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SOURCES, SINKS A N D SADDLES 
FOR EXPANSIVE HOMEOMORPHISMS 

WITH CANONICAL COORDINATES 

WILLIAM L. REDDY AND LEWIS C. ROBERTSON 

A B S T R A C T . We study sources, sinks and saddles for expan­
sive homeomorphisms of compact metric spaces which have 
canonical coordinates. If the phase space is connected and 
locally connected then each point is a saddle. We show by 
example that local connectedness is a necessary hypothesis. 

1. Introduction. Canonical coordinates were introduced by R. 
Bowen [1]. (see also S. Smale [9].) He used expansive homeomor­
phisms having canonical coordinates to study Axiom A diffeomor-
phisms [1,2,3,4]. This notion was a fruitful one for ergodic theory 
[3,5,8], entropy calculations [1,5] and topological dynamics [4,7]. 

Since canonical coordinates "move around with a point" one may ex­
tend certain notions which are valid for fixed or periodic points to this 
setting. We generalize the notions of source, sink and saddle to any 
point in the phase space of an expansive homeomorphism which has 
canonical coordinates. 

2. Canonical Cordinates. Let / be an expansive homeomorphism 
of the compact metric (d) space X. Fix an expansive constant c > 0 
for / . We now define canonical coordinates and related concepts and 
collect some useful facts, mostly without (the easy) proofs. 

DEFINITION 2.1. We define the local stable set of / at x e X for 
6 > 0 as follows. 

Ws(x,6) = W°(x,6,f) = {y : <*[/"(*)],[/"(»)] < <5 forn > 0}. 

We explicitly denote the homeomorphism / only when it is neces­
sary. We define the local unstable set of / at x G X for S > 0 by 
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Wu{x,6,f) = Wu{x,6) = W'ix^r1)-

LEMMA 2.2. For x G X and 8 > 0, the following statements are valid. 
(l)fW°(x,6)]cWs[f(x),6]. 
(2)r1[Wu(x,6)}cW-[f-1(x),S} 
(3) W8(x, 6) is a compact set. 
(4) Wu(x,6) is a compact set. 

LEMMA 2.3. If S < c/2, then \Ws{x,6) D Wu(y,6)\ < 1 for 
(x,y)eXxX. 

DEFINITION 2.4. We say / has canonical coordinates provided that 
for each S > 0 there exists e > 0 such that d(x,y) < e implies 
Ws(xi6)r\Wu{y,6)^<b. 

From now on, let ô and e(6) denote such positive numbers. 
We note that if / has canonical coordinates, it follows from defini­

tions that f~l does, too. 

REMARK 2.5. It follows from definitions and a uniform continuity 
argument that / has canonical coordinates if and only if fm does for 
each integer m. 

LEMMA 2.6. / / / has canonical coordinates and S < c/2 then 
d(x,y) < e implies \Ws{x,6) DWu{yi6)\ = 1. 
DEFINITION 2.7. If / has canonical coordinates, 6 < c/2 and d(x, y) < e 
we define the point [x,y] G X by the equation [x,y] = Ws(x,ô) fi 
Wu(y,6). 

LEMMA 2.8. Suppose f has canonical coordinates, 6 < c/2 and 
d(x, y) < e. The following statements hold. 

(i) [*,*] = *• 
{2)IfxeWu(y,6), then[x,y} = x. 
(3) If y G Ws(x, 6), then [x, y] = y. 
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We adopt the notation N(B, v) for the open neighborhood of radius 
v > 0 of B C X. 

The proposition below is one of the reasons that the term "canonical 
coordinates" is a good one. 

PROPOSITION 2.9. Suppose f has canonical coordinates and e < 6 < 
c/2. There is a positive number v{e, 6, f) such that for each p G X, the 
function Tp : Wu(p,e/2) x Ws(p,e/2) —• X defined by Yp{x,y) — [x,y] 
is a homeomorphism onto a (compact) neighborhood ofp containing the 
neighborhood AT(p, v). 

PROOF. Since / has canonical coordinates, x G Wu(p, e/2) and 
y G Ws(p, e/2) implies by the triangle inequality that d(x,y) < e so 
that [x, y] is defined. Hence Tp is a function. 

We now show that Tp is continuous. Suppose xm —+ x in Wu(p, e/2) 
and ym —• y in W8(p,e/2). Let v be a limit point of {Tp(xm,ym)}. 
Then there is a sequence (xm(j), ym(j)) = vj s u c n that v = l im^oo Vj. 
Since rp(t;j) = [&my),ym(j)] = W5[zm(j),e/2] n ^ [ y m f f l ^ / î ] , we 
have the following inequalities for n > 0, because ^ G W s[xmy),e/2] 
for j > 0. 

i [ T M , r W ] = um ^ { / n K ) , / n [ x m ü ) ] } < e/2. 
J—•oo 

Hence v G Ws(x, e/2) and similarly v G W^(y, e/2). Hence v = [x, y] = 
Tp(x,y). Therefore T is continuous. 

We show that Tp is (1 - 1). Suppose z = T(xiy) = T(x,w). Then 
z G W9(x,e/2) so x G W5(*,e/2) hence x G W s(*,e/2) n Wu(p,e/2). 
Similarly, v G W3(z, e/2)nWu{p, e/2). Since e/2 < c/2 it follows from 
Lemma 2.3 that v = x. Similarly, y = w. Therefore Tp is (1 — 1). 

Since the domain of Tp is compact and the range metric, Tp is a 
homeomorphism onto its image. 

We show that Tp[Wu{p,e/2) x W8{p,e/2)\ is a uniformly large 
neighborhood of p. Choose v > 0 such that if d(x,y) < v then 
Ws{x,e/2) r\Wu{y,e/2) £ 0. If d(z,p) < v we have (x,y) such that 

x = W9{z,e/2)nWu{p,e/2) and 
y = Ws(pie/2)nWu(z,e/2). 

Then 0 = [x,y] = r p (x ,y) G T[Wu{p,e/2) x W5(p,e/2)]. That is 
N{p,v) C rp[W«(p,e/2) x W(p,e /2) ] . 
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3. Sources, sinks and saddles. In this section, / is an expansive 
homeomorphism of the compact metric (d) space X and / has canoni­
cal coordinates. Let c > 0 denote an expansive constant for / and let 
positive 2e < 6 < c/2 be the numbers guaranteed to exist for canonical 
coordinates. 

DEFINITION 3.1. A point x € X is called a source for / if Ws(x, a) = 
{x} for some positive a. It is called a sink for / if it is a source for f~1. 
If it is neither a source nor a sink for / , it is called a saddle point for 
/• 

LEMMA 3.2. The following statements are equivalent. 
(1) The point x is a source. 
(2) There exists arbitrarily small positive a such that Wu(x, a) con­

tains a neighborhood of x. 
(3) There exist a > 0 and a neighborhood V of x such that Ws(x, a) fi 

V = {x}. 

PROOF. Suppose (1). Let ß > 0 be given. By (1) there exists a 
positive <$o such that WS{X,8Q) = {x}. Choose 6 = min{<So,c/2}. 
Choose 2p = e(6) < min{ß,Ö}. Then Ws(x,p) C Ws{x,ô0) = {x}, 
hence W9(x,p) = {x}. By proposition 2.8, Tx[Wu(x,p)XWs(x,p)} 
contains a neighborhood of {a;}. We use the definition of Tx and Lemma 
2.8 (2) to compute as follows. 

Tx[Wu(x, p) x Ws{x, p)) = Yx[Wu{x, p) x {x}] 

= {[x,y}:yeWu(xiP)} 

= {yeWu(xiP)} = Wu(x,p). 

Hence Wu(x,p) contains a neighborhood of x and p = e/2 < ß. 
Now suppose (2). Choose positive 6 < c/2 and 2p = e(6) < 6 such 

that Wu(x, p) contains a neighborhood of x. By Lemma 2.8 (1) we 
have the following. 

{x} = ws{x,p) nwu{x,p) D ws(x,p)nv D {X}. 
This establishes (3). 

Now suppose (3). Let V be the neighborhood of x and a > 0 the 
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number guaranteed to exist by (3) and choose positive 7 < a such 
that the open neighborhood N(xi

/y) satisfies iV(x, 7) C V. We have 
W8{x,^/2) C N{x,i) and hence {x} c Ws(x^/2) c Ws(x^) n 
JV(x,7) C W a(x,a) n y = {x}. Hence Ws{x^/2) = {x}. Then x 
is a source. 

The following Lemma is a Corollary of Lemma 3.2, obtained by re­
placing / by f~l. 

LEMMA 3.3. The following statements are equivalent. 
(1) The point x is a sink. 
(2) There exists arbitrarily small positive a such Ws(x, a) contains a 

neighborhood of x. 
(3) There exist positive a and an open neighborhood V of x such that 

Wu(x,a)r\V = {x}. 

LEMMA 3.4. The set of sources is open. The set of sinks is open. 

PROOF. Let x be an a source. Choose positive 6 < c/2 such that 
Wu(x,6) contains a neighborhood of x. Then IntWu(xiS) is a neigh­
borhood of x. Choose yeïnt Wu(x, 6). Let z / y be in Int Wu(x, 6). For 

n < 0, one has (/[/»(if),/"(*)] < <*[/"(*), TO*)] + <*[/"(*),/"(*)] < 
26 < c. Therefore zeWu(yi 28). Since z ^ y, by Corollary 2.4 we have 
z £ Ws{y,26). Let V = lntWu(x,6). We have {y} = Ws(y,26) C)V 
and hence by Lemma 3.2 y is a source. Thus lntWu(x,6) is an open 
set of sources containing x. Therefore, the set of sources is open. 

To see that the set of sinks is open, we rewrite the proof replacing / 
b y / " 1 . 

LEMMA 3.5. Let X be locally connected. Then the set of saddle points 
is open. 

PROOF. Let x be a mixed point. Choose 0 < p = e/2 < e < 6 < c/2 
as in Proposition 2.9. Since Tx is continuous, we may choose a 
positive rj < e such that d(p,q) < rj implies d([p,y],\q,y\) < e 
for all y e Ws(x,p) and d([/,p],[ì/,g]) < e for all y G Wu(x,p). 
Further, by Proposition 2.9 we know that there exists a positive v 
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such that N(x,v) ç Tx[Wu{x,r}/2) x Ws(x,rj/2)]. Since N(x,i/) is 
homeomorphic (via Tx) to an open subset of a cartesian product, there 
exists a product space rectangle R\ x R2 C R C N(x, v) such that R 
is open in N(x, v), R\ is an open neighborhood of x in Wu(x, r}/2),R2 

is an open neighborhood of x in Ws(x,rj/2), and R = Tx(Ri x R2) C 
N{x,v). Each coordinate projection TTJ : R —• Äj is an open mapping, 
and hence each Rj is the continuous image of the locally connected 
space R via an opening mapping TTJ . Consequently, each Rj is a locally 
connected space. It follows that there exists connected relatively open 
subsets A C Rx C Wu{x,rj/2) and B C R2 C Ws(x,r}/2) such that 
V = TX(A x B) C #1 x R2 = R C JV(x,i/) with V open in X. Now 
consider points v € V. If v E W ^ x , p) H F , we have by lemma 2.8 (2), 
v = [v,x] = Tx(v,w) e V = TX(A x B), so that veA c Wu{x,rj/2). 
It follows that Wu{x,p)f)V = Wu(x,rj/2) nV = A. Since x is not a 
sink, it follows from lemma 3.3 that A contains points not equal to x. 
Similarly, the connected set B contains points not equal to x. Choose a 
point (a, b) € A x B. Since A and B are connected and not singletons, 
we can find sequences am in A — {a} and bm in B — {b} such that 
a>m —• a and 6m —• 6. Then for m > 0 and n < 0, we have 

rf[/nK),/n(û)i < d[r(am),r(x)}+d[r(x),r(a)\ 
<rì/2 + rì/2 = rì. 

Hence, by the choice of ry,[an,ò] € VFw[a,6],£:) for every n. Suppose 
that W5([a, 6], e) contains a neighborhood of [a, 6]. Then for sufficiently 
large m we have [am,6] € Wu([a,ò],£) D Ws([a,b],e). Since £ < c/2, 
this implies [am,6] = [a, 6] and since T^ is (1 — 1), we infer am = a 
contrary to the choice of am . Hence W5([a, 6], e) contains no neighbor­
hood of [a, 6] and by Lemma 3.3, [a, 6] is not a sink. 

Similarly [a, b] is not a source. 
Hence T(AxB) = V consists of saddle points and V is a neighbor­

hood of x. Hence the set of mixed points is open. 

REMARK 3.6. The hypothesis of local connectedness in Lemma 3.5 
was used to ensure that A and B did not contain isolated points. Other, 
less natural, hypotheses will also work. 

THEOREM 3.7. Given X such that X is compact, connected and lo­
cally connected, let f : X —• X be an expansive homeomorphism such 
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that f has canonical coordinates. Then either X consists of just one 
point, or else every point of X is a saddle point. 

PROOF. Suppose there are at least two points in X. Given z E X, sup­
pose z is both a source and a sink. Then lemmas 3.2 and 3.3 show that 
there exists 6{z) > 0 such that 8{z) < c/2 and Ws{z, 6(z))nWu{z, 8{z)) 
is a neighborhood of z. Lemma 2.3 then shows that z is an isolated 
point in X. Since X is connected and has more than one point, there 
is no such z. Consequently, we now deduce from 3.4 and 3.5 that the 
decomposition of X into sources, sinks and saddles points is a parti­
tioning of X into 3 disjoint open subsets. We are reduced to proving 
that X cannot consist entirely of sources or sinks. Suppose X consists 
entirely of sources. By Lemma 3.2 (2) each point x in X has a neigh­
borhood Intiyu[a:,(5(a:)], and we may assume each 6(x) < c/2. Cover 
X with a finite collection of these, Q = {IntWw(xi) : i = 1, • • • ,ra}. 
By [6, Theorem 10.36], there is a positively asymptotic pair {y,z}. 
Replacing y and z with fm(y) and fm(z) if necessary, we may as­
sume without loss of generality that d[fn(y),fn(z)] < min{z/, c} for 
n > 0, where v is a Lebesgue number for H. Hence, omitting sub­
scripts, we find x such that {y, z) C Wu(x, 6) where 8 < c/2. Thus for 
n < 0d[fn{y), fn{z) < d[fn{y), fn(x)} + d[fn{z)\ < S + 6 < c. Hence, 
d[fn(y), fn{z)] < c for all integers n, contrary to the choice of c as an 
expansive constant for / . So there are no sources. Similarly, there are 
no sinks. Thus X consists of saddle points. 

4. An example. In this section we construct an example of an 
expensive homeomorphism / on a connected but not locally connected 
compact metric space for which both sources and saddles exist. The 
details are ugly, available from the authors and omitted. 

Let g : R2 —• R2 be the linear homeomorphism of the plane whose 

matrix is M = ( { \ ). Let V be an eigenvector for the larger eigenvalue 

A(> 1) of M. In R x R x I, let H = {{av, 1/(1 + a) : a > 0}, and 
let g(av, 1/1(1 4- a)) = (\av, 1/(1 + Xa)). Thus g defines a homeomor­
phism of R2 UH to itself where H is a curve in {Xv : X > 0} x I which is 
asymptotic to the {Xv : X > 0} halfline and on which g commutes with 
the restriction of the projection onto R2. We factor out the integer 
lattice Z x Z in R2 to get a homeomorphism / : T2 U K -> T2 U K 
where T2 denotes the 2-torus. Now K is a curve in T2 x I which is 
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asymptotic to a certain dense halfline in the torus. 
The space T2 U K is obviously a connected compact metric space. It 

is not locally connected since each open set which intersects T2 con­
tains a countable set of disjoint intervals in K. 

The homeomorphism / is expansive as we see by considering cases. 
First, f\T is known to be expansive. If x G T and y G K, then 
fn(x) G T2,n < 0, and fn{y) - • p (the projection of (0,0,1)) as 
n —• -oo, and d(p, T) > 0 in any metric, d. Finally, if x ^ y C K and 
fn(x) is close to fn{y) for all n > 0, we may find N > 0 such that 
fn(z) is close to fn{w) for n > N, where 2 and w are the projections 
of x and y onto T2 . Since g is positively expansive on {Xv : A > 0}, 
/ is positively expansive on its projection, contrary to the behavior of 
fN{z) and fN(w). So / is expansive. 

Clearly, each point in T2 is a saddle and since fn(y) —• p for each 
y G Ä", one can easily show that K consists of sources. 

It is easy to verify that f\K and f\T have canonical coordinates. 
Thus, to see that / has canonical coordinates, let x G T2 and y G K. If 
x and y are sufficiently close , x and u> (the projection of y onT2) are 
close enough so that Ws{wie/2)nWu(x,e/2) ^ 0 and y G W5(w,£/2). 
Hence Wa(i/,6:) n P^u(x,e) ^ 0. Also, if x and y are sufficiently close 
then x and w (the projection of y on T2) are close enough so that 
W9{x,e/2) DWu(w,e/2) = 0. Let p = [x,w] and let z e K be 
the point that projects to p. If a; and y are sufficiently close then 
z G W5(p,e/2) H Wu{y,e); hence « G VFs(x,£) H W*%,e) ^ 0. So / 
has canonical coordinates. 
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