 \leq p \leq \infty$, let $W_{m, p}$ denote the set of functions f on the unit interval $[0,1]$ for which $f, f^{\prime}, \ldots, f^{(m-1)}$ are absolutely continuous and $f^{(m)} \in L^{p}$. With $\|f\|_{W_{m, p}}=\left(\sum_{s=0}^{m}\left\|f^{(s)}\right\|_{p}^{p}\right)^{1 / p}, 1 \leq$ $p<\infty, W_{m, p}$ is a Banach space. We show that if $u \in$ $W_{m, \infty}, \varphi:[0,1] \rightarrow[0,1], \varphi \in W_{m, \infty} \cap C^{1}$, and there exists a positive integer N for which $\varphi^{-1}([a, b])$ can be expressed as a union of N intervals for all $a, b \in[0,1]$, then the weighted composition operator $u C_{\varphi}: f(x) \rightarrow u(x) f(\varphi(x))$ is a bounded linear operator on $W_{m, p}$ which is compact if and only if $u \varphi^{\prime}=0$. Further, if $u C_{\varphi}$ is compact on $W_{m, p}$, then the spectrum $\sigma\left(u C_{\varphi}\right)=\left\{\lambda \mid \lambda^{n}=u(c) \ldots u\left(\varphi_{n-1}(c)\right)\right.$ for some positive integer n and some fixed point c of φ of order $n\} \cup\{0\}$.

If m is a positive integer and $1 \leq p \leq \infty$ let $W_{m, p}$ denote the set of functions f on $[0,1]$ for which f and the derivatives $f^{\prime}, f^{\prime \prime}, \ldots, f^{(m-1)}$ lie in AC, the space of absolutely continuous functions on $[0,1]$, and $f^{(m)} \in L^{p}(0,1) \equiv L^{p}$. For $1 \leq p<\infty, W_{m, p}$ is a Banach space under the norm $\|f\|_{W_{m, p}}=\left(\sum_{s=0}^{m}\left\|f^{(s)}\right\|_{p}^{p}\right)^{1 / p}$. These spaces are closely related to Sobolev spaces on $[0,1]$ (see $[\mathbf{1 , 2 , 3}]$). A weighted composition operator on $W_{m, p}$ is a map from $W_{m, p}$ to itself of the form $f(x) \rightarrow u(x) f(\varphi(x))$, where $u:[0,1] \rightarrow \mathbf{C}$ and $\varphi:[0,1] \rightarrow[0,1]$. We denote such a map by $u C_{\varphi}$.
In [1] Antonevich considered weighted composition operators on $W_{m, p}$, where $u, \varphi \in C^{m}[0,1]$ and φ is a bijection of $[0,1]$ onto itself and determined their spectra. In this note we study other weighted composition operators on $W_{m, p}$ and characterize those operators which are compact. We show that if $u \in W_{m, \infty}, \varphi \in W_{m, \infty} \cap C^{1}$ and if $u C_{\varphi}: W_{m, p} \rightarrow W_{m, p}$, then $u C_{\varphi}$ is compact if and only if $u \varphi^{\prime}=0$. Further, if we let φ_{n} denote the $\mathrm{n}^{\text {th }}$ iterate of φ and $\sigma\left(u C_{\varphi}\right)$ the spectrum of $u C_{\varphi}$, then if $u C_{\varphi}$ is compact on $W_{m, p}$, we have that $\sigma\left(u C_{\varphi}\right) \backslash\{0\}=\left\{\lambda \mid \lambda^{n}=u(c) \ldots u\left(\varphi_{n-1}(c)\right)\right.$ for some positive integer

1980 Mathematics Subject Classification: 47B37, 47B05.
Received by the editors on October 25, 1984.
n and some fixed point c of φ of order $n\}$
Our first step is to determine maps u and φ which induce weighted composition operators on $W_{m, p}$. In doing so the following result of Josephy [4] will be useful. If N is a positive integer, let $J_{N}=\{E \subset[0,1] \mid E$ can be expressed as a union of N intervals $\}$ (where the intervals may be open or closed at either end and singletons are allowed as degenerate closed intervals). A function $f:[0,1] \rightarrow[0,1]$ is said to be of N-bounded variation if $f^{-1}([a, b]) \in J_{N}$ for all $[a, b] \subset[0,1]$. As usual, BV will denote the Banach space of functions of bounded variations on $[0,1]$.

THEOREM (JOSEPHY [4]). For $g:[0,1] \rightarrow[0,1]$, the composition $f \circ g$ belongs to BV for all $f \in B V$ if and only if g is of N-bounded variation for some positive integer N.

Combining this theorem with the fact [6, p. 250] that a continuous function f of bounded variation is absolutely continuous if and only if f maps each set of measure 0 into a set of measure 0 , we have the following.

THEOREM 1. If $\varphi:[0,1] \rightarrow[0,1]$ is absolutely continuous and of N-bounded variation for some positive integer N, then $f \circ \varphi \in A C$ for all $f \in A C$.

LEMMA 2. Let $g \in L^{1}, \varphi:[0,1] \rightarrow[0,1], \varphi \in C^{1}$ and φ be of N-bounded variation for some positive integer N. Then $\int_{0}^{1} \mid g(\varphi(x))$ $\varphi^{\prime}(x)\left|d x \leq N \int_{0}^{1}\right| g \mid$.

Proof. Since φ^{\prime} is continuous, $\left\{x \mid \varphi^{\prime}(x) \neq 0\right\}$ is open and can thus be expressed as a union of disjoint relatively open subintervals $\bigcup\left(a_{i}, b_{i}\right)$. The image $\varphi\left(a_{i}, b_{i}\right)$ of $\left(a_{i}, b_{i}\right)$ is again an interval since φ is continuous. Write $\varphi\left(\bigcup\left(a_{i}, b_{i}\right)\right)=\bigcup \varphi\left(a_{i}, b_{i}\right)=\bigcup\left(A_{k}, B_{k}\right)$, where $\left\{\left(A_{k}, B_{k}\right)\right\}$ is again a disjoint union of relatively open intervals. Clearly, for each $k,\left(A_{k}, B_{k}\right)=\bigcup\left\{\varphi\left(a_{i}, b_{i}\right) \mid \varphi\left(a_{i}, b_{i}\right) \subset\left(A_{k}, B_{k}\right)\right\}$. Since, for each
$x \in \bigcup \varphi\left(a_{i}, b_{i}\right), \varphi^{-1}(\{x\})$ has at most N elements, it follows that

$$
N \int_{0}^{1}|g| \geq N \sum_{k} \int_{A_{k}}^{B_{k}}|g| \geq \sum_{k} \sum_{i} \int_{\varphi\left(a_{i}, b_{i}\right)}|g|,
$$

where the inner sum is on all i for which $\varphi\left(a_{i}, b_{i}\right) \subset\left(A_{k}, B_{k}\right)$. By a change of variables, $\int_{\varphi\left(a_{i}, b_{i}\right)}|g|=\int_{\left(a_{i}, b_{i}\right)}|g(\varphi(x))|\left|\varphi^{\prime}(x)\right| d x=$ $\int_{a_{i}}^{b_{i}}\left|g(\varphi(x)) \| \varphi^{\prime}(x)\right| d x$, and since $\varphi^{\prime}(x)=0$ on $[0,1] \backslash \cup\left(a_{i}, b_{i}\right)$, we have

$$
N \int_{0}^{1}|g| \geq \sum_{i} \int_{a_{i}}^{b_{i}}|g(\varphi(x))|\left|\varphi^{\prime}(x)\right| d x=\int_{0}^{1}|g(\varphi(x))|\left|\varphi^{\prime}(x)\right| d x
$$

as required.
Now suppose $\varphi:[0,1] \rightarrow[0,1], \varphi \in C^{1}$ and φ is of N-bounded variation for some positive integer N. Let s be a non-negative integer. If $f^{(s)} \in L^{p}$, then $\left|f^{(s)}\right|^{p} \in L^{1}$ and, by Lemma 2 ,

$$
N \int_{0}^{1}\left|f^{(s)}\right|^{p} \geq \int_{0}^{1}\left|f^{(s)}(\varphi(x))\right|^{p}\left|\varphi^{\prime}(x)\right| d x
$$

Therefore, for such f and φ,

$$
\begin{aligned}
\int_{0}^{1}\left|f^{(s)}(\varphi(x)) \varphi^{\prime}(x)\right|^{P} d x & \leq\left(\int_{0}^{1}\left|f^{(s)}(\varphi(x))\right|^{p}\left|\varphi^{\prime}(x)\right| d x\right)\left(\left\|\varphi^{\prime}\right\|_{\infty}^{p-1}\right) \\
& \leq N\left\|\varphi^{\prime}\right\|_{\infty}^{p-1} \int_{0}^{1}\left|f^{(s)}\right|^{p} .
\end{aligned}
$$

Hence $\left\|\left(f^{(s-1)} \circ \varphi\right)^{\prime}\right\|_{p}^{p} \leq N\left\|\varphi^{\prime}\right\|_{\infty}^{p-1}\left\|f^{(s)}\right\|_{p}^{p}$ or
(1) $\left\|\left(f^{(s-1)} \circ \varphi\right)^{\prime}\right\|_{p} \leq N^{1 / p}\left\|\varphi^{\prime}\right\|_{\infty}^{1 / q}\left\|f^{(s)}\right\|_{p}$, where $1 / p+1 / q=1$.

In particular,
if $f \in W_{m, p}$, then $f^{(m)} \in L^{p}$ and $\left.\| f^{(m-1)} \circ \varphi\right)^{\prime}\left\|_{p} \leq N^{1 / p}\right\| \varphi^{\prime}\left\|_{\infty}^{1 / q}\right\| f^{(m)} \|_{p}$.
Also, letting $p=s=1$ in (1) we have that if $f \in \mathrm{AC}$, then $\operatorname{Var}(f \circ \varphi)=\int_{0}^{1}\left|(f \circ \varphi)^{\prime}\right| \leq N \int_{0}^{1}\left|f^{\prime}\right|=N \operatorname{Var} f$. Examples of the form $\varphi(x)=\sin ^{2} n \pi x$ show that N is the best bound.

THEOREM 3. Let m be a positive integer and $1 \leq p<\infty$. If $\varphi:[0,1] \rightarrow[0,1], \varphi \in W_{m, \infty} \cap C^{1}, \varphi$ is of N-bounded variation for some positive integer N and $u \in W_{m, \infty}$, then the map $u C_{\varphi}: f(x) \rightarrow$ $u(x) f(\varphi(x))$ is a bounded linear map on $W_{m, p}$.

Proof. Suppose φ and u satisfy the hypotheses. We remark that the added assumption that $\varphi \in C^{1}$ is needed only when $m=1$. Since φ is absolutely continuous and of N-bounded variation, $C_{\varphi}: f(x) \rightarrow$ $f(\varphi(x))$ maps AC into itself by Theorem 1 . Thus if $f \in W_{m, p}$, then also $f^{\prime}, f^{\prime \prime}, \ldots, f^{(m-1)} \in \mathrm{AC}$ and consequently $f \circ \varphi, f^{\prime} \circ \varphi, \ldots, f^{(m-1)} \circ \varphi \in$ AC.

We next show that if $f \in W_{m, p}$, then $(f \circ \varphi)^{\prime},(f \circ \varphi)^{\prime \prime}$, $\ldots,(f \circ \varphi)^{(m-1)} \in A C$. We separate the cases $m=1,2,3$ from the rest. For $m \geq 1$, we have just seen that $f \circ \varphi \in$ AC. If $m \geq 2$, then $(f \circ \varphi)^{\prime}=f^{\prime}(\varphi) \varphi^{\prime} \in \mathrm{AC}$ since $f^{\prime} \circ \varphi \in \mathrm{AC}$ and $\varphi^{\prime} \in \mathrm{AC}$, and if $m \geq 3$, then $(f \circ \varphi)^{\prime \prime}=f^{\prime \prime}(\varphi)\left(\varphi^{\prime}\right)^{2}+f^{\prime}(\varphi) \varphi^{\prime \prime} \in \mathrm{AC}$ since $f^{\prime \prime} \circ \varphi, \varphi^{\prime}, f^{\prime} \circ \varphi, \varphi^{\prime \prime} \in \mathrm{AC}$. Further, for $m>3$, it follows by induction that for $s=3, \ldots, m-1$,

$$
\begin{align*}
(f \circ \varphi)^{(s)}=f^{\prime}(\varphi) \varphi^{(s)} & +\sum_{k=2}^{s-1} f^{(k)}(\varphi) P_{k, s}\left(\varphi^{\prime}, \varphi^{\prime \prime}, \ldots, \varphi^{(s-1)}\right) \tag{3}\\
& +f^{(s)}(\varphi)\left(\varphi^{\prime}\right)^{s}
\end{align*}
$$

where $P_{k, s}\left(t_{1}, \ldots, t_{s-1}\right)$ is a polynomial function for $s \geq 3, k=$ $2, \ldots, s-1$. Since each term on the right hand side of equation (3) is also a combination of absolutely continuous functions, we can conclude that $(f \circ \varphi)^{(s)} \in \mathrm{AC}$ for $s=3, \ldots, m-1, m>3$.
We now show that $(f \circ \varphi)^{(m)} \in L^{p}$ for each m. First, for $m \geq 3$, we have

$$
\begin{align*}
(f \circ \varphi)^{(m)}(x)= & f^{\prime}(\varphi(x)) \varphi^{(m)}(x) \\
& +\sum_{k=2}^{m-1} f^{(k)}(\varphi(x)) P_{k, m}\left(\varphi^{\prime}, \ldots, \varphi^{(m-1)}\right)(x) \tag{4}\\
& +f^{(m)}(\varphi(x)) \varphi^{\prime}(x)^{m} \text { a.e. when } \varphi(x) \neq 0
\end{align*}
$$

and

$$
\begin{aligned}
(f \circ \varphi)^{(m)}(x)= & f^{\prime}(\varphi(x)) \varphi^{(m)}(x) \\
& +\sum_{k=2}^{m-1} f^{(k)}(\varphi(x)) P_{k, m}\left(\varphi^{\prime}, \ldots, \varphi^{(m-1)}\right)(x)
\end{aligned}
$$

a.e. when $\varphi^{\prime}(x)=0$.

We observe that each term in the right hand sides of these equations is in L^{p}-the first term in both equations is in L^{p} since $f^{\prime} \circ \varphi \in \mathrm{AC}$ and $\varphi^{(m)} \in L^{\infty}$, and the last term in the first equation is in L^{p} since $f^{(m)}(\varphi(x)) \varphi^{\prime}(x)=\left(f^{(m-1)} \circ \varphi\right)^{\prime}(x) \in L^{p}$ by (2). When $m=1$ and $m=2,(f \circ \varphi)^{(m)} \in L^{p}$ for similar reasons.

Thus, if $f \in W_{m, p}$, then $(f \circ \varphi)^{(s)} \in \mathrm{AC}, s=0, \ldots, m-1$, and $(f \circ \varphi)^{(m)} \in L^{p}$. That is, the $\operatorname{map} C_{\varphi}: f(x) \rightarrow f(\varphi(x))$ is a linear map of $W_{m, p}$ into itself. It is easy to show using the closed graph theorem, for example, that C_{φ} is bounded.
Finally, if $u \in W_{m, \infty}$, then $u f \in W_{m, p}$ for all $f \in W_{m, p}$. Indeed if $f \in W_{m, p}$, then $u f \in A C$. Also, $(u f)^{(s)}=\sum_{k=0}^{s}\binom{s}{k} u^{(k)} f^{(s-k)}$ and if $s=0,1, \ldots, m-1$ each term in the right hand sum is absolutely continuous, while if $s=m$, then

$$
\begin{aligned}
(u f)^{(m)}= & u^{(m)} f+\binom{m}{1} u^{(m-1)} f^{\prime}+\binom{m}{2} u^{(m-2)} f^{\prime \prime} \\
& +\cdots+\binom{m}{m-1} u^{\prime} f^{(m-1)}+u f^{(m)}
\end{aligned}
$$

which is a sum of functions in L^{p}.
Therefore, if $\varphi:[0,1] \rightarrow[0,1], \varphi \in W_{m, \infty} \cap C^{1}, \varphi$ is of N-bounded variation for some positive integer N, and if $u \in W_{m, \infty}$, then $u C_{\varphi}$: $f(x) \rightarrow u(x) f(\varphi(x))$ is a linear operator on $W_{m, p}$ which is clearly bounded.
Before continuing it will be convenient for later use to write equations (3) and (4) in matrix form as follows:

$$
\left[\begin{array}{c}
f \circ \varphi \tag{5}\\
(f \circ \varphi)^{\prime} \\
(f \circ \varphi)^{\prime \prime} \\
(f \circ \varphi)^{\prime \prime \prime} \\
\cdots \\
(f \circ \varphi)^{(m)}
\end{array}\right]=
$$

$$
\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & \varphi^{\prime} & 0 & 0 & 0 & \cdots & 0 \\
0 & \varphi^{\prime \prime} & \left(\varphi^{\prime}\right)^{2} & 0 & 0 & \cdots & 0 \\
0 & \varphi^{\prime \prime \prime} & P_{2,3} & \left(\varphi^{\prime}\right)^{3} & 0 & \cdots & 0 \\
\cdots & & & & & & \\
0 & \varphi^{(m)} & P_{2, m} & P_{3, m} & P_{4, m} & \cdots & \left(\varphi^{\prime}\right)^{m}
\end{array}\right]\left[\begin{array}{c}
f \circ \varphi \\
f^{\prime} \circ \varphi \\
f^{\prime \prime} \circ \varphi \\
f^{\prime \prime \prime} \circ \varphi \\
\cdots \\
f^{(m)} \circ \varphi
\end{array}\right]
$$

We now turn to the main result that with these conditions the map $u C_{\varphi}$ is compact on $W_{m, p}$ if and only if $u \varphi^{\prime}=0$. The first step is the following lemma. See Singh [7] for a related result.

Lemma 4. Let $1 \leq p<\infty$. Let $u \in L^{\infty}, \varphi \in A C, \varphi:[0,1] \rightarrow[0,1]$ and suppose $u C_{\varphi}: f(x) \rightarrow u(x) f(\varphi(x))$ is a bounded linear operator on L^{p}. If $\left\{x \mid \phi^{\prime}(x)\right.$ exists and $\left.u(x) \phi^{\prime}(x) \neq 0\right\}$ has positive measure, then $u C_{\varphi}$ is not a compact operator on L^{p}.

Proof. Let $X=[0,1]$. For each measurable subset $e \subset X$, let $m(e)$ denote the measure of e. Then it is well known [6, p. 261] that, for almost all $x \in e$,

$$
\lim _{h \rightarrow 0} \frac{m(e \cap(x-h, x+h))}{2 h}=1
$$

An x for which this limit equals 1 is called a point of density of e. Also since $\varphi \in \mathrm{AC}, \varphi^{\prime}(x)$ exists for almost all $x \in X$.
Now assume $u C_{\varphi}$ is a compact operator on L^{p} and suppose $\left\{x \mid \varphi^{\prime}(x)\right.$ exists and $\left.u(x) \varphi^{\prime}(x) \neq 0\right\}$ has positive measure. Then there exists $\delta>0$ so that $E=\left\{x \| u(x) \mid \geq \delta, \varphi^{\prime}(x)\right.$ exists and $\left.u(x) \varphi^{\prime}(x) \neq 0\right\}$ has positive measure. Let $x_{o} \in E$ be a point of density of E. For each positive integer n let $E_{n}=\left(x_{o}-1 / n, x_{o}+1 / n\right)$ and let $f_{n}=\psi \varphi\left(E_{n}\right) /\left(m\left(\varphi\left(E_{n}\right)\right)^{1 / p}\right.$, where ψ_{F} denotes the characteristic function of F. Then

$$
\left\|f_{n}\right\|_{p}=\left(\int_{X}\left|\frac{\psi_{\varphi\left(E_{n}\right)}}{m\left(\varphi\left(E_{n}\right)\right)^{1 / p}}\right|^{p}\right)^{1 / p}=1
$$

Since $u C_{\varphi}$ is compact on L^{p} there exists $g \in L^{p}$ and a subsequence $\left\{f_{n_{k}}\right\}$ with $u C_{\varphi} f_{n_{k}} \rightarrow g$ in L^{p}. Therefore

$$
\left(\int_{X}\left|u(x) \frac{\psi_{\varphi\left(E_{n_{k}}\right)}(\varphi(x))}{m\left(\varphi\left(E_{n_{k}}\right)\right)^{1 / p}}-g(x)\right|^{p} d x\right) \rightarrow 0
$$

and so

$$
\begin{equation*}
\left(\int_{\varphi^{-1}\left(\varphi\left(E_{n_{k}}\right)\right)}\left|\frac{u(x)}{m\left(\varphi\left(E_{n_{k}}\right)\right)^{1 / p}}-g(x)\right|^{p} d x\right) \rightarrow 0 \tag{*}
\end{equation*}
$$

and
$(* *)$

$$
\left(\int_{X \backslash \varphi^{-1}\left(\varphi\left(E_{n_{k}}\right)\right)}|g(x)|^{p} d x\right) \rightarrow 0
$$

Since $E_{n_{k}} \downarrow\left\{x_{o}\right\},(* *)$ implies $\int_{X \backslash \varphi^{-1}\left(\varphi\left\{\left(x_{o}\right)\right\}\right)}|g(x)|^{p} d x=0$ or $g(x)=0$ a.e. when $\varphi(x) \neq \varphi\left(x_{o}\right)$.
Then (*) implies

$$
\int_{\varphi^{-1}\left(\varphi\left(E_{n_{k}} \backslash\left\{x_{o}\right\}\right)\right)}\left|\frac{u(x)}{m\left(\varphi\left(E_{n_{k}}\right)\right)^{1 / p}}\right|^{p} d x \rightarrow 0
$$

and, since $E_{n_{k}} \backslash\left\{x_{o}\right\} \subset \varphi^{-1}\left(\varphi\left(E_{n_{k}} \backslash\left\{x_{o}\right\}\right)\right)$,

$$
\int_{E_{n_{k}} \backslash\left\{x_{o}\right\}}\left|\frac{u(x)}{m\left(\dot{\varphi}\left(E_{n_{k}}\right)\right)^{1 / p}}\right|^{p} d x \rightarrow 0
$$

Therefore
$(* * *) \quad \int_{\left(E_{n_{k}} \backslash\left\{x_{o}\right\}\right) \cap E}\left|\frac{u(x)}{m\left(\varphi\left(E_{n_{k}}\right)\right)^{1 / p}}\right|^{p} d x \rightarrow 0$.
But on $E,|u(x)| \geq \delta$. Consequently

$$
\int_{\left.E_{n_{k}} \backslash\left\{x_{o}\right\}\right) \cap E}\left|\frac{u(x)}{m\left(\varphi\left(E_{n_{k}}\right)\right)^{1 / p}}\right|^{p} d x \geq \delta^{p}\left(\frac{m\left(\left(E_{n_{k}} \backslash\left\{x_{o}\right\}\right) \cap E\right)}{m\left(\varphi\left(E_{n_{k}}\right)\right)}\right)
$$

which together with $(* * *)$ gives

$$
\frac{m\left(\left(E_{n_{k}} \backslash\left\{x_{o}\right\}\right) \cap E\right)}{m\left(\varphi\left(E_{n_{k}}\right)\right)} \rightarrow 0
$$

But $x_{o} \in E$ is a point of density of E, so that $\lim _{h \rightarrow 0} \frac{m\left(\left(x_{o}-h, x_{o}+h\right) \cap E\right)}{2 h}$ $=1$. Hence $\lim _{h \rightarrow 0} \frac{\left.m\left(\left(x_{o}-h, x_{o}+h\right) \backslash\left\{x_{o}\right\}\right) \cap E\right)}{2 h}=1$, and since $E_{n_{k}} \backslash\left\{x_{o}\right\}=$ $\left(x_{o}-\frac{1}{n_{k}}, x_{o}+\frac{1}{n_{k}}\right) \backslash\left\{x_{o}\right\}$, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{m\left(\left(E_{n_{k}} \backslash\left\{x_{o}\right\}\right) \cap E\right)}{\frac{2}{n_{k}}}=1 \tag{****}
\end{equation*}
$$

Further, since $\varphi^{\prime}\left(x_{0}\right)$ exists, $\lim _{x \rightarrow x_{o}} \mid\left(\varphi(x)-\varphi\left(x_{o}\right)\right) /\left(x-x_{o}\right)-$ $\varphi^{\prime}\left(x_{o}\right) \mid=0$. Fix $\varepsilon>0$. There exists $h>0$ so that $\left|\varphi(x)-\varphi\left(x_{o}\right)\right|<$ $\left(\left|\varphi^{\prime}\left(x_{o}\right)\right|+\varepsilon\right)\left|x-x_{o}\right|$ when $\left|x-x_{o}\right|<h$. Therefore, if $1 / n_{k}<h$ and $y_{1}, y_{2} \in E_{n_{k}}$, then $\left|\varphi\left(y_{1}\right)-\varphi\left(x_{o}\right)\right|<\left(\left|\varphi^{\prime}\left(x_{o}\right)\right|+\varepsilon\right)\left|y_{1}-x_{o}\right|$, and $\left|\varphi\left(y_{2}\right)-\varphi\left(x_{0}\right)\right| \leq\left(\left|\varphi^{\prime}\left(x_{0}\right)\right|+\varepsilon\right)\left|y_{2}-x_{0}\right|$ and thus $\left|\varphi\left(y_{1}\right)-\varphi\left(y_{2}\right)\right|<$ $\left(\left|\varphi^{\prime}\left(x_{o}\right)\right|+\varepsilon\right)\left(\left|y_{1}-x_{o}\right|+\left|y_{2}-x_{o}\right|\right)<2\left(1 /\left(n_{k}\right)\left(\left|\varphi^{\prime}\left(x_{o}\right)\right|+\varepsilon\right)\right.$. Hence, if $1 / n_{k}<h$, then $m\left(\varphi\left(E_{n_{k}}\right)\right)<\left(2 / n_{k}\right)\left(\left|\varphi^{\prime}\left(x_{o}\right)\right|+\varepsilon\right)$ or $1 /\left(m\left(\varphi\left(E_{n_{k}}\right)\right)\right)$ $n_{k} /\left(2\left(\mid \varphi^{\prime}\left(x_{o}\right)+\varepsilon\right)\right)$. Therefore

$$
\frac{m\left(\left(E_{n_{k}} \backslash\left\{x_{o}\right\}\right) \cap E\right)}{m\left(\varphi\left(E_{n_{k}}\right)\right)}>\frac{m\left(\left(E_{n_{k}} \backslash\left\{x_{o}\right\}\right) \cap E\right)}{2 / n_{k}\left(\left|\varphi^{\prime}\left(x_{o}\right)\right|+\varepsilon\right)} .
$$

Thus

$$
0=\lim _{k \rightarrow \infty} \frac{m\left(\left(E_{n_{k}} \backslash\left\{x_{o}\right\}\right) \cap E\right)}{m\left(\varphi\left(E_{n_{k}}\right)\right)}>\lim _{k \rightarrow \infty} \frac{m\left(\left(E_{n_{k}} \backslash\left\{x_{o}\right\}\right) \cap E\right)}{\frac{2}{n_{k}}\left(\left|\varphi^{\prime}\left(x_{o}\right)\right|+\varepsilon\right)}=\frac{1}{\left|\varphi^{\prime}\left(x_{o}\right)\right|+\epsilon}
$$

by $(* * * *)$. But $1 /\left(\left|\varphi^{\prime}\left(x_{o}\right)\right|+\varepsilon\right)>0$.
This contradiction shows that the assumption that $u C_{\varphi}$ is a compact operator on L^{p} is false. That is, if $\left\{x \mid \varphi^{\prime}(x)\right.$ exists and $\left.u(x) \varphi^{\prime}(x) \neq 0\right\}$ has positive measure, then the weighted composition operator $u C_{\varphi}$ on L^{p} is not compact.

We now have all the ingredients to prove the main theorem.

THEOREM 5. Suppose m is a positive integer, $1 \leq p<\infty, u \in$ $W_{m, \infty}, \varphi:[0,1] \rightarrow[0,1], \varphi \in W_{m, \infty} \cap C^{1}$ and φ is of N-bounded variation for some positive integer N. Then the weighted composition operator $u C_{\varphi}: f(x) \rightarrow u(x) f(\varphi(x))$ is compact on $W_{m, p}$ if ard only if $u \varphi^{\prime}=0$.

Proof. Assume $u C_{\varphi}$ is compact on $W_{m, p}$. We will show that $u^{m+1}\left(\varphi^{\prime}\right)^{\frac{1}{2} m(m+1)} C_{\varphi}$ is then compact on L^{p} from which it follows from Lemma 4 that $u \varphi^{\prime}=0$. To this end, let $f_{n} \in L^{p}$ with $\left\|f_{n}\right\|_{p} \leq 1$ and let $F_{n}(x)=\int_{0}^{x} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{m-1}} f_{n}(t) d t d t_{m-1} \ldots d t_{1}$. Then $F_{n}(x), F_{n}^{\prime}(x), \ldots, F_{n}^{(m-1)}(x)$ are absolutely continuous and, almost everywhere, $F_{n}^{(m)}(x)=f_{n}(x) \in L^{p}$. Thus each $F_{n} \in W_{m, p}$. Also $\left\|F_{n}\right\|_{W_{m, p}} \leq(m+1)^{1 / p}$ for each n.

Since $u C_{\varphi}$ is compact on $W_{m, p}$, there exists a subsequence $\left\{F_{n_{k}}\right\}$ and an element $G \in W_{m, p}$ with $u(x) F_{n_{k}}(\varphi(x)) \rightarrow G(x)$ in $W_{m, p}$. That is, $\left(u F_{n_{k}}(\varphi)\right)^{(s)} \rightarrow G^{(s)}, s=0,1, \ldots, m$ in L^{p}-norm. Expanding, we obtain
(A) $\quad \sum_{j=0}^{s}\binom{s}{j} u^{(j)}\left(F_{n_{k}}(\varphi)\right)^{(s-j)} \rightarrow G^{(s)}, s=0,1, \ldots, m$ in L^{p}

We note that, formally, $\left(F_{n_{k}}(\varphi)^{(j)} \rightarrow\left(\frac{G}{u}\right)^{(j)}\right.$ when $u(x) \neq 0$. Also, if we define $G_{j}(x)$ by $G_{j}(x)=u^{j+1}\left(\frac{G}{u}\right)^{(j)}(x)$ when $u(x) \neq 0$ and $G_{j}(x)=0$ when $u(x)=0$, then $G_{j}(x) \in L^{p}, j=0,1, \cdots, m$.

In matrix form, equations (A) become
(B)

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
u & 0 & 0 & 0 & \cdots & 0 \\
u^{\prime} & u & 0 & 0 & \cdots & \\
u^{\prime \prime} & \left.\begin{array}{c}
2 \\
2
\end{array}\right) u^{\prime} & u & 0 & \cdots & 0 \\
u^{(m)} & \binom{m}{1} u^{(m-1)} & \cdots & \binom{m}{2} u^{(m-2)} & \binom{m}{3} u^{(m-3)} & \cdots
\end{array}\right]\left[\begin{array}{c}
\left(F_{n_{k}} \circ \varphi\right) \\
\left(F_{n_{k}} \circ \varphi\right)^{\prime} \\
\left(F_{n_{k}} \circ \varphi\right)^{\prime \prime} \\
\cdots \\
\left(F_{n_{k}} \circ \varphi\right)^{(m)}
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{c}
G \\
G^{\prime} \\
G^{\prime \prime} \\
\cdots \\
G^{(m)}
\end{array}\right]
\end{aligned}
$$

which is equivalent by row operations to
$\left(B^{\prime}\right)\left[\begin{array}{cccccc}u & 0 & 0 & 0 & \cdots & 0 \\ 0 & u^{2} & 0 & 0 & \cdots & 0 \\ 0 & 0 & u^{3} & 0 & \cdots & 0 \\ 0 & 0 & 0 & u^{4} & \cdots & 0 \\ \cdots & & & & & \\ 0 & 0 & 0 & 0 & \cdots & u^{m+1}\end{array}\right]\left[\begin{array}{c}\left(F_{n_{k}} \circ \varphi\right) \\ \left(F_{n_{k}} \circ \varphi\right)^{\prime} \\ \left(F_{n_{k}} \circ \varphi\right)^{\prime \prime} \\ \left(F_{n_{k}} \circ \varphi\right)^{\prime \prime \prime} \\ \cdots \\ \left(F_{n_{k}} \circ \varphi\right)^{(m)}\end{array}\right] \rightarrow\left[\begin{array}{c}G_{0} \\ G_{1} \\ G_{2} \\ G_{3} \\ \cdots \\ G_{m}\end{array}\right]$,
where the G_{j} 's are the functions defined above.

Using the system (5) which appears before Lemma $4,\left(B^{\prime}\right)$ becomes
$\left[\begin{array}{cccccc}u & 0 & 0 & 0 & \cdots & 0 \\ 0 & u^{2} & 0 & 0 & \cdots & 0 \\ 0 & 0 & u^{3} & 0 & \cdots & 0 \\ 0 & 0 & 0 & u^{4} & \cdots & 0 \\ \cdots & & & & & \\ 0 & 0 & 0 & 0 & \cdots & u^{m+1}\end{array}\right]\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & \varphi^{\prime} & 0 & 0 & \cdots & 0 \\ 0 & \varphi^{\prime \prime} & \left(\varphi^{\prime}\right)^{2} & 0 & \cdots & 0 \\ 0 & \varphi^{\prime \prime \prime} & P_{2,3} & \left(\varphi^{\prime}\right)^{3} & \cdots & 0 \\ \cdots & & & & & \\ 0 & \varphi^{(m)} & P_{2, m} & P_{3, m} & \cdots & \left(\varphi^{\prime}\right)^{m}\end{array}\right]$

$$
\left[\begin{array}{l}
F_{n_{k}} \circ \varphi \\
F_{n_{k}}^{\prime} \circ \varphi \\
F_{n_{k}}^{\prime \prime} \circ \varphi \\
F_{n_{k}}^{\prime \prime \prime} \circ \varphi \\
\ldots \\
F_{n_{k}}^{(m)} \circ \varphi
\end{array}\right] \rightarrow\left[\begin{array}{l}
G_{0} \\
G_{1} \\
G_{2} \\
G_{3} \\
\cdots \\
G_{m}
\end{array}\right]
$$

or

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
u & 0 & 0 & 0 & \cdots & 0 \\
0 & u^{2} \varphi^{\prime} & 0 & 0 & \cdots & 0 \\
0 & u^{3} \varphi^{\prime \prime} & u^{3}\left(\varphi^{\prime}\right)^{2} & 0 & \cdots & 0 \\
0 & u^{4} \varphi^{\prime \prime \prime} & u^{4} P_{2,3} & u^{4}\left(\varphi^{\prime}\right)^{3} & \cdots & 0 \\
\cdots & & & & & \\
0 & u^{m+1} \varphi^{(m)} & u^{m+1} P_{2, m} & u^{m+1} P_{3, m} & \cdots & u^{m+1}\left(\varphi^{\prime}\right)^{m}
\end{array}\right]} \\
& {\left[\begin{array}{l}
F_{n_{k}} \circ \varphi \\
F_{n, k}^{\prime} \circ \varphi \\
F_{n_{k}}^{\prime \prime} \circ \varphi \\
F_{n_{k}}^{\prime \prime \prime} \circ \varphi \\
\ldots \\
F_{n_{k}}^{(m)} \circ \varphi
\end{array}\right] \rightarrow\left[\begin{array}{c}
G_{0} \\
G_{1} \\
G_{2} \\
G_{3} \\
\cdots \\
G_{m}
\end{array}\right]}
\end{aligned}
$$

which is now equivalent to

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
u & 0 & 0 & 0 & \cdots & 0 \\
0 & u^{2} \varphi^{\prime} & 0 & 0 & \cdots & 0 \\
0 & 0 & u^{3}\left(\varphi^{\prime}\right)^{3} & 0 & \cdots & 0 \\
0 & 0 & 0 & u^{4}\left(\varphi^{\prime}\right)^{6} & \cdots & \\
\cdots & & & & & \\
0 & 0 & 0 & 0 & \cdots & u^{m+1}\left(\varphi^{\prime}\right)^{\frac{1}{2} m(m+1)}
\end{array}\right]} \\
& {\left[\begin{array}{c}
F_{n_{k}} \circ \varphi \\
F_{n_{k}}^{\prime} \circ \varphi \\
F_{n_{k}}^{\prime \prime} \circ \varphi \\
F_{n_{k}}^{\prime \prime \prime} \circ \varphi \\
\ldots \\
F_{n_{k}}^{(m)} \circ \varphi
\end{array}\right] \rightarrow\left[\begin{array}{l}
G_{0} \\
G_{1}^{*} \\
G_{2}^{*} \\
G_{3}^{*} \\
\cdots \\
G_{m}^{*}
\end{array}\right],}
\end{aligned}
$$

where each G_{s}^{*} on the right side is a combination of the $G_{j}, 0 \leq j \leq s$, multiplied by combinations of $\varphi^{(i)}$ and u^{i}, and thus G_{s}^{*} are in L^{p}.
In particular, $u^{m+1}\left(\varphi^{\prime}\right)^{\frac{1}{2} m(m+1)} F_{n_{k}}^{(m)}(\varphi) \rightarrow G_{m}^{*}$ in L^{p} norm. But $F_{n_{k}}^{(m)}(y)=f_{n_{k}}(y)$ a.e. and so we have that $u^{m+1}\left(\varphi^{\prime}\right)^{\frac{1}{2} m(m+1)} f_{n_{k}}(\varphi) \rightarrow$ G_{m}^{*} in L^{p}. That is, given an arbitrary bounded sequence $\left\{f_{n}\right\}$ in L^{p}, we can find an element G_{m}^{*} in L^{p} with $u^{m+1}\left(\varphi^{\prime}\right)^{\frac{1}{2} m(m+1)} f_{n_{k}}(\varphi) \rightarrow G_{m}^{*}$. Thus the operator $u^{m+1}\left(\varphi^{\prime}\right)^{\frac{1}{2} m(m+1)} C_{\varphi}$ is compact on L^{p}. By Lemma 4, we have $u^{m+1}\left(\varphi^{\prime}\right)^{\frac{1}{2} m(m+1)}=0$ a.e. Since u and φ^{\prime} are continuous, $u \varphi^{\prime}=0$.

Before proving the converse we note that if $h \in W_{m, p}$ and $\|h\|_{W_{m, p}} \leq$ 1 , then $\|h\|_{\infty} \leq 2$. Indeed, for such $h \in W_{m, p},\|h\|_{p} \leq 1$ and $\left\|h^{\prime}\right\|_{p} \leq 1$. By Hölder's inequality $L^{p} \subset L^{1},\|h\|_{1} \leq\|h\|_{p} \leq 1$ and $\left\|h^{\prime}\right\|_{1} \leq\left\|h^{\prime}\right\|_{p} \leq$ 1 ; hence $\operatorname{Var} h=\int_{0}^{1}\left|h^{\prime}\right| \leq 1$. Now if $\|h\|_{\infty}>2$, then $\left|h\left(x_{0}\right)\right|>2$ for some x_{0}. But $\operatorname{Var} h \leq 1$ implies $|h(x)|>1$ for all x since $\left|h\left(x_{o}\right)\right|>2$ and $|h(x)| \leq 1$ implies $1<\left|h\left(x_{o}\right)\right|-|h(x)| \leq\left|h\left(x_{o}\right)-h(x)\right| \leq \operatorname{Var} h$. However if $|h(x)|>1$ for all x, then $\int_{0}^{1}|h|>1$, contradicting $\|h\|_{1} \leq 1$.
Now assume $u \varphi^{\prime}=0$. Since $\varphi \in C^{1}, \varphi$ is constant on each subinterval on which $u(x) \neq 0$. Moreover, $\left(u \varphi^{\prime}\right)^{\prime}=u^{\prime} \varphi^{\prime}+u \varphi^{\prime \prime}=0$. Then, since φ is a constant on each subinterval where $u(x) \neq 0$, it follows that $u \varphi^{\prime \prime}=0$ and hence $u^{\prime} \varphi^{\prime}=0$. Thus φ is a constant on each subinterval on which $u^{\prime}(x) \neq 0$. Continuing, we have that $u \varphi^{\prime}=u^{\prime} \varphi^{\prime}=\cdots=u^{(m-1)} \varphi^{\prime}=0$.
Let $E=\bigcup_{s=0}^{m-1}\left\{x \mid u^{(s)}(x) \neq 0\right\}$. Then E is an open subset of $[0,1]$ and thus $E=\cup_{i}\left(a_{i}, b_{i}\right)$, a union of disjoint open intervals (where one of the intervals may be $\left[0, b_{i}\right)$ and another $\left(a_{i}, 1\right]$.) Let $\varphi(x)=c_{i}$ on $\left(a_{i}, b_{i}\right)$.
To show that $u C_{\varphi}$ is compact on $W_{m, p}$, let $f_{n} \in W_{m, p}$ with $\left\|f_{n}\right\|_{W_{m, p}} \leq 1$. We will prove that there exists an element $g \in W_{m, p}$ and a subsequence $\left\{f_{n_{k}}\right\}$ with $u C_{\varphi} f_{n_{k}} \rightarrow g$ in $W_{m, p}$.
We construct the subsequence $\left\{f_{n_{k}}\right\}$ as follows. On the interval $\left(a_{1}, b_{1}\right),\left\{f_{n}(\varphi(x))\right\}=\left\{f_{n}\left(c_{1}\right)\right\}$ is a bounded sequence of complex numbers, and so there is a subsequence $\left\{f_{1, n}\right\}$ of $\left\{f_{n}\right\}$ and a number $A_{1} \in \mathbf{C}$ with $f_{1, n}\left(c_{1}\right) \rightarrow A_{1}$. For (a_{2}, b_{2}), we find similarly $A_{2} \in \mathbf{C}$ and a subsequence $\left\{f_{2, n}\right\}$ of $\left\{f_{1, n}\right\}$ with $f_{2, n}\left(c_{2}\right) \rightarrow A_{2}$. Continuing in this way, by induction we obtain, for each positive integer j, a complex number A_{j} and a subsequence $\left\{f_{j, n}\right\}$ of $\left\{f_{j-1, n}\right\}$ with $f_{j, n}\left(c_{j}\right) \rightarrow A_{j}$. We then define $f_{n_{k}}=f_{k, k}$ for each positive integer k and note that this construction implies that $f_{n_{k}}\left(c_{j}\right) \rightarrow A_{j}$ for all j.
Let $g(x)=A_{j} u(x)$ when $x \in\left(a_{j}, b_{j}\right)$ and $g(x)=0$ when $x \notin E=$ $\bigcup\left(a_{i}, b_{i}\right)$. That is, if $u(x), u^{\prime}(x), \ldots, u^{(m-1)}(x)$ do not all vanish, we
let $g(x)=A_{j} u(x)$ when $x \in\left(a_{j}, b_{j}\right)$, while if $u(x)=u^{\prime}(x)=\cdots=$ $u^{(m-1)}(x)=0$ we let $g(x)=0$.

The following then hold
(i) If $x \in E$, then $x \in\left(a_{j}, b_{j}\right)$ for some j, so that $g(x)=A_{j} u(x)$ and hence $g^{(s)}(x)=A_{j} u^{(s)}(x), s=0,1, \ldots, m-1$. Clearly $\left|g^{(s)}(x)\right| \leq$ $2\left|u^{(s)}(x)\right|$ for $x \in E, s=0,1, \ldots, m-1$, since $\left\|f_{n_{k}}\right\|_{\infty} \leq 2$.
(ii) If $x \notin E$, then $g(x)=g^{\prime}(x)=\cdots=g^{(m-1)}(x)=0$. Indeed, if $x \notin E$, then $g(x)=0$ by definition. Also, for $s=1,2, \ldots, m-1$, if $g(x)=\cdots=g^{(s-1)}(x)=0$ for all $x \notin E$ and if $x_{o} \notin E$, then

$$
\begin{aligned}
\left|\lim _{t \rightarrow x_{o}} \frac{g^{(s-1)}(t)-g^{(s-1)}\left(x_{o}\right)}{t-x_{o}}\right| & \leq \varlimsup_{t \rightarrow x_{o}}\left|\frac{g^{(s-1)}(t)}{t-x_{o}}\right| \\
& \leq \varlimsup_{t \rightarrow x_{o}}\left|\frac{u^{(s-1)}(t)}{t-x_{o}}\right|=2\left|u^{(s)}\left(x_{o}\right)\right|=0 .
\end{aligned}
$$

Therefore, $g^{(s)}\left(x_{o}\right)$ exists and equals 0 . Hence $g, g^{\prime}, \ldots, g^{(m-1)}$ vanish off E.
(iii) If $x_{o} \notin E$ and $u^{(m)}\left(x_{o}\right)=0$, a proof similar to (ii) shows that $g^{(m)}\left(x_{o}\right)=0$.
The preceding two statements assert that if $x \notin E$, then $u(x)=$ $u^{\prime}(x)=\cdots=u^{(m-1)}(x)=0, g(x)=g^{\prime}(x)=\cdots=g^{(m-1)}(x)=0$ and if $x \notin E$ and $u^{(m)}(x)=0$, then $g^{(m)}(x)=0$.
(iv) $\left\{x \notin E \mid u^{(m)}(x)\right.$ exists and $\left.u^{(m)}(x) \neq 0\right\}$ is countable. For suppose $x_{o} \notin E$ and $u^{(m)}\left(x_{o}\right) \neq 0$. Then

$$
\lim _{x \rightarrow x_{o}} \frac{u^{(m-1)}(x)-u^{(m-1)}\left(x_{o}\right)}{x-x_{o}}=u^{(m)}\left(x_{o}\right) \neq 0
$$

Since $u^{(m-1)}\left(x_{o}\right)=0$, there exists $\delta>0$ so that $\left|u^{(m-1)}(x)\right|>$ $\frac{1}{2}\left|u^{(m)}\left(x_{o}\right)\right|\left|x-x_{o}\right|$ for $0<\left|x-x_{o}\right|<\delta$. Therefore $\left|u^{(m-1)}(x)\right|>0$ for $x_{o}-\delta<x<x_{o}$ and $x_{o}<x<x_{o}+\delta$, and so $\left(x_{o}-\delta, x_{o}\right) \subset \cup\left(a_{i}, b_{i}\right)$ and $\left(x_{o}, x_{o}+\delta\right) \subset \cup\left(a_{i}, b_{i}\right)$. Since $\left\{\left(a_{i}, b_{i}\right)\right\}$ are disjoint, x_{o} is one of the b_{i} 's and one of the a_{i} 's. Hence $\left\{x \notin E \mid u^{(m)}(x)\right.$ exists and $\left.u^{(m)}(x) \neq 0\right\} \subset\left\{a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots\right\}$ which is clearly countable.
(v)

$$
\begin{aligned}
{[0,1] \backslash E=\left\{x \notin E \mid u^{(m)}(x)\right.} & \left.=g^{(m)}(x)=0\right\} \\
& \cup\left\{x \notin E \mid u^{(m)}(x) \text { does not exist }\right\} \\
& \cup\left\{x \notin E \mid u^{(m)}(x) \neq 0\right\} .
\end{aligned}
$$

The last two sets on the right hand side have measure 0 .
With these facts we now show that $g \in W_{m, p}$ and that $u C_{\varphi} f_{n_{k}} \rightarrow g$ in $W_{m, p}$.
First we show that $g, g^{\prime}, \ldots, g^{(m-1)} \in \mathrm{AC}$. To this end fix an integer s between 0 and $m-1$. Let $\varepsilon>0$. Since $u^{(s)} \in \mathrm{AC}$, there exists $\delta>0$ so that if $\left\{\left(x_{k}, y_{k}\right)\right\}_{k=1}^{n}$ is a finite collection of non-overlapping intervals with $\sum_{k=1}^{n}\left(y_{k}-x_{k}\right)<\delta$, then $\sum_{k=1}^{n}\left|u^{(s)}\left(y_{k}\right)-u^{(s)}\left(x_{k}\right)\right|<\varepsilon / 2$.
There are two types of intervals $\left(x_{k}, y_{k}\right)$. One where x_{k} and y_{k} belong to the same subinterval of E and a second where x_{k} and y_{k} do not lie in the same subinterval of E. In the case $\left[x_{k}, y_{k}\right] \subset\left(a_{j}, b_{j}\right) \subset E$, let $z_{k}=\frac{1}{2}\left(x_{k}+y_{k}\right)$, while if x_{k} and y_{k} do not lie in the same subinterval of E, let z_{k} be any point in $\left[x_{k}, y_{k}\right]$ which lies in the complement of E. Then in both cases

$$
\left|g^{(s)}\left(y_{k}\right)-g^{(s)}\left(x_{k}\right)\right| \leq\left|g^{(s)}\left(y_{k}\right)-g^{(s)}\left(z_{k}\right)\right|+\left|g^{(s)}\left(z_{k}\right)-g^{(s)}\left(x_{k}\right)\right| .
$$

If $\left[x_{k}, y_{k}\right] \subset\left(a_{j}, b_{j}\right)$ for some j, then

$$
\begin{aligned}
\left|g^{(s)}\left(y_{k}\right)-g^{(s)}\left(x_{k}\right)\right| & \leq\left|A_{j}\right|\left(\left|u^{(s)}\left(y_{k}\right)-u^{(s)}\left(z_{k}\right)\right|+\left|u^{(s)}\left(z_{k}\right)-u^{(s)}\left(x_{k}\right)\right|\right) \\
& \leq 2\left(\left|u^{(s)}\left(y_{k}\right)-u^{(s)}\left(z_{k}\right)\right|+\left|u^{(s)}\left(z_{k}\right)-u^{(s)}\left(x_{k}\right)\right|\right),
\end{aligned}
$$

and in the second case

$$
\begin{aligned}
\left|g^{(s)}\left(y_{k}\right)-g^{(s)}\left(x_{k}\right)\right| & \leq\left|g^{(s)}\left(y_{k}\right)-g^{(s)}\left(z_{k}\right)\right|+\left|g^{(s)}\left(z_{k}\right)-g^{(s)}\left(x_{k}\right)\right| \\
& \leq 2\left(\left|u^{(s)}\left(y_{k}\right)-u^{(s)}\left(z_{k}\right)\right|+\left|u^{(s)}\left(z_{k}\right)-u^{(s)}\left(x_{k}\right)\right|\right)
\end{aligned}
$$

since $g^{(s)}\left(z_{k}\right)=u^{(s)}\left(z_{k}\right)=0$.
Therefore if $\sum_{k=1}^{n}\left(y_{k}-x_{k}\right)<\delta$, then certainly the finite collection of non-overlapping intervals $\left.\left\{\left(x_{k}, z_{k}\right)\right\} \cup\left\{z_{k}, y_{k}\right)\right\}$ that has just been constructed satisfies $\sum_{k=1}^{n}\left(\left(y_{k}-z_{k}\right)+\left(z_{k}-x_{k}\right)\right)<\delta$ so

$$
\begin{aligned}
& \sum_{k=1}^{n}\left|g^{(s)}\left(y_{k}\right)-g^{(s)}\left(x_{k}\right)\right| \\
& \quad \leq 2 \sum_{k=1}^{n}\left(\left|u^{(s)}\left(y_{k}\right)-u^{(s)}\left(z_{k}\right)\right|+\left|u^{(s)}\left(z_{k}\right)-u^{(s)}\left(x_{k}\right)\right|\right)<2 \frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, we have that $g^{(s)} \in \mathrm{AC}$ for $s=0,1, \ldots, m-1$.
Next, for $s=0,1, \ldots, m-1$, we write

$$
\begin{aligned}
\int_{0}^{1}\left|\left(u C_{\varphi} f_{n_{k}}\right)^{(s)}-g^{(s)}\right|^{p}= & \int_{E}\left|\left(u C_{\varphi} f_{n_{k}}\right)^{(s)}-g^{(s)}\right|^{p} \\
& +\int_{[0,1] \backslash E}\left|\left(u C_{\varphi} f_{n_{k}}\right)^{(s)}-g^{(s)}\right|
\end{aligned}
$$

On $[0,1] \backslash E,\left(u C_{\varphi} f_{n_{k}}\right)^{(s)}(x)=\sum_{r=0}^{s}\binom{s}{r} u^{(r)}(x)\left(f_{n_{k}}(\varphi(x))\right)^{(s-r)}=0$ since $u^{(r)}(x)=0$ when $x \notin E$ and $r=0,1, \ldots, m-1$. Moreover, for $x \notin E, g(x)=g^{\prime}(x)=\cdots=g^{(m-1)}(x)=0$ by (ii). Therefore

$$
\begin{aligned}
\int_{0}^{1}\left|\left(u C_{\varphi} f_{n_{k}}\right)^{(s)}-g^{(s)}\right|^{p} & =\int_{E}\left|\left(u C_{\varphi} f_{n_{k}}\right)^{(s)}-g^{(s)}\right|^{p} \\
& =\sum_{i} \int_{a_{i}}^{b_{i}}\left|u^{(s)}(x) f_{n_{k}}\left(c_{i}\right)-A_{i} u^{(s)}(x)\right|^{p} d x
\end{aligned}
$$

Let $\varepsilon>0$. Choose N_{1} so large that $\sum_{i>N_{1}} \int_{a_{i}}^{b_{i}}\left|u^{(s)}(x)\right|^{p} d x<\varepsilon^{p} / 8^{p}$, $s=0,1, \ldots, m-1$. Then choose N_{2} so that

$$
\left|f_{n_{k}}\left(c_{i}\right)-A_{i}\right|<\frac{\varepsilon}{2 \max _{0 \leq s \leq m-1}\left\|u^{(s)}\right\|_{p}}, k \geq N_{2}, i=1, \ldots, N_{1}
$$

Then

$$
\begin{aligned}
\int_{0}^{1}\left|\left(u C_{\varphi} g_{n_{k}}\right)^{(s)}-g^{(s)}\right|^{p}= & \sum_{i=1}^{N_{1}} \int_{a_{i}}^{b_{i}} \mid\left(u^{(s)}(x) f_{n_{k}}\left(c_{i}\right)-\left.u^{(s)}(x) A_{i}\right|^{p}\right. \\
& +\sum_{i>N_{1}} \int_{a_{i}}^{b_{i}}\left|u^{(s)}(x) f_{n_{k}}\left(c_{i}\right)-u^{(s)}(x) A_{i}\right|^{p} \\
\leq & \sum_{i=1}^{N_{1}} \int_{a_{i}}^{b_{i}}\left|u^{(s)}(x)\right|^{p}\left|f_{n_{k}}\left(c_{i}\right)-A_{i}\right|^{p} d x \\
& +\sum_{i>N_{1}} \int_{a_{i}}^{b_{i}}\left|u^{(s)}(x)\right|^{p} 4^{p} d x
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left(\int_{0}^{1}\left(u C_{\varphi} f_{n_{k}}\right)^{(s)}-\left.g^{(s)}\right|^{p}\right)^{1 / p} \\
& \leq\left(\sum_{i=1}^{N_{1}} \int_{a_{i}}^{b_{i}}\left|u^{(s)}(x)\right|^{p} \frac{\varepsilon^{p} d x}{2^{p} \max _{0 \leq s \leq m-1}\left\|u^{(s)}\right\|_{p}^{p}}+\frac{4^{p} \varepsilon^{p}}{8^{p}}\right)^{1 / p} \\
& <\left(2 \frac{\varepsilon^{p}}{2^{p}}\right)^{1 / p}=2^{1 / p} \frac{\varepsilon}{2}, k \geq N_{2}
\end{aligned}
$$

Thus $\left(u C_{\varphi} f_{n_{k}}\right)^{(s)} \rightarrow g^{(s)}$ in $L^{p}, s=0,1, \ldots, m-1$.
Finally, essentially the same proof works to show that $g^{(m)} \in L^{p}$ and $\left(u C_{\varphi} f_{n_{k}}\right)^{(m)} \rightarrow g^{(m)}$ in L^{p}. The key observation is that (v) implies $m([0,1] \backslash E)=m\left(\left\{x \notin E \mid u^{(m)}(x)=g^{(m)}(x)=0\right\}\right)$.
Thus we have shown that if $u \varphi^{\prime}=0$ and $f_{n} \in W_{m, p}$ with $\left\|f_{n}\right\|_{W_{m, p}} \leq$ 1 , then there exists a subsequence $\left\{f_{n_{k}}\right\}$ and an element $g \in W_{m, p}$ with $u C_{\varphi} f_{n_{k}} \rightarrow g$ in $W_{m, p}$. That is, $u \varphi^{\prime}=0$ implies $u C_{\varphi}$ is a compact operator on $W_{m, p}$.
Before commenting on the spectra of weighted composition operators we recall several definitions. If X is a set and $\varphi: X \rightarrow X$, then φ_{n} denotes the $\mathrm{n}^{\text {th }}$ iterate of φ, i.e., $\varphi_{o}(x)=x$ and $\varphi_{n}(x)=\varphi\left(\varphi_{n-1}(x)\right)$ for $n>0, x \in X$. Also if $\varphi: X \rightarrow X$, then a point c in X is called a fixed point of φ of order n if n is a positive integer, $\varphi_{n}(c)=c$ and $\varphi_{k}(c) \neq c, k=1, \ldots, n-1$.
In [5] it was shown that if X is a compact Hausdorff space, $u, \varphi \in$ $C(X), \varphi: X \rightarrow X$, then a necessary and sufficient condition that $T: f(x) \rightarrow u(x) f(\varphi(x))$ be a compact operator on $C(X)$ is that for each connected component C of $\{x \mid u(x) \neq 0\}$ there exists an open set $V \supset C$ such that φ is constant on V. Further, for such a compact operator $T, \sigma(T) \backslash\{0\}=\left\{\lambda \mid \lambda^{n}=u(c) \ldots u\left(\varphi_{n-1}(c)\right)\right.$ for some positive integer n and some fixed point c of φ of order $n\}$.
The techniques that were used in proving the results in [5] about the spectra can be carried over essentially unchanged to our situation. Specifically, using these techniques one can prove the following theorem.

THEOREM 6. Suppose m is a positive integer, $1 \leq p<\infty, u \in$ $W_{m, \infty}, \varphi:[0,1] \rightarrow[0,1], \varphi \in W_{m, \infty} \cap C^{1}$ and is of N-bounded variation for some positive integer N. If the weighted composition operator $u C_{\varphi}$ is compact on $W_{m, p}$, then $\sigma\left(u C_{\varphi}\right)=\left\{\lambda \mid \lambda^{n}=u(\stackrel{c}{c}) \ldots u\left(\varphi_{n-1}(c)\right)\right.$ for some positive integer n and some fixed point c of φ of order $n\} \cup\{0\}$.

References

1. A.B. Antonevich, On the spectrum of a weighted shift operator on the space $W_{p}^{\ell}(X)$ Sov. Math. Dokl. 25 (1983), 772-774.
2. A. Brown and C. Pearcy, Introduction to Operator Theory 1: Elements of Functional Analysis, Springer-Verlag, New York 1977, 371.
3. S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York 1966.
4. M. Josephy, Composing functions of bounded variation, Proc. Amer. Math. Soc. 33 (1981), 354-356.
5. H. Kamowitz, Compact weighted endomorphisms of $C(X)$, Proc. Amer. Math.

Soc. 83 (1983), 517-521.
6. I.P. Natanson, Theory of Functions of a Real Variable, Vol. I, Frederick Ungar, New York 1955.
7. R.K. Singh, Compact and quasinormal composition operators, Proc. Amer. Math. Soc. 45 (1974), 80-82.

University Of Massachusetts At Boston Dorchester, Massachusetts 02125.

