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REARRANGEMENT INVARIANT SUBSPACES OF
LORENTZ FUNCTION SPACES II

N.L. CAROTHERS

ABSTRACT. For 1 < ¢ < p < oo and p > 2, it is shown that
the only subspaces of the Lorentz function space Lp 4(0,1]
which are isomorphic to r.i. function spaces on [0,1] are
L2[0,1] and Ly ¢[0, 1], up to equivalent renormings. If p < 2
orif 1 < p < gq < o0, then Lp ¢[0, 1] has an r.i. subspace which
is not isomorphic to either L2(0,1] or Lp 4(0, 1].

1. Introduction. This note is an addendum to a previous paper
by the author [5] in which it is shown that for 2 < ¢ < p < oo
the only rearrangement invariant function spaces on [0, 1] that embed
isomorphically into the Lorentz function space Ly q = Lp 4[0, 1] are, up
to equivalent renormings, L, and L, 4. In the present note we consider
the remaining values of p and q. Now the case p = ¢ (i.e., L) is
treated in the Memoir of Johnson, Maurey, Schechtman and Tzafriri
[11]; and since the non-separable, non-reflexive space Ly o contains a
sublattice isomorphic to £ (hence Lo, ), we will be concerned primarily
with p # ¢ < c0.

In §2 we show that the main result of [5], stated above, also holds for
1 <9 <2< p<oo. This is an unexpected extension of the results in
(11], since L, 4 is not 2—convex when g < 2 < p.

In §3 we give examples to show that in either of the cases p < 2 or
1 < p < q < oo there are r.i. subspaces of L, , that are not isomorphic
to either Ly or L, ,. This is also surprising, as Ly 4 is 2—convex and
g—concave when 2 < p < ¢ < oo.

For the sake of brevity we will not repeat the arguments from [5] in
their entirety, but rather simply indicate the necessary additions and
alterations. The reader is referred to [5] and its references (especially
[11] and [13]) for any unexplained terminology.

For 1 < p < oo and 1 < ¢ < oo the Lorentz function space
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Lpq = Lp4[0,1] is the Banach space (of equivalence classes) of all
measurable functions f on {0, 1] for which ||f|| = ||f||p,q < 00, where

W = ([ rweae)”

and where f* is the decreasing rearrangement of |f|. It is well-known
that for 1 < ¢ < p < 00, (1) defines a norm on Ly, ; under which it is a
separable r.i. space on [0, 1]. Of course L, , = L, for any p. Notice also
that Ly g is of the form L,, 4 treated in [5] exactly when 1 < ¢ <p < 00
(see also [13, p. 142] Now when 1 < p < q < oo we could use the
duality Ly ¢ = (Lp ¢')*, ( )+( ;) =1= , to define the norm
on Lp ¢; but for s1mp11c1ty we will 1nsteag observe that (1) defines a
quasi-norm on L, , which is known to be equivalent to the norm, say
Il - 1], obtained via this duality (see O’Neil [15] for a detailed proof).
In particular, we will use the fact that for 1 < p < ¢ < oo there is a
constant C, depending only on p and g, such that

(2) CHIA < WA < CliAl

for all f € L, 4. Throughout we will simply refer to the expression
in (1) as the “norm” on Ly 4, and we will use C (or Cy,Cy, etc.) as
a generic symbol representing a positive, finite constant that depends
only on p and q.

Now the critical step in any of our attempts to classify the r.i.
subspaces of L, , will be an application of the Classification Theorem
of Johnson, Maurey, Schechtman and Tzafriri [11, Theorem 6.1] (cf.
also [13, Theorem 2.e.13)). In order to take full advantage of this deep
theorem we will need to catalogue several properties of the L,, ,—spaces

THEOREM 1. Let 1 < p< oo and1 < g <oo. Then:
(i) the Haar system is an unconditional basis for Ly o;
(i) Lp,q satisfies an upper r—estimate and a lower s—estimate for
disjoint elements where r = min(p,q) and s = max(p, q);
(iil) of (fn) 18 a disjointly supported sequence of norm—one elements
in Ly 4, then there is a subsequence of (fn) which is equivalent to the
unit vector basis of £,.

PROOF. (i). follows from [13, Theorem 2.c.6] and the fact that the
Boyd indices for X = L, , satisfy px = gx = p (3, 4]. (ii). is due
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to J. Creekmore [8]; in the case ¢ < p both of the constants involved
may be taken to be 1. (iii). is due to Figiel, Johnson and Tzafriri [9,
Theorem 5.1] in the case ¢ < p. The case p < g is very similar; because
the actual details will be needed later, we include a proof. First notice
that because t9/P~1 is increasing we may re-write (1) as:

(3) = ( [ )

where the infimum is taken over all measure—preserving automorphisms
7 from [0, 1] onto [0,1]. Thus if 7 is any automorphism of {0, 1}, then
we always have:

/0 1S an fa(r(6))19(t77)

1
=3 lanl? /0 n(r@)9d(E?) > 3 Janlt,

and so: Ve
1S anfull > (Zlanl") .

To prove the other inequality, let € > o be given and let |A| denote
the Lebesgue measure of a measurable set A C [0,1]. For each n set
A, = sup p f,, and choose an automorphism 7, : [0, |An|] = Ap such
that:

|An]
/0 fn(ra(®)9d(E9/7) < (14 €)%

Now for each n there exists 0 < &, < |An| such that ||foxB| < g2/
whenever |B| < &,. By passing to a subsequence if necessary we may
suppose that |Ap4+1| < €, for all n. Let 7 be any automorphism of
[0,1] such that 7 = 7, on [[An+1],|An|] for every n. Then setting
E, =1([0, |An+1]) and F,, = 7([|An+1], |Anl]) we have (using (2)):

13" antall < C( 3 lanlllfaxeall + 1| annxr. )

<Cfe- Y lanl- 27 + (T lonl? /.:m,l nlra(®)l9d(29/) "

n+

<C+2) (3 laal?)/?.



610 N.L. CAROTHERS

Let 1 < p < o0, 1 <g < oo and suppose that X is an r.i. function
space on [0, 1], that X # L, even up to an equivalent norm, and that
X is isomorphic to a subspace of L, ,. Then by Theorem 1(i). and
[13, Corollary 2.c.11] the Haar system is an unconditional basis for X.
Further, Theorem 1(iii). implies that the Haar basis in X cannot be
equivalent to a disjointly supported sequence in L, 4. For g # 2 this is
immediate, since L, cannot contain a disjointly supported sequence
equivalent to the unit vector basis of £5. When ¢ = 2 # p we need only
repeat the argument given in [5, Lemma 1] (slightly modified when
p < q). That is, if the Haar basis (hs :)3q,2.; in X is equivalent to
a disjointly supported sequence in Ly 2, then there is an infinite subset
M C N such that

2" 2"
c 1/2
(4) 1Y Y anahnallz( 30 11 anshnslk)
neM ;=1 neM =1
for any scalars (a, ;). From (4) it would then follow that X = Lo up
to an equivalent norm. We omit the details.

Finally, these observations and Theorem 6.12 of [11] yield

COROLLARY 1. Let 1 < p,q < 00 and let X be an r.i. function space
on [0,1] that is tsomorphic to a complemented subspace of L, 4. Then
eigher X = Ly or X = Ly 4, up to an equivalent norm.

2. Thecase 1 < q < 2 < p < 00. An examination of the ingredients
in the proof of Theorem 1 of [5] reveals that only Lemma 5 of [5]
appears to require 2—convexity. In fact, as we shall see, the only real
use of 2—convexity in [5] occurs in an appeal to Corollary 7.3 of [11].
However, at least in the case of L, 4, 1 < ¢ < 2 < p < 00, it is possible
to modify the argument given in Lemma 5 of [53] and to circumvent this
apparent need for 2—convexity. We begin by giving a modified version
of Corollary 7.3 of [11]. We will use ds to denote the distribution
function of | f| (i.e., the right—inverse of f*). Also recall that a sequence
(fi), is called symmetrically exchangeable if for any permutation 7 of
{1,...,n} and any signs ¢; = £1,7 = 1,...,n, the sequence (&; fr(:))7,
has the same (probability) distribution as (f;)_, Note is particular that
in this case the f;’s all have the same distribution.

LEMMA 1. Let1 < g < p < oo andp > 2. There s a constant
C, depending only on p and q, such that if (y;)7, is a symmetrically
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ezchangeable sequence in Ly 4, and if (yi)], 1s a disjointly supported
sequence in L, 4(0,00) with dy, =dg,, 1 =1,...,n, then

(5) I3l < ClY il
1=1 1=1

PROOF. Recall from Theorem 1(ii). that L,, satisfies a lower
p-estimate (since ¢ < p). For p > 2 it then follows from a result
of Maurey [14] that L, , is cotype p; i.e., there is a constant C such
that

1 k k
(6) /0 IS r@ fillde > (S AP,
=1 =1

for any (f;)k, in L, 4, where (r;){2, is the sequence of Rademacher

functions on [0, 1].
Now, since (y;)7_, is symmetrically exchangeable, we get from (6)

that
n 1 n
IS wll = / IS r(®wlldt = €yl
i=1 0

=1

But, as in the proof of Lemma 2 of (5], we also have

n o N a/p
Iae = [ (X dat) " ae)
1=1 0 =1
00
= nt/? / (dy, ()/7d(t7) = /7|3 |9,
0
Thus
1Y all =n/?llyll < clly_will-
=1

1=1

Now we may repeat the proof of {5, Lemma 5] in this special case.
As in [5] we write z,; for the indicator function of the interval

(e = 1)/n,i/n).

LEMMA 2. Let1 < g < p < oo and p > 2. There is a constant
C, depending only on p and q, such that if (y:)7—, 15 a symmetrically
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exchangeable sequence in Ly 4, then

1Y awll <CIYwill - 11D asznsll,
=1 =1 1=1

for every choice of scalars (a;)";.

PROOF. Let (g;)7, be a disjointly supported sequence in L, 4(0, c0)
with dgj, = dy,,7 = 1,...,n. Then, by Lemma 2 of [5] and Lemma 1

we have
n n n
1Y agill <UDl 1Y aiznill

n n
<Cill D will - 11Y aiznll-
i=1 i=1

Now, just as in [5, Lemma 5], we want to apply the left-hand side of
the Classification Formula [11 Theorem 2.1]; and by [11; Remark 1,
p. 63] this half of the inequality is valid in any Banach lattice which is
s—concave for some s < co. Thus there is a constant Cy such that

1> asgill < Camax {|| max lasgalll, 1l Y will - (3 laal?/m)"/*}

=1 =1 =1

n n n

< Coymax {|| Zaiﬂiﬂa Il Zyi” ' (Z |ai‘2/")1/2}
n n n

<CiCol| Y willmax {[| D aiznsll, [| D @iznsllL, }-
=1 =1 =1

But [|If|l 2 |Iflle, for f € Lpg. Indeed, ||f]| 2 [If|lc, when
1 < g <p< oo, andso ||f|]| 2 ||f]lz, when p > 2 (see [10] or [13,
Proposition 2.b.9]). Thus,

n n n
1S aiill < Ol o wll- 1S szl
=1 =1 =1

Finally, by incorporating these observations into the proof of theorem
1 of [5] we have
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THEOREM 2. Let1 < g<p < oo andp > 2. Let X be an r.i.
function space on [0, 1] that is isomorphic to a subspace of Ly, 4. Then,
up to an equivalent norm, X = Lo or X = Ly 4.

REMARK. It is known that Ls 4 is not of cotype 2 for 1 < ¢ < 2, and
so our proof of Lemma 2 fails in this case. In fact, even the conclusion
of Lemma 1 cannot hold in this case (this follows from an example due
to Pisier [13, Example 1.f.19], [8]; but see also [6]). We have been
unable to determine whether the conclusion of Theorem 2 holds in this
remaining case.

3. The cases p < 2 and 1 < p < q < oo. We first remark that the
conclusion of Theorem 2 cannot hold for p < 2, since it is known not
to hold even L,,p < 2. The easiest way to see this is via Proposition
8.9 of [11] which states that if for some 1 < r < 2 an r.i. function
space X on [0, 1] contains the function g(t) =t /7,0 <t <1, then L,
embeds isometrically into X (cf. [13, Theorem 2.f.4]). Consequently,
given 1 < p<r<2andl<gq< oo, Ly, contains an isometric copy
of L,.

Now the technique employed in proving [11, Proposition 8.9] supplies
a general method for constructing sublattices of an r.i. function space
which are themselves isometric to r.i. function spaces on [0,1]. Given
an r.i. function space X on [0,1] and a positive, decreasing, norm-one
g € X we define the space X, to be the completion of the simple,
integrable functions on [0, 1] under the norm

(7 1f1lx, = IIf ® gllx(f0.112)

where (f ® g)(s,t) = f(s)g(t). Since the square [0,1]? is measure-
equivalent to the interval [0, 1], it is easy to see that X, is isometric
and lattice-isomorphic to a sublattice of X, and further, that (7) defines
an r.i. norm on X,. Henceforth we will identify X with X ([0, 1]?) and
simply write || f||x, = ||/ ® gllx.

It is easy to see that if X = Ly 4,1 < ¢ < p < 00, then each of the
spaces X, must be isomorphic to L, 4. In fact, in this case we have

(8) 711 Nglle, < 11 ®gll < 11l lgll;

for any f,g € L, 4. To see this, fix f € L, 4 and suppose that g is a step
function g = Y0 | aizn. Write fni = f ® 2n,i for eachn =1,2,...
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andi=1,...,n. Then f®g =Y -, aifn,i, where the f, ;’s are disjoint
and all have the same distribution. Thus ||f, 1|| = n~*/?||f||, and so,
by Theorem 1(ii),

n n /
1f @all = 113 asfusll 2 fall- (3 lasl?)
=1

=1
_ n 1/p
=n 2 A1 (X lal?) T =111 Nl -
1=1
The other inequality is given in [5, Lemma 2] (also [15, Theorem 7.4]).
When 1 < p < ¢ < 00, the inequalities in (8) are reversed and we reach
a much different conclusion:

PROPOSITION 1. Let1 < p < g < 0o. Then there existsgin X = Ly 4
such that X, 1s not isomorphic to either Ly or Ly 4.

PROOF. We use an example given in [15]: let f(t) = t7/P(1 —
logt)™/P,0 < t < 1, where « is chosen to satisfy 2a—1 < p/g < a < 1.
Then f € L, 4, but, as shown in (15, Theorem 7.7), f® f & Ly 4. That
is, if g = f/||fl|, then g € X,. Thus, by Corollary 1, X, cannot be
isomorphic to L, 4 (for otherwise, Xy = L, 4). Finally, X, cannot be
isomorphic to L. For ¢ # 2 this follows from Theorem 1(iii). For
p < 2 = q we need only observe that for each n the 1-unconditional
basic sequence (zn )7, in X, satisfies || Y1 ; zn illx, = n1/?||zn1]lx,,

and so
n , \1/2
(Zri lenslik,)
” Z:‘:l z”,illxg

which cannot be bounded from below independent of n.

— n1/2—1/p’

Finally, it should be pointed—out that a subspace X; of X = L, ,
is isomorphic to L, 4 precisely when it is complemented in L, 4. This
follows from Corollary 1 and the following observation (suggested by
a similar result due to Casazza and Lin (7] for spaces with symmetric
basis):

PROPOSITION 2. Let X be a separable r.i. function space on [0,1]
which has unique r.i. structure on [0,1], and which is q-concave for

some g < oo. If X, is tsomorphic to X, then X, is complemented in
X.
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PROOF. The assumption of unique r.i. structure implies that X; = X
up to an equivalent norm; in particular, there is a constant M < oo
such that ||f||x, < M||f||x for all f € X.

Now, in order to fix X, let o : [0,1] — [0,1]> be a measure
equivalence. For each n = 1,2,... and ¢ = 1,...,n, let g,,;, =
(2n,i®g) o0, let A, ; = Sup pgn., and let z,, ; be the indicator function
of A, ;. Then X, is isometric to [gn |52, 2, in X, and for any n and
any scalars (a;)"_; we have

n n n
13" aignillx = 1Y aiznsllx, < MY aiznillx
1=1 i=1 i=1

n
=M||>_ aiznllx-

1=1

Next, we show that for each n, [g, ;|7 is complemented by a projection
of norm at most M/||g||.,. To see this, define P, : X — X by

n
Paf =gl 3 (o [ fons)ons
1=1

Then P, is a projection onto [gn ;)7 since ||g||z, = n||gn,||z, for any
t=1,...,n (recall that g is positive), and for f € X we have

n
1Pafllx = lgllzt 113 (n [ F2ns)anllx
1 n .
< MU 13 (» [ foms)ansllx < Mol - 171x.
=1

since conditional expectation is a contradiction on X.

Finally, since X is g—concave, X is a projection band in X** and a
standard argument finishes the proof. Let J : X — X** be the canon-
ical inclusion, and let Q : X** — X be the canonical projection. Then,
if R is a limit point for (P:*) in the w*-operator topology, P = QRJ
is a projection onto X, of norm at most M|glIz}.
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