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ABSOLUTELY CONTINUOUS SPECTRA OF 
PERTURBED PERIODIC HAMILTONIAN SYSTEMS 

D.B. HINTON AND J.K. SHAW 

A B S T R A C T . This paper compares the spectrum of the 

Hamiltonian system J y = (XR(x) + Q(x))y , -oo < x < oo, 
with periodic coefficient matrices R(x) and Q{x), to that of 

a perturbed system J y = (XR(x) + Q(x) + P(x))y, where 
P G Ll

R(-00,00). We show that the perturbation can intro­
duce at most eigenvalues into the gaps between the endpoints 
of the stability intervals of the periodic system. We prove 
that the spectral function is continuously differentiable across 
the continuous spectrum. Further, it follows from the results 
here that the essential spectrum, the absolutely continuous 
spectrum and the singular continuous spectrum are invariant. 

1. Introduction. We will study the 2 x 2 Hamiltonian system 

4 0 ) J / " l A V r 1 2 ( x ) r2(x) ) 

,(qi(x) < Z i 2 ( x ) \ W _00<x<00 
+ \qi2(x) q2(x)))y> ° ° < : r < 0 0 > 

which will be assumed to have real and piecewise continuous coefficient 
matrices which are periodic. We shall write ~y(x) = ( | f ö ) for a so­
lution of (1.1), but otherwise our notation agrees with that of [8] and 
[24]. If the coefficients have period T, then z(t) = y{tT) satisfies an 
equation of the form (1.1) with coefficients of period 1. Thus we will 
assume, without loss of generality, that T = 1. 

Our objective is to examine spectral properties of operators associ­
ated with (1.1) as compared with those of operators arising from the 
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perturbed system 

(1.2) V
 x 

+ ( Qi Qi2\ + (pi{x) Pi2(x)\ \ -
\Ql2 Q2 ) \Pl2{x) p2{x) ) Jy' 

for a suitably small perturbation term 

P{X) = (M*\ PI*/*)). 
; VP12W P2(«) y 

Specifically we look at the questions of whether the continuous spec­
trum of (1.1) is stable under the perturbation, when eigenvalues can be 
introduced by it and what order of smoothness of the spectral functions 
may be expected from (1.1) and (1.2). Introducing obvious notation 
we write (1.1) and (1.2) in matrix form as 

(1.3) j / = (AÄ(aO + Q(aO)y, 

(1.4) J'y' = (XR(x) + Q{x) + P(x) ~y. 

We are going to assume that our systems divide into the two categories, 
distinguished as follows: 

{ Case I: R(x) > 0; i.e., R(x) is positive definite. 

Case II: R(x) = ( r f > ° 0 ) , r 1 ( « ) > 0 . 

In Case I (1.4) is known as a Dirac system [8,24,18,15,8]. A detailed 
stability interval analysis for unperturbed periodic Dirac systems has 
been given by Harris in [8]. (The matrix J = ( j -^ 1) is replaced 
in [8] by q{x)(^ ~J ) , q(x) > 0. However, the change of variable 
t = §*{l/q)ds transforms the system in [8] to the form (1.3), having 
period JQ (l/q)ds.) Harris considers the selfadjoint operator To(y) = 

Rrx{J^y — Cfy) in the space L^(-oo,oo) of square-integrable vector 
functions, relative to the weight R(x), and finds that the spectrum of 
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To is purely continuous and consists of the stability intervals associated 
with the Floquet theory of (1.3). Therefore the classical analysis of 
Eastham in [5] for scalar equations carries over to Dirac systems. 

Case II encompasses the scalar perturbed Hill's equation -y" + qy + 
py = ty by means of the imbedding 

Tïï) (?) ' -Ki! î ) + ( ï ï ) + (7 Ï ) ) ( ; ) -
In [14] we investigated how the stability intervals (i.e., spectrum) 
of Hill's equation -y" + qy = \y, q(x) periodic, are altered when a 
perturbation term p(x) G L1 (-00,00) is included. We established 
absolute continuity of the continuous parts of the spectra of both 
the perturbed and unperturbed equations. The rationale for taking 
L1(-oo,oo) perturbations is discussed at length in [14]. 

The present paper is an effort to extend the results of [14] to the 
setting of Hamiltonian systems (1.3) arid (1.4). We will require in 
particular the corresponding hypothesis 

(1.7) P{x)eL1{-œiœ) 

which means that each entry of P(x) is absolutely integrable. Our 
results extend Theorems 2.7 and 2.8 of [8] in Case I, but we employ 
entirely different methods of spectral theory from those of [8]. Nev-
erthless, we will rely on many of the basic facts about Floquet theory 
from [8]. Our principal result, Theorem 4.1 in §4, asserts that the con­
tinuous spectra (definitions of all relevant terms from spectral theory 
will be given presently) of (1.3) and (1.4) have equal interiors and are, 
in fact, absolutely continuous spectra; i.e., there are no imbedded in-
teroir eigenvalues. From an operator point of view we prove more. It 
follows from the results here that for the perturbation (1.4) of (1.3) 
the essential spectrum is invariant, the absolutely continuous spectrum 
is invariant, and the singular continuous spectrum is invariant (since 
it is the empty set in both cases). The latter conclusion is somewhat 
surprising since the singular continuous spectrum is not even stable un­
der rank one perturbations [22, P. 140]. While abstract theorems using 
the resolvent are available to locate the absolutely continuous spectrum 
(cf. [22, p. 138]) we find it easier to use a scalar valued component of 
the resolvent-the Titchmarsh-Weyl ra-coefficient. Even for location 
of the essential spectrum of (1.4), it should be noted that there are 
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perturbations satisfying (1.7) which are not relatively compact pertur­
bations of (1.3) so that results such as Weyl's theorem [22, p. 113] 
are not always applicable. As concerns the invariance of the absolutely 
continuous spectrum, the closest related result seems to be a paper of 
Thomas [23] on the Laplacian in R3 . By using calculations similar 
to [16], one can handle large perturbations at one singular endpoint. 
Results of this type have been obtained by Cannona [3]. 

To place (1.3) and (1.4) in an operator-theoretic setting we introduce 
the space Z^(-oo, oo) of equivalence classes of measurable functions y 
which satisfy 

(1.8) / y Rydx < oo. 
J— oo 

If R > o then L\ (-00,00) is a Hilbert space under the inner prod-

uct (fig)R = JÜ^j f Rgdx. In this case we define an operator 

T with domain D(T) by the conditions ^y E D(T) if and only if 

y G L^(-oo,oo), ~y is locally absolutely continuous, R~1(Jy — (Q + 

P)1) e L|(-oo,oo) and T(y) = BT1 (J'y - (Q + P))~y. Then 
T : D(T) —» Z/^(-oo,oo) is a symmetric Hilbert space operator and 
(1.4) is equivalent to the operator equation T(y) = Xy. Let To be the 
"unperturbed operator" obtained from T by replacing P(x) by 0; we 
will call T the "perturbed operator". Harris proved in [8] that T0 is 
selfadjoint; i.e., (1.3) is of limit point type at ±00, or in other words 
(1.3) has no nontrivial solutions in L^(-oo, 00) for any nonreal A. Being 
selfadjoint, To has a real spectrum o-(To). The main conclusion of [8] 
is that 0-(To) is purely continuous and consists of the stability intervals 
of (1.3). One of the things we will prove is that the operator T under 
L1(-oo,oo) perturbations P is also selfadjoint; furthermore the contin­
uous spectra of T and To have equal interiors (so that no eigenvalues 
are introduced into stability intervals) and are absolutely continuous. 

— • — • * — • x 

Under Case II of (1.5) the expression \\Î\\R = ( / ^ / Rfdx)* is 
only a seminorm, and we certainly cannot define the operator T as 
above. We will adopt the approach taken in [11] and [12] to define 
operators and their spectra. First we require F.V. Atkinson's "defi-
niteness hypothesis" [2, p. 253] 

(1.9) / y Rydx>0, -00 < a <b< 00, Im(À) ^ 0, 
Ja 
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for every solution ^y of (1.3) or (1.4) which does not vanish iden­
tically. (This condition is needed to guarantee existence of the 
Titchmarsh-Weyl coefficient defined below.) Let L2

R{—oo,oo) = {y € 
-kfiC""-00'00)!?/ = 0} be the set of vectors in L2

R{—oo, oo) with van­
ishing second component, so that | | / | | H is anorm when restricted to 
Z^(—oo, oo). Let D(T) be the set of locally absolutely continuous 

~y e L^ (-00,00) such that (j^ Q ) [ J / - {Q + P)V] € Z^ (-00,00) 
and set 

(1.10) T(y) = ( r ^ j j ) [J'y - {Q + P)y] : D(T) - PR(-oo,œ). 

The vanishing of the second component of J y — (Q + P)y is required 
to make (1.4) agree with the operator equation T(y) = A(QQ)^/ ; 

see [12] and [13]. Note the special case (1.6) in which (1.10) is 

T(y) = ( - y" (9+p)2/Y Again let T0 be the operator obtained from T 

by setting P(x) = 0. 
Even though T, given by (1.10), is not in the strict sense a Hil­

bert space operator, we can still define its spectrum by following the 
method of [12] and [13]. The set p(T) of all A such that R\(T) = 
( T — A ( Q Q ) ) : Z^(-oo,00) —» L^(-oo,00) exists and is a bounded 

operator in the norm | | / | | ß will be called the resolvent set of T. The 
spectrum a(T) of T is the complement of p(T) in the complex num­
bers. The set of isolated points of a(T) is called the point spectrum of 
T, denoted by P{T). The set E(T) = a{T)-P{T) is the essential spec­
trum. The set PC(T) C E(T) consisting of eigenvalues in the essential 
spectrum, those À for which there is a nontrivial solution y G D(T) 
of T(y) = A( JQ J2/, will be termed the point-continuous spectrum. 

Finally, C{T) = E(T) - PC(T) is called the continuous spectrum of T. 
The asymptotics we develop in §3 will show that (1.4) lies in the limit 

point case at ±00. By [10] and [21] we can then construct the resol­
vent operator R\(T), by means of a Green's function, for any nonreal 
À. Hence the spectrum of T as given by (1.10) is real. 

The definitions of the parts of the spectrum of (1.10) listed above are 
exactly the usual ones for Hilbert space operators provided we replace 

(0 0) by t h e i d e n t i t v matrix, (r^ £ ] by ET1 in (1.10) and Z | ( -oo, 00) 
by L^(-oo, 00). Henceforth in this paper T and To will refer to the per­
turbed and unperturbed operators defined as above under either of the 
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alternatives (1.5). It will not be necessary to specify which case actually 
prevails. In this way Theorem 4.1 (§4) will apply to both Dirac systems 
and also to non-positive definite systems, including scalar equations via 
(1.6). 

In §2 we work with the Floquet representation relevant to (1.3) and 
define the stability intervals, §3 contains asymptotic forms of solutions 
and calculation of Titchmarsh-Weyl coefficients, and in §4 we prove 
the main theorem. 

Finally, we mention some related works of interest. The paper 
[17] of Khrabustovskii takes up vector equations, of arbitrary order, 
with periodic coefficients and perturbations thereof. The coefficient 
of the highest derivative is required to be nonsingular and, when 
fitted to (1.3) and (1.9), the perturbation term P(x) must satisfy 
f* \\P(t)\\2dt —• 0, x —» oo. It is noted that the essential spectrum is 
unchanged, and then further conditions which guarantee finit eness of 
the number of eigenvalues introduced into gaps between stability inter­
vals are given. Further references to similar studies may be found in 
[17]. Maksudov and Veliev are concerned in [19] with spectral singu­
larities of (1.3), where R = I and Q is diagonal and complex valued, 
and their characterization in terms of the (regular) eigenvalues of (1.3) 
for the interval 0 < x < 1. Their results are extended to systems of ar­
bitrary order in [20]. Misjura has given in [21] necessary and sufficient 
conditions that a given sequence comprise the eigenvalues of a Dirac 
system with periodic or antiperiodic boundary values. 

F.V. Atkinson has given in [1] a method for establishing continuously 
differentiable spectra for L1 -perturbations of Sturm-Liouville opera­
tors. 

2. Floquet representation. The beginning part of this section is 
largely a restatement of the corresponding one in [8]. The presentation 
is given here for the sake of completeness. 

Let 6 (x, A) and £>(x, A) be the unique solutions of (1.4) which satisfy 
the initial conditions 

(2.1) ~0(O, A) = ( J J , £(0, A) = ( J ) , for all complex A. 

We let 0Q(X,\) and (p0(x,\) be the corresponding solutions of the 
unperturbed equation (1.3). We note along with [8] and [14] that 
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these solutions are entire functions of À for each fixed x, so that the 
"discriminant" function 

(2.2) D(A) = 0o(l,A) + £o(l,A) 

is also entire. Just as in the scalar case, the "stability intervals" of (1.3) 
are defined as those open real A-intervals for which -2 < D(X) < 2. 
Harris [8] proved that the interior of CT(TQ) consists of the union, S, of 
the stability intervals in Case I. Following [14], we make the simplifying 
assumption that 

(2.3) the stability intervals are disjoint. 

If two intervals in S should have a common endpoint Ao, a special 
argument is needed to show Ao $• PC(T)\ we give this in §4. 

Harris' proof in [8] that 

D'{X) ^ 0 in stability interval 

carries over to the nonnegative definite Case II of (1.5). Thus an easy 
proof [14] establishes that 

(2.4) z/Im£)(A -f iv) has a constant sign, A € 5, 

for all v sufficiently small. 
Now let J be an open interval whose closure is contained in the 

interior of one of the stability intervals. Using (2.4) we can find a 
region 11/ = {A = Ai + ^ l ^ i € 1,-6 < A2 < 6,6 > 0} such that 
A2I1ÏI J9(Ai + ÌX2) is of constant sign for A G Hj. Let D(Qi) be the 
image of fij under D(X). 

The Floquet multipliers p = p(X) are solutions of p2 — Dp + 1 = 0, 
which can write as D(X) = p(X) + p(A)-1. The roots p\ and pi satisfy 
pxp2 = 1, but p\ = ±1 and pi = ±1 only when D = ±2. Under 
the mapping D = p + p~l, from the "p-plane" to the "Z)-plane", 
the inverse image of D(Qi) consists of two disjoint open sets (for 6 
sufficiently small), one in each of the upper and lower half planes, 
each of which encloses an arc of the unit circle. We can therefore 
determine an analytic branch of p(X) in which satisfies \p(X)\ > 1 for 
A2 > 0,1 p{X) |< 1, for A2 < 0 and |p(Ai)| = 1 for A = Ai + iX2 e H/. 
If we let a(X) = /Â(X) + i and v(X) be an analytic logarithm of p(A) 
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in f2j, then there follows u(X) > 0 for A2 > 0, and u(X) < 0 for 
A2 < 0, ea(x) = /9(A), A = Ai + iX2 G Qj. This discussion parallels the 
corresponding one for Hill's equation in [14]. 

The usual Floquet representation [8] gives independent solutions of 
(1.3) in the forms 

4>x (x, A) = ea<A>* p !(*, A), ̂ 2 (x , A) = <T°<A>* p 2 ( s , A), 

for A G Q/ and -oo < x < oo, where p^fa;, A) = ( A*(*^) ) are peri­
odic in x and analytic in A. The quantity A(A) = pi(0, A)p2(0, A)p_ 
Pi(0, A)p2(0, A) will be used for further representation of the solutions 
of (1.3). 

LEMMA 2.1. For A G H/, A(A) ^ 0. 

PROOF. The function A (A) = 0 if and only if 

( 2 5 ) Pi(0,A)d+p2(0,A)c2 = 0 

Pi(0,A)Cl+p2(0,A)c2 = 0 

has a nontrivial solution (ci,c2), for A (A) is the determinant of this 

system. But (2.5) is equivalent to 0 ^ ( 0 , A) + c2^2(0, A) = 0 and, by 
uniqueness of solutions to initial value problems, this is equivalent to 

ciip1(x, A) + c2tp2(x, A) = 0, contradicting the independence of the 

ipk. This contradiction completes the proof. 

LEMMA 2.2. For A G Qj, 

(2.6) ^ o ( * ' A ) = (P2(0)eaxp1(x)-p1(0)e-axp2(x))/A(X)i 

Vo(x,\) = (-p2(0)eQXp1(x)+p1(0)e^xp2(x))/A(X)i 

where we have suppressed the X-dependent in the numerators. 

PROOF. This follows from writing #o(z) = Cxeax~p\(x)+c2e~ax~p2(z), 
^p0(x) = dieax]p1(x) + d2e~ax^p2{x), setting x — 0 and solving for the 
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constants using the definition of A(A). 

For A G fij, A2 > 0, we obviously have ip2 ^ L^l[0,oo),ifi1 £ 

L|[0,00), ip1 G Z^(-oo,0], %l)2 & L |(-oo,0] . Therefore (1.3) is of limit 
point type at each of ±00. According to [10], [11] or [12] we may form 
the Titchmarsh-Weyl functions 

m(+)(A)=_ lim ÎS&& mi-\X)=- lim ^ 4 , 
z - o o <p0(x, A) U r r - - o o <pQ(x, A) 

where the limits exists and define unique analytic functions for Im (A) ^ 
0. The relations 

(2.7) A s I m m ^ A ) > 0, A a l m m ^ A ) < 0, m^}(A) = m^}(A), 

are known to hold [10, 11, 12] for A = Ai + iX2i A2 ^ 0. H. 
Weyl (see [6]) derived the ra-coefficient in order to exhibit solutions 
of integrable square of a scalar equation. In our case, the solutions 
-(+> - (±) -
X0 (x,A) = Oo{x,X) + m j }(\)(p0(x,\) satisfy 

(2.8) X0 G L|[0,00), X0 G L | ( -oo, 0], Im (A) ^ 0, 

and uniquely up to constant multiples. In view of (2.6), and suppressing 
A dependence on the right, 

(2.9) 
+ (-Pi(0) + m£+)pi(0))e-"*p2(a;), 

A(X)X (x, A) = (p2(0) - m^p2(0))eaxp1(x) 

for Im A ^ 0. Taking A = Ai -f iX2 G fi/, A2 > 0, we see that the term 
eaxp1(x) becomes unbounded as x -+ 00 by the property u(X) > 0 
for a = u + iv. In order that (2.8) not be violated, it must be that 
p2(0) - mi

0
+)p2{0) = 0 in (2.9) with the (+). From this equation 

we see that P2(0) # 0, as otherwise we would have £2(0) = 0 and 
therefore A(A) = 0, contradicting Lemma 2.1. Therefore rag (A) = 
P2(0, A)/p2(0, A) for A = Ai -h iX2 G fi/, A2 > 0. Working with the ( - ) 
version of (2.9), making x —• -00 and using the second part of (2.8) 
yields similarly YYIQ{X) = Pi(0, A)/pi(0, A), A = A 4- iX2 G fi/, A2 > 0. 



736 D.B. HINTON AND J.K. SHAW 

The same idea can be used for the case A2 < 0 if we switch the order 
in which the (±) signs are used in (2.9). We record all these properties 
as follows; compare [14]. 

LEMMA 2.3. For A = Ai + iA2 € Oj, A2 # 0, we have pi(0, A) / 0 ^ 
p2(0, A) and 

m<+)(A)=p2(0,A)/p2(0,A), A 2 > 0 , 

m<+ )(A)=P l(0,A)/P l(0,A), A 2 < 0 , 

m^- )(A)=p1(0,A)/p1(0,A), A 2 > 0 , 

^o_ )(A)=P2(0,A)/p2(0,A), A 2 < 0 . 

(2.10) 

The local representations (2.10) give rise to an analytic continua­
tion phenomenon, whose scalar equation counterpart was discussed in 
[14], for the ra-coefficients. We will prove in the next lemma that 
Pi(0, Ai) # 0 ^ p2(0, A) for Ai G / , but accepting this for the mo­
ment the functions £2(0, A)/p2(0, A) and pi(0, A)/pi(0, A) are analytic 
throughout Hj. Then the first equation of (2.10) represents m^ in 
the upper part of fij and provides its analytic continuation into the 
lower part. But its analytic continuartion into the lower part does not 
equal the Titchmarsh-Weyl coefficient for A2 < 0; its value there is the 
second equation of (2.10) and these quantities cannot agree for a real 
value Ai E / as otherwise A(Ai) = 0. Similar remarks apply to the 
coefficient rag (A). 

LEMMA 2.4. For Ai G I, we havepxiO.Xx) ^ 0 ^ p 2 ( 0 , A 2 ) . 

PROOF. We begin with the formulas 

f 
Jo 

r o ox^«4+ ,«*= I n y 'ö A , 

(2.11) Jo 0 r.t'^^f1", 
/ 

for A = A1-KA2 6 Qj, A2 > 0, which are proved in [11], for the functions 
->(±) - w 
X0 = 0O + mj, V o of (2.7). If it happens that pi(0, Ai) = 0, then 
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Pi(0, Ai) T̂  0 by Lemma 2.1 and the definition of A(A). Therefore 
(2.10) implies that m^ (A) has a pole at Ai which, by (2.7), must be 
simple. Letting r be its residue there, multiplying the second equation 
of (2.11) by A| and letting A2 —• 0 results in 

/
° * 1 

V0R~V0dx = ( - ) . 
-00 ' 

But from the second equation of (2.6) (p0R<p0 = \P2(0)\2p1Rp1 is 
periodic which means that (2.12) cannot possibly be finite. Thus 
Pi(0, Ai) = 0 is entenable, and so is £2(0, Ai) = 0 by similar reasoning. 

3. Asymptotics of solutions. We now want to think of the 

solutions 0 and y?, from (2.1), as perturbations of the Floquet solutions 
(2.5). Let Yo(x, A) and Y(x, A) be the fundamental matrix solutions of 
(1.3) and (1.4), respectively, for which y0(0, A) = F (0, A) = I for all A; 

14-ft S)- l7-5J-y=(» * ) = | ï - a -
The variation of parameters formula for (1.4) reads, suppressing the A, 

Y(x) = Y0(x) + Y0{x) JY^ity^P^Y^dt 
(3.1) - , J° 

= Y0{x)+ / K(x,t)P(t)Y(t)dt, 
Jo 

where 

K(x,t,X) = Y0{x)Y0-\t)J-1 

= \0o(x)<po{t) - Mx)9o(t) 6o{x)<fo(t) - <Po{x)h(t)] 
[60{x)<po(t) - <p0{x)e0{t) ê0(x)<p0{t) - Mx)Ôo{t)\ ' 

The Kernel K(x,t,X) may be formulated using (2.5). Beginning with 
the upper left entry, with A € fij, 

Ku(x,t,X) = 0o(x)<po{t) - <Po(xWo(t) 
=(P2(0)eax

Pl(x) - h(0)e-axp2(x))(-p2(0)eat
Pl(t) + p^e^p^t))^ 

-(-p2(0)eax
Pl(x) +Pi(0)e-axp2(x))(p2(0)eat

Pl(t) - Pl(0)e-
at

P2(t))A-* 
=(ea{x-t)Pi(x)p2(t) - e-^x-^P2(x)Pl(t))A-\ 
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due to cancellation and the definition of A (A). After computing the 
other entries of Ä", on sees that 

Ku(x,t,\) = A(\)-1(ea{x-t)Pi(x)p2(t)-e-a(x-tip2(x)p1(t)), 

K12{x,t,X) = A t A r V ^ - ' W * ) ^ ) - e - a ( l - * W ) P i ( 0 ) , 
K21(x,t1X) = A(X)-1(e^x-^p1(x)p^t)-e-^x-^p2(x)p1(t)), 

K22(x,t,X) = AiXy^e^-Vp^xfait) - e - ^ - ^ O r ) ^ * ) ) . 

Having (3.2) in hand we can proceed with the asymptotic form of 
Y(x, A) for A = Ai + z'A2 e Hj, A2 > 0. Using || • || to denote the 
norm of a matrix, or vector, obtained by summing the magnitudes of 
its components, it is obvious from (2.6) that 

(3.3) \\Y0(x,X)\\<M1(X)euWx 

for A = Ai + z*A2 € f2/, A2 > 0,0 < x < 00 and a certain constant 
Mi (A) > 0. If we let Fi(x, A) = e^^xY{x, A), then (3.1) is the same 
as 

(3.4) Fi (z) = e^Yoix) + j* e^-^KMP^Y^dt. 
Jo 

We will apply the norm || • || to (3.4), but observe first that 

(3.5) l l e ^ ^ ^ , « , A)|| < M2(A),0 < t < x < 00, A2 > 0, 

for some constant M2(A), and that the norm satisfies \\ fa N(x)dx\\ < 
Ja

ò||iV(x)||dx and ||iViiV2|| < ||7Vi||||iV2|| for matrix functions N,NU 

and iV2. Working with (3.3)-(3.5) it follows that 

\\Y1{z)\\<M1{\)+ r M 2 ( A ) | | P ( 0 | | | | y i W I I ^ 
Jo 

and then, from Gronwall's inequality [9, p. 241], that 

| | n (x ) | | < M1(A)exp(M2(A) / ° ° \\P(t)\\dt), 
Jo 

in view of (1.7). Therefore, we have 

(3.6) \\Y{x, A)|| < K{X)eu{x)x, 0 < x < oo, A = Ai +»A2 € fi/, A2 > 0, 
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where K(X) is a constant. Included in (3.6) are bounds of the form 

(3.7) p (x, A)|| < Ke{\)e«™*, ||£(*, A)|| < Kv{\)e»™', 

for appropriate constants K$ and K<p. 
Note that equations (2.6), combined together and rewritten, may be 

expressed as 
(3.8) 
A(A)y0(x,A) = e^p1(x)(p2(0),-p2(0))-e-^"p2(a ;)(p1(0),-p1(0)), 

and in a similar way (3.2) becomes 

(3.9) A(X)K(x,t,X) = ea^-t^p1(x)p2(t)
T-e^-^p2(x)p1(t)

T, 

where T denotes the ordinary transpose. 
We are now ready to derive the asymptotic forms of F(x, A) in the 

separate cases of real and nonreal A. If one substitutes (3.8) and (3.9) 
into (3.1) and takes A to be real, the result is 
(3.10) 
A(A)F(x,A) 

=ea*p1(x)(p2(0), -p2(0)) - e-Qa;p2(x)(p1(0), -P l(0)) 

+ f'i^'-^p^p^tf -C-a(«-*)pa(a:)p1(*)r)P(*)y(t)'ft 
Jo 

=eaxp1(x)(A{+)(\) - J e-atp2(t)
TP(t)Y(t)dt) 

/•OO 

+ e-«*p2(z)(4+)(A) + / e^p^tfP^Y^dt), 
J X 

where 

/»OO 

A+)(X) = (fc(0), -P2(0)) + / e-atp2(t)
TP(t)Y(t)dt, 

Jo 
/»OO 

4+ )(A) = (-M0),pi(0)) - / crtpdtfPWWdt. 
Jo 

This may be written in the form 
(3.11) 
A(A)F(x, A) = eMp1(a)Ai+)(A) + e - a xp 2 (x)4+ ) (A) + o(l) (A real) 
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where 0(1) is term which tends to 0 as x —» oo. 
Next let A = Ai + i\2 G Hj, A2 > 0. Note that the term A[^(X) 

is defined for these nonreal A on account of (3.6) and (1.7). Re­
call that a(A) = u{\) + iv{\) and u{\) > 0 for A2 > 0. The 
term e~axp2{x)(pi{0),—pi(0)) in (3.10) has norm order of magni­
tude e~M^A^,x —» oo. In the next term of the same equation 
So e-atp2(t)

TP(t)Y(t)dt = / 0 ° °e*p 2 { t ) T p{ t )Y{ t )d t - f~e~^ 2 { t ) T 

P{t)Y(i)dt, again using (3.6), which is /0°° e-at^2(t)
TP(t)Y(t)dt + 

o(l),x —• oo. Passing to the next term in (3.10) and using (3.6), 

|| /%"-(*-*)^1(O
rP(*)K(0*ll < K(X) /Va«-*>||p1(O

rP(*)ll<ft 
Jo Jo 

<K(X) I \\p1(t)
TP(t)\\dt + K(X)eux f llp^fPWH* 

Jo Jx/2 
= eaxKi(x, A) = o(eQX), x ^ oo, 

where K\(x, A) —• 0 as x —• oo. Now, factoring out eQX p±(x) from the 
right side of the first equation in (3.10), 

(3.12) A(A)Y(x, A) = eax(p1(x)A[+)(X) + o{l)),x^ oo, A2 > 0. 

We will require companion results to (3.11) and (3.12) for negative 
x, x —• -oo. Beginning with a real A € / and working with (3.10), 

A(A)y(x,A)=6^p1(x){(p2(0) , -P 2(0)) 
/»—oo 

+ / e-atp2(t)
Tp(t)Y(t)dt} 

Jo 

( 3 1 3 ) +e-a_xp2(x){(p1(0),p1(0)) 

- / , ° V P I W T P W 1 ' W } + 0(I) 
Jo 

=eaxp1(x)A[-\x) + e-a*p2(x)4-\x) 

+ o(l), x -* -oo, A real, 

with Ai '(A) and A2~^(A) defined in the obvious way. The asymptotic 
estimate for x —• -oo which is complementary to (3.12) is 

(3.14) A ( A ) y ( x , A ) = e " a x ( p 2 ( x ) 4 " ) W - h o ( l ) ) , x - + - o o , A 2 > 0 , 
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valid for A = Ài + 1X2 € a;/. 
We now close this section with a lemma giving an alternative way of 

expressing the functions A^ *(X) and A$'(X) for real X € I. 

LEMMA 3.1. For real Xel define 

rOO 

B(X) = / + / Yo\t) J-ipfäYWdt, 
Jo 

/»—00 

B(X) =1+1 7o X W^^W^W*. 
Jo 

Then 

(3.15) B11B22 — B12B21 = B11B22 — B12B21 = 1, 

(3.16) A[+\X) = [MO), -Pa(0)]B(A), 4">(A) = |pi(0),Pi(0)]B(A), 

(3.17) 
Y(x) = Y0(x)B{X) + o(l), x — 00; F(x) = F0(z)ß(A) + o(l), x - -oo. 

PROOF. Starting with the variation of parameters formula (3.1), we 
obtain 

/•OO /-OO 

Y(X) = %(«)( / + / Yô1J~1PYdt - / y o " 1 ^ " 1 ^ ^ ^ ) 

= r0(*)(ß(A) + o(i)) 
= Y0(x)B(\) + o(l), x - - o o , 

on noting that YQ(X, A) and F(x, A) are bounded for real A € J and 
taking (1.7) into account. In (3.3) and (3.6) recall that u(X) = 0 for 
real A. The other equation in (3.17) can be derived similarly. 

The identity J = Y*JY holds for real A ([2,p. 268]) and this implies 
(3.17) that J = {Y0B + 0(1)*J{Y0B + o(l)) = B*Y0*JY0B + o(l) = 
B* JB+o(l). Since B does not depend on x, it must be that B*JB = J , 
which includes the first of (3.15). The proof for B is the same. 

As concerns (3.16) let ZQ{t,X) = (eat'p1{t),e~at^2{t)) s o t h a t (2-6) 
becomes 

A(A)K0(x.A) = Z o ( l . A ) [ ^ W ) £ « » > ] , 
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Z0(x) = A(A)F0(z)A(A) - l Pi(0) p2(0) 
Pi(0) p2(0) 

= y0(*)(Pi(o),p3(o)) . 

This can be substituted into the definition of A^ (A) to lead to 

/•OO 

4 + ) = (P2(0), -pa(0)) + / (e-atp2(t))
Tp(t)Y(t)dt 

Jo 
/*00 

= (pa(0), -p2(0)) + / ( K O W P Q W Ì ^ W ^ W * 

/•OO 

= (p2(o), -p2(o)) + p2(o)r / j j - ^o^opwyw* 
JO 

/»oo 

= (P2(0), -pa(0)) + (p2(0), -p2(0)) / V W ^ P W ^ W * 
Jo 

= (P2(0),-pa(0))B(A), 

and the other identity in (3.16) follows similarly. 

4. Perturbed and unperturbed spectra. The Titchmarsh-Weyl 
function for the whole line unperturbed operator To is given by ([11], 
compare [4, p. 251]) 
(4.1) 

Mo(X)=(m{
0-

)(X)-mi+)(X))-1 

( i ( è ) ( 4 _ ) ( A ) + 4 + ) ( A ) ) \ 
V ( è ) ( 4 _ ) ( A ) + m(+)(A)) mt\\)rrtì\\) ) ' 

for Im (À) / 0. It is related to the spectral function p0 for T0 by the 
Titchmarsh-Kodaira formula [12, 13] 

valid at points Ài and A2 of continuity of po(^)> where Im Mo = 
(Mo — MQ)/2Ì. The spectral function />0(A) is a right-continuous and 
nondecreasing (in the nonnegative definite sense) matrix function whose 
points of increase comprise the spectrum cr(To); see [12, 13]. Jump 
discontinuities of p(X) are the eigenvalues of To, both isolated and non­
isolated, while continuous points of increase comprise C(To). We are 
going to prove shortly that poW is continuously differentiable on the 
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interior of C(T0). 
Using (4.2) the points of <J(TQ) may be classified in terms of Mo, as 

the following theorem from [12] shows (see also [13]). 

THEOREM A. For a given real number XQ, we have 
(i) Ao G P(TQ) if and only if Mo(A) is analytic at XQ; 
(ii) Ao G P{TQ) if and only if MQ(X) has a simple pole at Ao; 

(iii) Ao € C(TQ) if and only if Mo(A) is not analytic at X0, and 
limu^ovMo(\o + iv) — 0 

(iv) Ao G PC(To) if and only if Wm^^o VMQ(XQ + iv) — S ^0, and 
Mo (A) — iS(X — Ao)-1 is not analytic at Ao-

The first part of the following result, proved for Case I of (1.5) in [8], 
is the Hamiltonian system version of the classical result which links the 
spectrum of Hill's equation to its stability intervals. 

PROPOSITION 4.1. The spectrum a (To) is purely continuous and con­
sists of the stability intervals of (1.3). Moreover, the spectral function 
Po(X) is absolutely continuous, in fact continuously differentiable, on 
the interior of C(TQ). 

PROOF. Let J be an interval defined as in §2. By the remarks below 
(2.10) the functions TTIQ *(X) are not analytic at points of / (although 
their local representations are). This implies that Mo (A) in (4.1) is not 
analytic at any point of J. If A = Ai + iÀ2 and A2 > 0 in (4.1), then 
(mo (A) - mg (A))"1 = -pi(0A)p2(0, AA(A), a quantity which has a 
finite and nonzero limit as A2 —• 0. Thus the entries of Mo (A) have 
finite and nonzero limits as A2 —• 0, so Theorem A (iii) implies that 
I C C{T0). 

Suppose now that J is an open interval whose closure lies in an insta­
bility interval] i.e., |Z>(A)| > 2 for all A G / . The analytic functions p(X) 
and a(A) = u(X) + iv(X) can be defined as in §2, with the only differ­
ences being that ^(A) > 0, A G Oj, while v(X) changes sign with Im (A). 
Lemma 2.1 and the first part of Lemma 2.3, pi(0, A) ^ 0 / P2(0, A) 
for A G / , continue to hold, but (2.10) must be replaced by TUQ '(X) = 
P2(0,A)/p2(0,A) and m^~}(A) = Pi(0,A)/pi(0,A) for A G H/. Hence 
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the functions TTIQ (̂A) are analytic throughout Qj. It is still true that 

the denominator (m^"}(A) - m^+)(A))_1 = -pi(0,A)p2(0,A)/A(A) in 
(4.1) is finite and nonzero in Hj, and so therefore is Mo (A). By Theo­
rem A(i), 7 C p(T0). 

If Ao is an endpoint of a stability interval, or even a common endpoint 
of two such intervals, then Ao € P C (To) U C(To) since the above proof 
shows that Ao cannot be either a regular point or isolated singularity 
of M0(A). But \D(X0)\ = 2 implies by [8] that the solutions of (1.3) 
are either periodic, linear functions times periodic functions or combi­
nations of these. Thus there are no L\(-00,00) solutions for A = Ao, 
soAo^PC(To) . 

Since Mo(Ai+iA2) has a finite and continuous limit as A2 —» 0, Ai G / , 
we may take the limit inside the integral in (4.2), yielding the result 
that PoW is continuously differentiate. 

In order to state and prove the principal result we begin by claiming 
that (1.4) is of limit point type at both ±00. Letting Ai '(X) = 
( ^ ( A M & ^ A ) ) , (3.16) implies Ai? = p2(0)Bn - p2(0)B21 and 
^12 = P2(0)Bi2 — p2 (0)#22 f° r r e a l A G / , where / is the interval 
of §2. Then A+/p2(0) = 5ii(p2(0)/p2(0)) - B21 and A{+]/p2(0) = 
#i2(p(0)/p2(0)) - B22i these equations also holding for real A G 
/ . However p2(0, A)/p2(0, A) = m^+)(A + i • 0) = l i m £ ^ 0 ^ + ) ( A + 
is) 7É 0 by Lemma 2.3. Then, according to (2.7), I m m ^ ( A + 
iO) > 0, which implies that A[^ (A) and A[2 W are nonreal for real 
A G / . In particular the analytic functions A[X' and A[2 of not 
vanish identically, and a similar proof establishes this for A2~ \X) = 
(A{

2-
)(X)iA

{
2-

)(X)). By (3.12) and (3.14) 

\\Y(z, A)|| > deuWx, x near 00, 

\\Y(%i A)|| > C2 » x near-00, 

where A is a nonreal complex number such that A^ (A) ^ 0 =£ A2 (A). 
These inequalities show that (1.4) is of limit point type at ±00. 

Since the limit point case holds we may form the (perturbed) 
ra-functions for (1.4), 

m<+)(A) = - l i m ^ l m<->(A) = - lim ^ - , I m ( A ) # 0 , 
x—00 (p{X, X) * — o o <£>(£, A) 
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by [10], [11] or [12]. As in (1.4) the m-function for the whole line 
operator T is 
(4.3) 

M(A)=(m<->(A)-ro<+>(A))_1 

/ 1 ( | ) (m(-)(A)+m(+)(A)) \ 
\ ( è ) ( ™ ( - ) W + ™(+>(A)) m<-)(A)m(+)(A) ) 

for Im (A) ^ 0. The perturbed spectral function pp{\) bears the same 
relationship to M(A) as does po(\) to Mo(A) in (4.2). Theorem A also 
carries over to the perturbed whole line operator T. 

According to (3.12) and (3.14), 

m 
'H2 

>(+)(A)=4î!^ (+ )W 

m^\X)=-^^- Im(A)^0. 
^22 W 

We have noted above that these functions are not identically vanishing 
and are nonreal, thus nonzero, for real A E J. By (3.16) and (2.10), we 
therefore have 

(4.4) m W ( A ) = - g 2 1 - B l i m ^ ( A ) , A S J, 
ß 2 2 - Bi2m

(
0
+) 

where all terms are evaluated at A and where m ,̂ (A) is written for 
m o (A + 1 • 0), and similarly 

(4.5) m < - > ( A ) = - f e * - ? " W , ° l ! ( A ) , A € J, 
#22 - B12m

K
0 

with the same notational convention. Equations (4.4) and (4.5) show 
that the functions m^(X) have finite and nonzero limits for X E I. 
Property (2.7) shows that ImMW(A) > 0 and Imm("'(A) < 0 for 
A G / , which we had established earlier for THQ ' (A). These results may 
be summarized by writing rn^' = GQ + ÌFQ, mfr = To + i X ^ 0 , m ^ = 

G + iF, m(-) = r + Œ and then 

(4.6) F0(A) > 0, F(X) > 0, £0(A) < 0, E(A) < 0 for A e L 
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CLAIM. The limit lrniA2-K)A^(Ai + ^ 2 ) exists and is nonreal for 

PROOF. The numerators in (4.3) have finite limits and so it will be 
sufficient to prove that (ra^-) — ra(+))-1 has a finite and nonreal limit. 
Using the notation of (4.6) 

Im (m<-> - m^y1 = {F - E) / ( ( r - G)2 + (F - £)2) , 

and (4.6) shows that this expression has a finite and nonzero limit 
across I. This completes the proof of the claim. 

We now state and prove our principal result. 

THEOREM 4.1. The continuous spectra C(TQ) and C(T) have equal 
interiors and pp(X) is continuously differentiable there. 

PROOF. Let / C C(T0) be as above and form the region Hj. By the 
claim M(Ai + ÌX2) has a nonreal and continuous limit as A2 —» 0 and 
Ai G I. Then M(A) cannot be analytic at any point of J by (2.7), 
but A2M(Ai + 1X2) —• 0 as A2 —• 0. Thus J C C(T) is a consequence 
of Theorem A(iii). This proves that the interior of C(TQJ lies within 
that of C(T). For the reverse inclusion take an interval I lying in an 
instability interval of (1.3) and proceed as in the proof of Proposition 
4.1. The functions A^ '(A) and A2 (A) are analytic in Qj, are real 
A € I and still are not identically zero. Then m^ = -A}* /A^* 
and ra(~) = - > 4 T M22 a r e analytic in Qj except for poles. Since 
the same holds for (4.3), then, by Theorem, A / C p(T) U P(T). It 
therefore remains only to show that there are no eigenvalues imbedded 
in the interior of C(T). By the claim we can take the limit in (4.2), for 
the perturbed data pp{X) and M(A), under the integral sign yielding 
p'p{X)p = 7T_1ImM(A), A € / , so pp{X) has no jump discontinuities in 
the interior of C(TQ). This completes the proof of the theorem. 

We have proceeded under the assumption (2.3) that the stability 
intervals in S have no common endpoints. We now remove this as­
sumption. If Ao is the common endpoint of two stability intervals, say 
(Ai,Ao) and (AQ,A2), then (AI,AQ) and (A0,A2) consist of continuous 
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spectrum and |J9(Ao)| = 2. Moreover, D'(Xo) = 0 and the fundamental 
matrix Yo(x,\o) has entries which are periodic; see [8; Lemma 2.2] in 
which positive definiteness of R(x) may be replaced by the definiteness 
assumption (1.9). In particular (1.3) has no L^(-oo, oo) solutions for 
À = Ao- By (3.17) (1.4) has no L^(-oo, oo) solutions either for A = A0, 
and thus Ao ^ PC(T). Hence C{TQ) and C(T) have equal interiors 
without assumption (2.3) 

We remark finally that the results of this paper extend to halfline 
periodic problems, i.e., operators To and perturbations T defined on 
the space L^(0,oo) = {y\y measurable and J0°° yRydx < oo}. The 
results are easier to prove, in fact, for we can deal with the functions 
m^(X) separately, instead of (4.3). 
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