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ABSOLUTELY CONTINUOUS SPECTRA OF
PERTURBED PERIODIC HAMILTONIAN SYSTEMS

D.B. HINTON AND J.K. SHAW

ABSTRACT. This paper compares the spectrum of the
Hamiltonian system Jy = (AR(z) + Q(z));,—oo <z < oo,
with periodic coefficient matrices R(z) and Q(z), to that of

a perturbed system J _y” = (AR(z) + Q(z) + P(z))g, where
Pe L}2 (-00,00). We show that the perturbation can intro-
duce at most eigenvalues into the gaps between the endpoints
of the stability intervals of the periodic system. We prove
that the spectral function is continuously differentiable across
the continuous spectrum. Further, it follows from the results
here that the essential spectrum, the absolutely continuous
spectrum and the singular continuous spectrum are invariant.

1. Introduction. We will study the 2 x 2 Hamiltonian system

0-1yr_ (\ (ri(@) ra(e)
([ o)V = (* (7'112(:1:) 7122(95) )

(1.1)
+(m@)qH@U)§Qﬁw<z<w,

q12(z)  g2(2)

which will be assumed to have real and piecewise continuous coefficient
matrices which are periodic. We shall write y(z) = (gg;) for a so-
lution of (1.1), but otherwise our notation agrees with that of [8] and
[24]. If the coefficients have period T', then Z (t) = y (tT) satisfies an
equation of the form (1.1) with coefficients of period 1. Thus we will
assume, without loss of generality, that T' = 1.

Our objective is to examine spectral properties of operators associ-
ated with (1.1) as compared with those of operators arising from the
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perturbed system
0-1\— Ty T12
(1 O)y _(/\(7‘12 T2
a1 Q12 p1(z) P12(I)) -
+ (Q12 q2 ) + (Pu(ﬂ?) p2(z) Yo
for a suitably small perturbation term

_ ( p1i(z) pi12(2)
-P“)"<mlw) Jix))'

(1.2)

Specifically we look at the questions of whether the continuous spec-
trum of (1.1) is stable under the perturbation, when eigenvalues can be
introduced by it and what order of smoothness of the spectral functions
may be expected from (1.1) and (1.2). Introducing obvious notation
we write (1.1) and (1.2) in matrix form as

(1.3) JY = (AR(z) + Q(2))7,

(1.4) JY = (AR(z) + Q(z) + P(z)¥.

We are going to assume that our systems divide into the two categories,
distinguished as follows:

CaseI: R(z) > 0; i.e., R(z) is positive definite.
(1.5) Case I: R(z) = (“((f) 0 0) ,r1(2) > 0.

In Case I (1.4) is known as a Dirac system [8,24,18,15,8]. A detailed
stability interval analysis for unperturbed periodic Dirac systems has
been given by Harris in [8]. (The matrix J = (97') is replaced
in (8] by g¢(z)(7'),a(z) > 0. However, the change of variable
t = [y (1/q)ds transforms the system in [8] to the form (1.3), having
period fol (1/q)ds.) Harris considers the selfadjoint operator Ty(y) =
R7Y(J ¥ — Q%) in the space L%(-00, 00) of square-integrable vector
functions, relative to the weight R(z), and finds that the spectrum of
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To is purely continuous and consists of the stability intervals associated

with the Floquet theory of (1.3). Therefore the classical analysis of

Eastham in [5] for scalar equations carries over to Dirac systems.
Case II encompasses the scalar perturbed Hill’s equation —y" + qy +

py = Ay by means of the imbedding

(1.6)

0 -1\ (v) _ 10 -4 0 - 0 y
(@) =068+ D@ 8) )
In [14] we investigated how the stability intervals (i.e., spectrum)
of Hill’s equation —-y"” + gy = My, q(z) periodic, are altered when a
perturbation term p(z) € L!(~o00,00) is included. We established
absolute continuity of the continuous parts of the spectra of both
the perturbed and unperturbed equations. The rationale for taking

L*(~00, 00) perturbations is discussed at length in [14].
The present paper is an effort to extend the results of [14] to the

setting of Hamiltonian systems (1.3) and (1.4). We will require in
particular the corresponding hypothesis

1n P(z) € L*(~00, 00)

which means that each entry of P(z) is absolutely integrable. Our
results extend Theorems 2.7 and 2.8 of [8] in Case I, but we employ
entirely different methods of spectral theory from those of [8]. Nev-
erthless, we will rely on many of the basic facts about Floquet theory
from [8]. Our principal result, Theorem 4.1 in §4, asserts that the con-
tinuous spectra (definitions of all relevant terms from spectral theory
will be given presently) of (1.3) and (1.4) have equal interiors and are,
in fact, absolutely continuous spectra; i.e., there are no imbedded in-
teroir eigenvalues. From an operator point of view we prove more. It
follows from the results here that for the perturbation (1.4) of (1.3)
the essential spectrum is invariant, the absolutely continuous spectrum
is invariant, and the singular continuous spectrum is invariant (since
it is the empty set in both cases). The latter conclusion is somewhat
surprising since the singular continuous spectrum is not even stable un-
der rank one perturbations [22, P. 140]. While abstract theorems using
the resolvent are available to locate the absolutely continuous spectrum
(cf. [22, p. 138]) we find it easier to use a scalar valued component of
the resolvent—the Titchmarsh-Weyl m—coefficient. Even for location
of the essential spectrum of (1.4), it should be noted that there are
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perturbations satisfying (1.7) which are not relatively compact pertur-
bations of (1.3) so that results such as Weyl’s theorem [22, p. 113]
are not always applicable. As concerns the invariance of the absolutely
continuous spectrum, the closest related result seems to be a paper of
Thomas [23] on the Laplacian in R3. By using calculations similar
to [16], one can handle large perturbations at one singular endpoint.
Results of this type have been obtained by Carmona [3].

To place (1.3) and (1.4) in an operator-theoretic setting we introduce
the space L% (~00,00) of equivalence classes of measurable functions v
which satisfy

°°—>* —
(1.8) / y Rydzr < o0.

—00
If R > o then L%(—00,00) is a Hilbert space under the inner prod-

uct (f,9)r = IS f Rgdz. In this case we define an operator
T with domain D(T) by the conditions y € D(T) if and only if
y € L%(~00,00), ¥ is locally absolutely continuous, R~(J 3, -(Q@+
P)Y) € L}(-c0,00) and T(¥) = R'(JY ~ (@ + P)y. Then
T : D(T) — L%(-00,00) is a symmetric Hilbert space operator and
(1.4) is equivalent to the operator equation T(y) = Ay. Let Ty be the
“unperturbed operator” obtained from T by replacing P(z) by 0; we
will call T the “perturbed operator”. Harris proved in [8] that Tp is
selfadjoint; i.e., (1.3) is of limit point type at +oo, or in other words
(1.3) has no nontrivial solutions in L% (~oc0, co) for any nonreal A. Being
selfadjoint, Tp has a real spectrum o(Tp). The main conclusion of [8]
is that o(Tp) is purely continuous and consists of the stability intervals
of (1.3). One of the things we will prove is that the operator 7' under
L' (~00,00) perturbations P is also selfadjoint; furthermore the contin-
uous spectra of T and Tp have equal interiors (so that no eigenvalues
are introduced into stability intervals) and are absolutely continuous.

Under Case II of (1.5) the expression || f||r = (2, f Rfdz)? is
only a seminorm, and we certainly cannot define the operator T as
above. We will adopt the approach taken in [11] and [12] to define
operators and their spectra. First we require F.V. Atkinson’s “defi-
niteness hypothesis” [2, p. 253]

b .
(1.9) /ZRydz>o,-oo<a<b<oo, Im (\) # 0,
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for every solution y of (1.3) or (1.4) which does not vanish iden-
tically. (This condition is needed to guarantee existence of the
Titchmarsh-Weyl coefficient defined below.) Let L%(—00,00) = {y €
L%(—00,00)|§ = 0} be the set of vectors in L%(—00,00) with van-

ishing second component, so that ||?|| R is anorm when restricted to
L%(—00,00). Let D(T) be the set of locally absolutely continuous
Yy e L% (-00,00) such that ('gl 8)[J'§I -(Q+P)yl € i%(—oo, 00)
and set

(110) 7G) = (7} §)UT - @+ P)7): DIT) — Lil-oo,00).

The vanishing of the second component of Jy — (Q + P)¥ is required
to make (1.4) agree with the operator equation T(y) = A(39)¥;
see [12] and [13]. Note the special case (1.6) in which (1.10) is
T(?j) = ( —y" (tﬁbp)y). Again let Ty be the operator obtained from T
by setting P(z) = 0.

Even though T, given by (1.10), is not in the strict sense a Hil-
bert space operator, we can still define its spectrum by following the
method of [12] and [18]. The set p(T) of all A such that Rx(T) =
(T = A(29))™ : L%(~00,00) — L%(~00,00) exists and is a bounded

operator in the norm || f||g will be called the resolvent set of T. The
spectrum o (T') of T is the complement of p(T') in the complex num-
bers. The set of isolated points of o(T) is called the point spectrum of
T, denoted by P(T'). The set E(T) = o(T) — P(T) is the essential spec-
trum. The set PC(T) C E(T) consisting of eigenvalues in the essential
spectrum, those A for which there is a nontrivial solution y € D(T)

of T(y) = /\((1)8)?, will be termed the point—continuous spectrum.

Finally, C(T) = E(T) — PC(T) is called the continuous spectrum of T.
The asymptotics we develop in §3 will show that (1.4) lies in the limit
point case at +oo. By [10] and [21] we can then construct the resol-
vent operator Ry (T"), by means of a Green’s function, for any nonreal
). Hence the spectrum of T as given by (1.10) is real.
The definitions of the parts of the spectrum of (1.10) listed above are
exactly the usual ones for Hilbert space operators provided we replace

((1) 8) by the identity matrix, (Tgl g) by R in (1.10) and L% (~o0, 00)
by L%(-00,00). Henceforth in this paper T and Ty will refer to the per-
turbed and unperturbed operators defined as above under either of the
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alternatives (1.5). It will not be necessary to specify which case actually
prevails. In this way Theorem 4.1 (§4) will apply to both Dirac systems
and also to non—positive definite systems, including scalar equations via
(1.6).

In §2 we work with the Floquet representation relevant to (1.3) and
define the stability intervals, §3 contains asymptotic forms of solutions
and calculation of Titchmarsh-Weyl coefficients, and in §4 we prove
the main theorem.

Finally, we mention some related works of interest. The paper
[17] of Khrabustovskii takes up vector equations, of arbitrary order,
with periodic coeflicients and perturbations thereof. The coefficient
of the highest derivative is required to be nonsingular and, when
fitted to (1.3) and (1.9), the perturbation term P(z) must satisfy
f;“ [|P(t)||?dt — 0,z — oco. It is noted that the essential spectrum is
unchanged, and then further conditions which guarantee finiteness of
the number of eigenvalues introduced into gaps between stability inter-
vals are given. Further references to similar studies may be found in
[17]. Maksudov and Veliev are concerned in [19] with spectral singu-
larities of (1.3), where R = I and @ is diagonal and complex valued,
and their characterization in terms of the (regular) eigenvalues of (1.3)
for the interval 0 < z < 1. Their results are extended to systems of ar-
bitrary order in [20]. Misjura has given in [21] necessary and sufficient
conditions that a given sequence comprise the eigenvalues of a Dirac
system with periodic or antiperiodic boundary values.

F.V. Atkinson has given in [1] a method for establishing continuously
differentiable spectra for L!-perturbations of Sturm-Liouville opera-
tors.

2. Floquet representation. The beginning part of this section is
largely a restatement of the corresponding one in [8]. The presentation
is given here for the sake of completeness.

Let Z(m, )) and (z, ) be the unique solutions of (1.4) which satisfy
the initial conditions

(2.1) 3(0,/\) = (é) , g_o'(O, A) = (2) , for all complex ).

We let zo(z,)\) and ©,(z,)) be the corresponding solutions of the
unperturbed equation (1.3). We note along with [8] and [14] that
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these solutions are entire functions of A for each fixed z, so that the
“discriminant” function

(2'2) D()‘) = 00(1a ’\) + @0(1, )‘)

is also entire. Just as in the scalar case, the “stability intervals” of (1.3)
are defined as those open real A-intervals for which -2 < D()\) < 2.
Harris [8] proved that the interior of o(Tp) consists of the union, S, of
the stability intervals in Case I. Following [14], we make the simplifying
assumption that

(2.3) the stability intervals are disjoint.

If two intervals in S should have a common endpoint Ao, a special
argument is needed to show Ao & PC(T); we give this in §4.
Harris’ proof in [8] that

D'()) # 0 in stability interval

carries over to the nonnegative definite Case II of (1.5). Thus an easy
proof [14] establishes that

(2.4) vIm D(X + 7v) has a constant sign, A € S,

for all v sufficiently small.

Now let I be an open interval whose closure is contained in the
interior of one of the stability intervals. Using (2.4) we can find a
region Qr = {}A = Ay + XA € [,-6 < A3 < 8,6 > 0} such that
AeIm D(A; + 1)2) is of constant sign for A € Q7. Let D(Q) be the
image of 27 under D()).

The Floquet multipliers p = p()) are solutions of p> — Dp+1 =0,
which can write as D()A) = p(A) + p(A)™. The roots p; and p, satisfy
p1p2 = 1, but p; = 1 and p; = +1 only when D = £2. Under
the mapping D = p + p 1, from the “p—plane” to the “D-plane”,
the inverse image of D({2;) consists of two disjoint open sets (for §
sufficiently small), one in each of the upper and lower half planes,
each of which encloses an arc of the unit circle. We can therefore
determine an analytic branch of p(\) in which satisfies |p(A)| > 1 for
)\2 > O,I p(A) |< 1, for A2 < 0 and |p()\1)| =1for A = A1 +1A2 € (1.
If we let a(X) = u(A) + ¢ and v(A) be an analytic logarithm of p())
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in Qy, then there follows u(A) > 0 for A\, > 0, and u(A) < 0 for
A2 < 0,6 = p(A), A = A1 + X2 € Q. This discussion parallels the
corresponding one for Hill’s equation in [14].

The usual Floquet representation [8] gives independent solutions of
(1.3) in the forms

wl (I, ’\) = ea(A)xBI(I7 ’\)a 1/)2(1:, ’\) = e—a()\)z;;2 (xa ’\),

for A € Q; and -0 < z < 0o, where D i (z,)) = (ﬁigi;) are peri-

odic in z and analytic in A. The quantity A(A) = p1(0,A)p2(0,A)p—
91(0, A)p2(0, A) will be used for further representation of the solutions
of (1.3).

LEMMA 2.1. For A € Q7,A()) #0.

PROOF. The function A(A) = 0 if and only if

P1 (0, /\)Cl + p2(0, /\)62 =0

2.5
(25) 91(0,A)cr + p2(0,A)c2 =0

has a nontrivial solution (e1, c2), for A(A) is the determmant of this

system. But (2.5) is equivalent to cw (0,A) + 021/)2(0 A) = 0 and, by
uniqueness of solutions to initial value problems, this is equivalent to

c1¥,(z,A) + c2v¥5(z,A) = 0, contradicting the independence of the
9. This contradiction completes the proof.

LEMMA 2.2. For X €y,

26) 0@ = @200 1(2) ~ h1(0)e "1 () /A,
©o(2,A) = (-p2(0)e**p 1 (z) + p1(0)e ** P4 (2))/A(N),
where we have suppressed the A—dependent in the numerators.

PROOF. This follows from writing 6 o(z) = ¢1€*® p;(z)+coe % p,(z),
©0(2) = d1€°%p 1 (z) + d2e 2% p 5(z), setting = = 0 and solving for the
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constants using the definition of A()).

For A € QI, A2 > 0, we obviously have EQ S L%[O,oo),;/:l &

L%10, 00), wl € L} (00,0, z/;z ¢ L%(-00,0]. Therefore (1.3) is of limit
point type at each of +00. According to [10], [11] or [12] we may form
the Titchmarsh—Weyl functions

Oo(z,A) (=)
lim , m
T—00 @0( )\)

B 00(2:, /\)
T—T0o0 900(3:’ )‘) ’

(+)()‘)

where the limits exists and define unique analytic functions for Im () #
0. The relations

2.7 AImm{P(A) >0, AImm{ (V) <0, mIF R) =mF (),

are known to hold [10, 11, 12] for A = A; + 4X2, A2 # 0. H.
Wey! (see [6]) derived the m-—coefficient in order to exhibit solutions

of ir;tegrable square of a scalar equation. In our case, the solutions
—(+ -
Xo (23) = Bo(z, ) +m§* (\)Bo(z, ) satisfy

— (%) —(-)
(28) X, €L%[0,00), Xg € L(-00,0], Im(}) #0,

and uniquely up to constant multiples. In view of (2.6), and suppressing
A dependence on the right,

—(+) -
po)  ANX (@)= 6a(0) - mPp(0)e s 2)
+ (-91(0) + m$p1(0)e B4 (2),

for Im A # 0. Taking A = A\; + 1Az € 21, A2 > 0, we see that the term
€**p,(z) becomes unbounded as z — oo by the property u(A) > 0
for @ = u +7v. In order that (2.8) not be violated, it must be that
D2(0) — m(()"')pg( 0) = 0 in (2.9) with the (+). From this equation
we see that py(0) # 0, as otherwise we would have p2(0) = 0 and
therefore A()\) = 0, contradicting Lemma 2.1. Therefore m((,+) ) =
P2(0,A)/p2(0, A) for A = A1 +2A2 € Qr, A2 > 0. Working with the (—)
version of (2.9), makmg z — —o0o and using the second part of (2.8)
yields similarly mo )(a:) P1(0,A)/D1(0,A), A = A +1X2 € Qp, A2 > 0.
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The same idea can be used for the case Ay < 0 if we switch the order
in which the (%) signs are used in (2.9). We record all these properties
as follows; compare [14].

LEMMA 2.3. For A = A\ +1)A2 € Qp, A2 # 0, we have p1(0,)) # 0 #
p2(0,A) and

m§t (0) =52(0,)/p2(0,1), A2 >0,
2.10) mGT (8) = p1(0,0)/p1(0,%), A2 <0,
m§(X) = $1(0,)/p1(0,1), Az >0,
m{7(A) = p2(0,)/p2(0,1), Az <O0.

The local representations (2.10) give rise to an analytic continua-
tion phenomenon, whose scalar equation counterpart was discussed in
[14], for the m—coefficients. We will prove in the next lemma that
p1(0,A1) # 0 # p2(0,)) for Ay € I, but accepting this for the mo-
ment the functions p(0,A)/p2(0,A) and p1(0,A)/p1(0,A) are analytic
throughout ;. Then the first equation of (2.10) represents m(()+) in
the upper part of {); and provides its analytic continuation into the
lower part. But its analytic continuartion into the lower part does not
equal the Titchmarsh—-Weyl coefficient for Ay < 0; its value there is the
second equation of (2.10) and these quantities cannot agree for a real
value A; € I as otherwise A(A;) = 0. Similar remarks apply to the

coefficient m((,_) (A).

LEMMA 2.4. For Ay € I, we have p1(0, A1) # 0 # p2(0, A2).

PROOF. We begin with the formulas
00 L (+)* —(+) (+)
/ X d Immg"’(X)
0

0 e
(2.11) R Imm )
X, RX, dz=-—0 "

- Az

for A = A1 +iAg € 25, A2 > 0, which are proved in [11], for the functions

Xo =00+ m(()i) ©o of (2.7). If it happens that p;(0,A1) = 0, then



HAMILTONIAN SYSTEMS 737

91(0,A1) # 0 by Lemma 2.1 and the definition of A(A). Therefore

(2.10) implies that m( )(A) has a pole at A; which, by (2.7), must be
simple. Letting 7 be its residue there, multiplying the second equation
of (2.11) by A% and letting Ay — O results in

0 —_k e 1
(2.12) / poRpodz = (=)
—o0 T

But from the second equation of (2.6) G;Rao = |p2(0)|2Z;RZl is
periodic which means that (2.12) cannot possibly be finite. Thus
p1(0, A1) = 0 is entenable, and so is p2(0, A1) = 0 by similar reasoning.

3. Asymptotlcs of solutions. We now want to think of the

solutions 0 and @, from (2.1), as perturbations of the Floquet solutions
(2.5). Let Yp(z,A) and Y (z,A) be the fundamental matrix solutions of
(1.3) and (1.4), respectively, for which Y5(0,A) =Y (0,A) = I for all A;

ie.,
bo 900) o= (9 S0> i,
Yo=1|{; A =[0o, ,Y=(>2 T ]1=[0,p]
o= (8 £) =100l = (§ £)=10.5]

The variation of parameters formula for (1.4) reads, suppressing the A,

Y (z) = Yo(2) +Yo(1)/ t)J 1P (t)Y (t)dt
(3.1)
+ / K(z,t)P(t)Y (t)dt,
0
where
K(z,t,)) = Yo(2)Y5 ' (t)J

[90( z)eo(t) — po(2)00(t)  Bo(2)@0(t) — eo(2)do(t)
fo(z)eo(t) — Po(z)00(t) 0Oo(z)Po(t) — @o(z)0o(t)

The Kernel K(z,t,)\) may be formulated using (2.5). Beginning with
the upper left entry, with A € O,

Ki1(z,t,A) = bo(z)po(t) — po(z)0o(t)
=(p2(0)e**p1(z) — p1(0)e **pa(z))(—p2(0)e**p1 (t) + p1(0)e **pa(t)) A~
~(-p2(0)e**p1(z) + p1(0)e " **p2(x)) (P2(0)e™ P1(t) P1(0)e *py(t)) A2
=(e*=Vpy (z)p2(t) — € > Vpa(2)ps () A~
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due to cancellation and the definition of A()). After computing the
other entries of K, on sees that

Kii(z,t,0) = AN (2 Vpy (2)pa(t) — € @D py(2)pa (1)),
(3.2) Kia(z,t,0) = AN) (2 py(z)pa(t) — € D py(2)pa (1)),
Ka1(z,t,0) = AQA) (2 Dy (2)pa(t) — e > Dpa()ps (t)),
Kaa(z,t,2) = AN) 12Dy (2)pa(t) — e > pa(2)p1 (1))

Having (3.2) in hand we can proceed with the asymptotic form of
Y(z,A) for A = A; + 1Ay € Q,A2 > 0. Using || - || to denote the
norm of a matrix, or vector, obtained by summing the magnitudes of
its components, it is obvious from (2.6) that

(3.3) Yo (z, A)|| < My(X)e)e
for A = Ay + 202 € Q1,2 > 0,0 < 7 < co and a certain constant

M;(X) > 0. If we let Yi(z,)) = e *(N)2Y (z,)), then (3.1) is the same
as

(3.4) Yi(z) = e “%Yy(z) + / ’ e @K (z,t)P(t)Y; (t)dt.
0

We will apply the norm || - || to (3.4), but observe first that
(35) |l NEOK (z,¢,))|| < Ma(X),0 <t <z < 00,)2 20,
for some constant M(A), and that the norm satisfies || : N(z)dz|| <

f:||N(a:)||da: and ||[N1Nz|| < ||N1]|||V2]| for matrix functions N, Ny,
and N,. Working with (3.3)-(3.5) it follows that

I1¥1(2)]| < My (A / MaW)|IPOIIIIY (),
and then, from Gronwall’s inequality [9, p. 241], that
[o ]
Y3 (@)]] < Mi(A) exp(Ma(2) /0 \IP(®)]|dt),

in view of (1.7). Therefore, we have

(3.6) ||Y (z,A)]] < K(A)e*™=, 0 < z < 00, = A1 +4d2 € Qp, A2 >0,
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where K () is a constant. Included in (3.6) are bounds of the form

3.7) 116 (2, V)] S Ko(Ne* D2, |[p(z, M) < Kp(A)e P2,

for appropriate constants Ky and K.
Note that equations (2.6), combined together and rewritten, may be

expressed as
(3.8)
A(N)Yo(z,A) = e (2)(P2(0), —p2(0)) — € ** P4(2)(p1(0), —p1(0)),

and in a similar way (3.2) becomes
(39) ANK(z,t,2) =e*C I (2)p2(t) — DD o(2) 2, (1)7,

where T" denotes the ordinary transpose.

We are now ready to derive the asymptotic forms of Y (z, ) in the
separate cases of real and nonreal A. If one substitutes (3.8) and (3.9)
into (3.1) and takes A to be real, the result is
(3.10)

ANY (z,2)

=e*p 1 ()(P2(0), —p2(0)) — €7 ** P 5(2) ($1(0), —p1(0))

+ (@05, @07 - e IF @5 0TPOY ()
==, (400 - [ 0T POY (ar)

x

“Fa@A W+ [ T POY (),

T

where
AP (A) = (p2(0), —p2(0)) + /0 Y eotp, (TP (D),
ASP () = (-51(0), p1(0)) - /0 ~ B ()T PO)Y (1)dr.

This may be written in the form
(3.11)
AWY (z,)) = e (2) AV (V) + €727 B,(2) AT (A) + 0(1) (A real)
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where 0(1) is term which tends to 0 as z — oo.

Next let A = A\; + 32 € 7, 2 > 0. Note that the term A§+)(/\)
is defined for these nonreal A on account of (3.6) and (1.7). Re-
call that a()) = u(A) + w(A) and u(A) > 0 for Ao > 0. The
term € °%p,(z)(p1(0), —p1(0)) in (3.10) has norm order of magni-
tude e~ Mz z — oo In the next term of the same equation

e (O)TPO)Y (0)dt = [§° 5,0 p(0)Y (t)di—[° € B 1)
P(t)Y( )dt, again using (3 6), which is fo “"t Dot )TP(t)Y( )dt +
o(1),z — o0o. Passing to the next term in (3.10) and using (3.6),

I /o " @03, ()TPOY (D] < KO /0 " 02| 3L ()T P(0)lde
z/2 - T -

< KO / 117167 P(t)]ldt + K(A)ev / 1767 P(t))|dt
0

z/2

= e**K;(z,)) = 0(e%%),z — o0,

where K (z,\) — 0 as z — co. Now, factoring out e**p () from the
right side of the first equation in (3.10),

(3.12) ANY(z,)) = e**(p,(z)AT (M) + 0(1)), 2 — 00, A2 > 0.

We will require companion results to (3.11) and (3.12) for negative
z,z — —0o. Beginning with a real A € I and working with (3.10),

—

AW (2, 2) =, (2){(63(0), ~2(0))
+ / =, ()T P(O)Y (£)dt)
0
.13 +EB2){(1(0), 1 (0)
- /0 T4 ()T p(B)Y (1)} + (1)

=1 (2) AT (N) + €T, (2) AT ()
+0(1), £ — —o00, A real,

with A(l_)(A) and Ag—)(/\) defined in the obvious way. The asymptotic
estimate for £ — —oo which is complementary to (3.12) is

(3.14) ANY(2,2) = ¢ *(P4(2) A (A) + 0(1)), z — —00,A2 20,
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valid for A = Ay +1)g € wy.
We now close this section with a lemma giving an alternative way of
expressing the functions A§+) (A) and Ag_)(/\) for real A € I.

LEMMA 3.1. For real A € I define

B\ =1+ / C Y I P@Y (1),
0

BO) =1+ /0 T S I PRY (1)t

Then
(3.15) Bi1Bys — Bi1aBs1 = B11Byy — B1aBay =1,

(3.16) A{H(A) = [p2(0), —p2(0)]B(X), AS(A) = [51(0),p1(0))B(N),

(3.17) i
Y (z) = Yo(z)B(A) + 0(1),z — 00; Y (z) = Yo(z)B(A) + 0o(1),z — —o0.

PROOF. Starting with the variation of parameters formula (3.1), we
obtain
oo

o]
Y(z) =Yo(z)(I + / Yo 'JlPYdt - / Y, 'JIPYdt)
0 T

= Yo(z)(B(A) + o(1))
= Yo(z)B(A) + o(1), £ — o0,

on noting that Yp(z,A) and Y (z,\) are bounded for real A € I and
taking (1.7) into account. In (3.3) and (3.6) recall that u(A) = 0 for
real A. The other equation in (3.17) can be derived similarly.

The identity J = Y*JY holds for real A ([2,p. 268]) and this implies
(3.17) that J = (YoB + 0(1)*J(YoB + o(1)) = B*YyJYoB +o(1) =
B*JB+0(1). Since B does not depend on z, it must be that B*JB = J,
which includes the first of (3.15). The proof for B is the same.

As concerns (3.16) let Zo(t, ) = (e, (t),e ' p4(t)) so that (2.6)
becomes

A(N)Yo(z,A) = Zo(z,N) [_%1(8) —:;2((0(;)] ’
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Z0(a) = K@ [20 2O |~ ¥o(0)(71(0). 700,

This can be substituted into the definition of A{™) () to lead to
AP = (20 -paO) + [ (B0 (O (O
= (320, -p2(0) + | (%7207 n(OY (e
= (32(0)~p2(0) + 5207 [ JIG O ()Y (e

= (32(0), ~p2(0) + (72(0), ~p2(0)) | Y ()T ()Y (1)t
= (p2(0), —p2(0))B(A),

and the other identity in (3.16) follows similarly.

4. Perturbed and unperturbed spectra. The Titchmarsh—-Weyl
function for the whole line unperturbed operator Tp is given by ([11],
compare [4, p. 251])

(4.1)
Mo(N) =(m§~(3) = mgH (1)

1 (DS (A) +mEP (A)
BTN +mEPA) mETAmEP ) ’

for Im (A) # 0. It is related to the spectral function py for Ty by the
Titchmarsh-Kodaira formula {12, 13]

A2
(4.2) po(A2) = po(A1) = lim 7 A Im Mo (p + 16)dp,
1

valid at points A; and Ay of continuity of pg(A), where Im My =
(Mo — M{)/2i. The spectral function po()) is a right—continuous and
nondecreasing (in the nonnegative definite sense) matrix function whose
points of increase comprise the spectrum o(7p); see [12, 13]. Jump
discontinuities of p()) are the eigenvalues of Ty, both isolated and non-
isolated, while continuous points of increase comprise C(Tp). We are
going to prove shortly that pp(A) is continuously differentiable on the



HAMILTONIAN SYSTEMS 743

interior of C(To).
Using (4.2) the points of o(Tp) may be classified in terms of My, as
the following theorem from [12] shows (see also [13]).

THEOREM A. For a given real number Ay, we have
(i) do € p(To) if and only if My()) is analytic at Ao;
(i1) Ao € P(To) if and only of Mo()\) has a simple pole at Ao;
(i) Ao € C(To) if and only if Mo()\) is not analytic at g, and
limy, _ovMp(Ao + 1) =0
(iv) Ao € PC(To) tf and only if lim,_,o vMy(Ao +iv) = S # 0, and
Mo(X) —1S(X — Xo)™? i3 not analytic at Ao.

The first part of the following result, proved for Case I of (1.5) in [8],
is the Hamiltonian system version of the classical result which links the
spectrum of Hill’s equation to its stability intervals.

PROPOSITION 4.1. The spectrum o(Ty) is purely continuous and con-
sists of the stability intervals of (1.3). Moreover, the spectral function
po(A) 4 absolutely continuous, in fact continuously differentiable, on
the interior of C(Tp).

PROOF. Let I be an interval defined as in §2. By the remarks below
(2.10) the functions m(()i)(/\) are not analytic at points of I (although
their local representations are). This implies that My()) in (4.1) is not
analytic at any point of I. If A = A\; + 47X and A2 > 0 in (4.1), then
(m((,")()«) - mf{”()\))_l = —p1 (0A)p2(0, AA(X), a quantity which has a
finite and nonzero limit as A2 — 0. Thus the entries of Mp(A\) have
finite and nonzero limits as A2 — 0, so Theorem A (iii) implies that
I c C(Ty). .

Suppose now that I is an open interval whose closure lies in an insta-
bility interval; i.e., |D(A)| > 2 for all A € I. The analytic functions p())
and a(A) = u(A) + w()) can be defined as in §2, with the only differ-
ences being that u(A) > 0, A € Q3, while v()) changes sign with Im ().
Lemma 2.1 and the first part of Lemma 2.3, p1(0,)\) # 0 # p2(0, )
for A € I, continue to hold, but (2.10) must be replaced by m§,+) A=

$2(0,1)/p2(0,)) and m{™)(A) = $1(0,A)/p1(0,7) for A € ;. Hence
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the functions m((,i)(/\) are analytic throughout (5. It is still true that
the denominator (m{™(}) = m{P (X)) = —p;(0,A)p2(0,A)/A(}) in
(4.1) is finite and nonzero in 2y, and so therefore is My()). By Theo-
rem A(i), I C p(Tp).

If Ao is an endpoint of a stability interval, or even a common endpoint
of two such intervals, then A\g € PC(Tp) U C(Tp) since the above proof
shows that A\g cannot be either a regular point or isolated singularity
of Mp(A). But |D(Xo)| = 2 implies by [8] that the solutions of (1.3)
are either periodic, linear functions times periodic functions or combi-
nations of these. Thus there are no L%(—oo, 00) solutions for A = A,
80 Ao € PC(Ty).

Since My (A1+7)2) has a finite and continuous limit as Ay — 0, A1 € I,
we may take the limit inside the integral in (4.2), yielding the result
that po(A) is continuously differentiable.

In order to state and prove the principal result we begin by claiming
that (1.4) is of limit point type at both oo. Letting A{P(A) =
(AP (), AF (1), (3.16) implies AT = p3(0)B11 — p2(0)Ba1 and
A} = $,(0)B12 — p2(0)Byy for real A € I, where I is the interval
of §2. Then Af,/p2(0) = Bu1(p2(0)/p2(0)) — Bay and A{E)/pa(0) =
B12(p(0)/p2(0)) — Baa, these equations also holding for real A €
I. However p3(0,A)/p2(0,2) = m§P (A +1i-0) = limeom{P (A +
i€) # 0 by Lemma 2.3. Then, according to (2.7), Imm(()+)()\ +
10) > 0, which implies that Aﬁ') (A) and Ag)(/\) are nonreal for real
A € I. In particular the analytic functions Aﬁr) and Ag;) of not
vanish identically, and a similar proof establishes this for Ag_)()\) =
(A5 (), A55) (). By (3.12) and (3.14)

IY (z,A)|| > C1e*P)=, z near oo,

1Y (z, )| > C3**®, 2 near oo,
where A is a nonreal complex number such that Ag‘*’) (A #£0# Ag_) ).
These inequalities show that (1.4) is of limit point type at +oo.

Since the limit point case holds we may form the (perturbed)
m~functions for (1.4),

0(z, )
z—00 p(z,A)’

mO ) =— 1im 28N oy 2o,

() = -
m ) g——-00 p(z,A)’
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by [10], [11] or [12]. As in (1.4) the m—function for the whole line
operator T is

(4.3)
M(A) =(m(A) = mH )™
p ( 1 (3) (MmO (A) +m) ()\)))
(5)(mA) +mH () m) (A)mH (3
for Im ()\) # 0. The perturbed spectral function pp(A) bears the same

relationship to M () as does po(A) to Mp(A) in (4.2). Theorem A also
carries over to the perturbed whole line operator T'.
According to (3.12) and (3.14),

A(+)(/\)

(+) ) =-— 11 ,
"m0
A(-)(/\

A (V)

We have noted above that these functions are not identically vanishing
and are nonreal, thus nonzero, for real A € I. By (3.16) and (2.10), we
therefore have

Bay — B11m(()+)

(4.4) mH () = o
0

(A), A€,

B33 — Biam

where all terms are evaluated at A and where m((,'”()\) is written for
m(()"')(z\ +1-0), and similarly

_921 - Bnm(()‘)

(4.5) m(=)(2) = =0
Bas — B12m(() )

(A), rel,

with the same notational convention. Equations (4.4) and (4.5) show
that the functions m(¥)()) have finite and nonzero limits for A € I.
Property (2.7) shows that Im M(+)(}) > 0 and Imm(=)()) < 0 for

A € I, which we had established earlier for m(()i) (A). These results may

be summarized by writing m((,+) = Go+1Fp, m(()_) =To+1Y o, m* ) =
G +1F,m(~) =T +{¥ and then

(48)  Fo(A) >0, F(A) >0, Sox) <0, £(A) <0 for A€ I.
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CLAIM. The limit limy, o M (A1 + i)2) exzists and is nonreal for
A €L

PROOF. The numerators in (4.3) have finite limits and so it will be
sufficient to prove that (m(=) —m(+))™! has a finite and nonreal limit.
Using the notation of (4.6)

Im (m™) = m™)™ = (F - 2)/((T - G)* + (F - %)?),

and (4.6) shows that this expression has a finite and nonzero limit
across I. This completes the proof of the claim.
We now state and prove our principal result.

THEOREM 4.1. The continuous spectra C(Ty) and C(T) have equal
interiors and pp()) is continuously differentiable there.

PROOF. Let I C C(Tp) be as above and form the region 2;. By the
claim M(A; + 7A2) has a nonreal and continuous limit as A2 — 0 and
A1 € I. Then M()) cannot be analytic at any point of I by (2.7),
but AaM (A1 +2A3) — 0as A2 — 0. Thus I C C(T) is a consequence
of Theorem A(iii). This proves that the interior of C(Tp) lies within
that of C(T). For the reverse inclusion take an interval I lying in an
instability interval of (1.3) and proceed as in the proof of Proposition
4.1. The functions A§+) (A) and Ag_)(/\) are analytic in (O3, are real
A € T and still are not identically zero. Then m(+) = -4{}) /4
and m(-) = —A;) /Ag;) are analytic in (2; except for poles. Since
the same holds for (4.3), then, by Theorem, A I C p(T) U P(T). It
therefore remains only to show that there are no eigenvalues imbedded
in the interior of C(T'). By the claim we can take the limit in (4.2), for
the perturbed data pp()A) and M()), under the integral sign yielding
Pp(AN)p =7 ImM(X), X € I, so pp()) has no jump discontinuities in
the interior of C(Tp). This completes the proof of the theorem.

We have proceeded under the assumption (2.3) that the stability
intervals in S have no common endpoints. We now remove this as-
sumption. If Ag is the common endpoint of two stability intervals, say
(A1, 20) and (Ao, A2), then (A1, Ao) and (Ao, A2) consist of continuous
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spectrum and |D(Ag)| = 2. Moreover, D'(A\g) = 0 and the fundamental
matrix Yp(z, Ao) has entries which are periodic; see [8; Lemma 2.2] in
which positive definiteness of R(x) may be replaced by the definiteness
assumption (1.9). In particular (1.3) has no L% (00, 00) solutions for
A = Xo. By (3.17) (1.4) has no L%(~00, 00) solutions either for A = Mo,
and thus Ao € PC(T"). Hence C(Tp) and C(T') have equal interiors
without assumption (2.3)

We remark finally that the results of this paper extend to halfline
periodic problems, i.e., operators Ty and perturbations 7' defined on
the space L%(0,00) = {¥|¥ measurable and f0°° YRydz < oo}. The
results are easier to prove, in fact, for we can deal with the functions
m(#) ()) separately, instead of (4.3).
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