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OSCILLATORY A N D ASYMPTOTIC BEHAVIOR IN 
CERTAIN THIRD ORDER DIFFERENCE EQUATIONS 

B. SMITH 

1. Introduction. In this paper, the difference equation 

(E-) A3C/n - PnUn+2 = 0, 

where A denotes the differencing operation AUn = t/n+i — Un, will 
be studied subject to the condition Pn > 0 for each integer n > 1. 
An example is given which shows that it is possible for (E~) to have 
only nonoscillatory solutions. Our main result is a discrete analogue 
of Taylor [15, Theorem 6], and is concerned with a characterization of 
the existence of oscillatory solutions of (E~) in terms of the behavior 
of nonoscillatory solutions. We also refer to the works of Hanan [3], 
Jones [5,6] and Lazer [7]. 

We will use primarily the terminology of Fort's Book [1] in our 
discussion. A real sequence U = {Un} which satisfies (E~) for each 
n > 1 we term a solution of (E~). Hereafter the term "solution" shall 
mean a "nontrivial solution." By the graph of a solution U we will 
mean the polygonal path connecting the points (n, Un),n > 1. Any 
point where the graph of U intersects the real axis is called a node. 
A solution of (E~) will be called oscillatory if it has arbitrarily large 
nodes; otherwise it is said to be nonoscillatory. Owing to the linearity 
of (E~), we assume without loss of generality that all nonoscillatory 
solutions are eventually positive. Whenever (E~) has an oscillatory 
solution we say that (E~) is oscillatory. It is understood below that 
the variables n, m, N, M, z, j , k represent positive integers. 

2. Preliminary Results. Our first result shows that initial 
values can be used to construct nonoscillatory solutions of (E~). Since 
the proof is an easy argument, using the technique of mathematical 
induction, it will be omitted. 

LEMMA 2.1. IfU is a solution of(E~) satisfying 

t / m > 0 , A £ / m > 0 , A 2 £ / m > 0 , 
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for some choice ofm>l, then 

E / n > 0 , A t / n > 0 , A 2 [ / n > 0 

for each n > m + 2. 

The above result shows that (E~ ) always has nonoscillatory solutions. 
Furthermore, the positivity of the coefficient function {Pn} places 
rather strong restrictions on the behavior of the nonoscillatory solutions 
of (E") . 

THEOREM 2.2. Let U be a nonoscillatory solution of (E~). Then for 
all sufficiently large n, 

UnAUnA
2Un ^ 0 

and either 

(1) Un >0,AC/n >0,A2f /n > 0 , 

or 

(2) Un >0,AC/n > 0 , A 2 £ / n < 0 . 

PROOF. Assume that U is a nonoscillatory solution of (E~), where 
Un > 0 for each n > N. Note that A3C/n = A(A2£/n) = PnUn+2 > 0 
for all n > N hence A2Un is increasing and eventually of one sign. So, 
it follows that M exists, M > N for which AUn and A2Un are sign 
definite, for all n > M. Hence UnAUnA

2Un # 0, for every n > M. 
The cases 

C/n>0,Af/n < 0 , A 2 f / n > 0 , n>M 

and 
Un > 0, AUn < 0, A2Un < 0, n>M 

are clearly impossible, since A ^ n A 1 * 1 ^ > 0 for all n sufficiently large 
implies sgn A * - 1 ^ = sgn AlUn eventually, and the proof is complete. 

Denote by S~ the 3-dimensional vector space of solutions of (E~). 
For each U G S~ define 

(3) Gn = G[Un] = (AUn)
2 - 2Un+i A2C/n. 
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Computing the difference of Gn and making the substitution from (E ), 
we find 

(4) AGn = -(A2Un)
2-2PnU

2
+2. 

As a consequence of (4) we have the following result. 

LEMMA 2.3. IfU is a solution of (E~~), then the functional defined 
by (3) is decreasing. Moreover there can exist at most one value of n 
such that Un = £/n+1 = 0. 

A solution U of (E~) satisfying Uk = Uk+i = 0 is said to have a 
double zero at k. Hence the latter part of Lemma 2.3 states that a 
nontrivial solution of (E~) can have at most one double zero. Note 
that at a double zero, say n = k, of a solution U, the functional Gn 

vanishes and hence must be negative for n > k. This clearly shows that 
U cannot have two double zeros. 

The next theorem is of fundamental importance and will be used 
extensively in the next section. 

THEOREM 2.4. There exists U € S~ satisfying Gn > 0 for each 
n > 1. 

PROOF. Let X, Y, Z be a basis for 5 " . For every positive integer m 
define U™ = A™Xn+AV£Yn +AmZn where the A™ are chosen in a way 

that CC+i = t/™+2 = 0 and (A?)2 + (A?)2+ (*?)* = 1- L e t Um > 0. 
It follows from Lemma 2.3 that G[U™] > 0 for all 1 < n < m. Put 
Am = (Af,AV[,Ag) where the A™ are as above. Then \\Am\\ = 1 for 
each m. Due to the compactness of the unit ball in R3 it follows that 
the sequence {Am}, has a convergent subsequence {Amt} such that 
Am. -+ A = (AUA2,A3) as % -+ oo, where {A^2 + {A2)

2 + {A3)
2 = 1. 

Let U be defined by Un = AxXn -f A2Yn + ^ 3 ^ n . Then clearly t/ is 
a nontrivial solution of (E~). Now G[Un] > 0 for all n > 1, for if not 
there is an integer j such that G[U3) < 0. Since U™1 -> Uj, we can 
infer that GfC/J*1'] —• C?[J7j] < 0. Choose a positive integer M such that 
for all i > M,G[U™"] < 0, and m; > >. Since G[Un] is decreasing and 
G[^m/] > 0> we have for i > M,0 < G[/7^;] < G[t/f •] < 0. From this 
contradiction we see that G[Un] > 0 for each n. This completes the 
proof of the theorem. 

We now introduce a quasi-adjoint difference equation 

(E+) A 3 K n + ^ - 1 1 ^ + 1 = 0 . 
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The adjoint of (E ) as defined in [1] and [11], is the equation 

A 3 a n + P n + i a n + 1 = 0 . 

However, the remainder of this paper contains results which show that 
the solutions of the difference equations (E~) and (E+) satisfy relations 
similar to those that exist between two adjoint differential equations. 
For this reason we say that equations (E~) and (E+) are quasi-adjoint. 

Turning to the equation (E+ ) , we show that (E+) always has nonoscil-
latory solutions. Our result can be derived from a theorem of Hartmen 
and Wintner [2], but we shall give a proof based on the following lemma. 

LEMMA 2.5. IfV is a solution of (E+) satisfying 

K n > 0 , A K n < 0 , A 2 y m > 0 

for some integer m > k > 1, then 

Vk>0,AVk<0,A2Vk>0 

for each 1 < k < m. 

PROOF. We show the lemma true for k = m — 1. Note that 
A{A2Vm-X) = -Pm-2Vm < 0. Thus A2Vm < A 2 F m _! , and we have 
that A ^ m - i > 0. Similarly, A 2 ^ - ! > 0 implies AVm-i < 0, which 
in turn implies Vm-\ > 0. Hence the result holds for k = m — 1. 
Repeating this process for each 1 < k < m — 1 proves the lemma. 

THEOREM 2.6. Let m > 1. There exists a solution V of (£+) 
satisfying 

(5) Vn>0,AVn<0, A 2 F n > 0 

for each n> N >m. 

PROOF. Let r, s,t be & basis for S+, the solution space of (E + ) . For 
each positive integer A;, define V* = Bfrn + B^Sn 4- B^tn, where 
the B* are chosen in such a fashion that V£ = Vjk

fc
fl = 0 and 

(Bf)2 + {B%)2 + (B£)2 = 1. Assuming V£+2 > 0, and proceeding 
as in the proof of Theorem 2.4, we can find a sequence {ki} of positive 
integers such that lim^-KX) Vjf* = Vn defines a nontrivial solution V of 
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(E+). We see by Lemma 2.5 that Vn > 0, AVn < 0, A2Vn > 0, A3Vn = 
-Pn-iVn+i < 0 for all n. If Vno = 0 for n0 > m, then since Vn is 
nonincreasing, Vn = 0 for all n > n0, contradicting the fact that V is 
nontrivial. Hence M0 > m exists, such that Vn > 0 for every n > M0, 
in which case A3Vn = -Pn-iVn+i < 0 for all n > M0. It then follows 
from another application of Lemma 2.5 that VnAVnA

2Vn # 0 for all 
n > 1 and furthermore Vn > 0, AVn < 0, A2Vn > 0, for each n. This 
completes the proof of the theorem. 

Following [15], we term solutions of (E~) which satisfy (1) as strongly 
increasing, and those which satisfy (2) as minimally increasing. Those 
solutions of (E+ ) which satisfy (5) we term as strongly decreasing. 

3. Oscillation properties of (E~). In this section, we will examine 
the asymptotic behavior of certain solutions of (E~). We will also 
consider some general relationships that exist between the solutions 
of (E~), and those of (E + ) . In the event that (E~) has oscillatory 
solutions, our main result will show that even stronger restrictions 
are placed on the nonoscillatory solutions of (E~), than required by 
Theorem 2.2. In fact, we will show that minimally increasing solutions 
cannot be "introduced" into the solution space S~ without "forcing" 
out all of the oscillatory solutions. 

THEOREM 3.1. Let U be a solution of (E~) satisfying Gn > 0 for 
each n > 1. Then 

(i) E°°(A2C/n)2 < oo and 
( i i )£° °^nc7 n

2
+ 2 <oo . 

PROOF. Since Gn > 0 for each n > 1, differencing Gn and summing 
from 1 to m - 1 yields 

m—1 m — l 

0<Gm = Gi-"£ (A2^)2 - 2 E P>UU-
l i 

Thus, 
m—l m—l 

1 1 

Letting m tend to infinity establishes each of (i) and (ii) since G\ is 
independent of m. 
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COROLLARY 3.2. Suppose lim infn—oo Pn > 0. If U is a solution of 
{E~) satisfying Gn > 0 for each n, then J2°° U% < oo. 

We now exhibit the discrete LaGrange bilinear concomitant for solu­
tions of ( E - ) and (E+). For (U,V) e S~ x S+ define 

(6) Fn = F[Un,Vn] = t / n + 1 A 2 V n + i - A [ / n A F n + 1 + V n + 1 A
2 t /n . 

It is easy to verify by differencing Fn and making the appropriate 
substitutions from (E~) and (E+) , that AFn — 0, for each n > 1. 
Hence we have the following theorem. 

THEOREM 3.3. IfUeS~ and V e S+, then the function defined by 
(6) is a constant that is determined by the initial values ofU and V. 

Let X, Y be independent solutions of (E ). The Wronskian 

Wn = W{Xn-l,Yn_1)--
Xn-\ Yn-l 

AXn-1 A F n _ ! 

is easily checked to define a nontrivial solution W of (E+ ). Moreover, if 
X and Y do not enjoy the same oscillatory character, then W = {Wn} 
is a nontrivial oscillatory solution of (E+ ) . Similarly, if R and S 
are solutions of (E + ) , that are of a distinct oscillatory nature, then 
{W(Rn-i,Sn-i)} is a nontrivial oscillatory solution of (E~). We 
therefore have the following result which is a discrete analogue of Hanan 
[3, Theorem 4.7]. 

THEOREM 3.4. Equation (E+) is oscillatory if and only if equation 
{E~) is oscillatory. 

Let r, s, t be solutions of {E~). Expanding the Wronskian 

rifi = x t ( r n , 5 n , tn)
 = 

rn 

Arn 
A2rn 

Sn 
As„ 
A2*n 

tn 
A<„ 
A2tn 

along its third column we obtain the following relationship between 
F n ,W n andÄ„: 

Rn = F\W(rn-U8n-1),tn-1]. 
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THEOREM 3.5. / / V is a nonoscillatory solution of {E+), then 
two independent solutions of (E~) satisfy the self adjoint second order 
difference equation 

W A(^L) + ( ^ t l - ) ^ + 1 = 0 . 
Vn+1 Vn-f-lVn+2 

PROOF. Since V is fixed in S+, we have KF = {£/ G S~\F[Un,Vn] = 
0} is the kernel of the linear functional Fn : S~ —• R, where R denotes 
the set of real numbers. If Vn > 0, n > N, then X € KF implies 

A(^)+(^H)*»+ .=°. 
Vn+1 V/

n.fiV/
n+2 

The result follows since 

dim Kp + dim i? = dim S~. 

We now derive an oscillation condition for (E~) in terms of equation 
(7). 

THEOREM 3.6. The following two statements are equivalent: 
(i) Equation {E~) is oscillatory. 

(ii) Equation (7) is oscillatory. 

PROOF. Suppose that condition (i) holds, then by Theorem 3.4, (E+) 
is oscillatory. Let r be an oscillatory solution of (E+) . Consider 
R{rn,Vn,Vn), where V is the nonoscillatory solution of (E+) whose 
existence was shown in Theorem,2.6. Thus, F[W(rn-i,Vn-i), Vn-i) = 
0, and we find that {W(rn-.i,Vn-i)} is an oscillatory solution of 

Vn Vnvn+l 

This proves the first part of the theorem. 
Suppose that condition (ii) holds, where V is a nonoscillatory solution 

of (E+ ), with Vn > 0, n > N. If U is an oscillatory solution of (7) then 
U E KF, and in particular U E S~. This completes the proof of the 
theorem. 
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REMARK. Since the nodes of linearly independent solutions of (7) 
separate each other, and those of linearly dependent solutions coincide, 
it follows that either all solutions of (7) are oscillatory, or all solutions 
of (7) are nonoscillatory [8]. We therefore have the following corollary 
of Theorem 3.6. 

COROLLARY 3.7. If (E~) is oscillatory, then S~ has a basis consist­
ing of one nonoscillatory solution and two oscillatory solutions. 

We now turn to our main result. 

THEOREM 3.8. The following two statements are equivalent: 
(i) Equation (E~) is oscillatory. 

(ii) For every nonoscillatory solution U of (E~), there exists an 
integer N for which 

Un > 0, MJn > 0, A2Un > 0, n > N. 

PROOF. Suppose that condition (i) holds and that (E~) has a solution 
Y satisfying 

Yn > 0, AYn > 0, A2Yn < 0, n > N. 

By Corollary 3.7 and the above remark, there exist two independent 
oscillatory solutions of (E~), every linear combination of which is 
oscillatory. Let / , g be such a pair of solutions with fx — 0,ÇN ^ 0. 
Let $ n = Yn — dgn, where d is a constant chosen in such a way that 
$N = 0. Consider W($nifn). Now W($;v,/;v) = 0, hence there exist 
constants CUC2 with C\ + C\ ^ 0 such that Ci$;v + C 2 / N = 0 
and dA^N + C2AfN = 0. Put Un = Cx^n + C 2 / „ . Then U 
has a double zero at TV, and Un = C\Yn + \I>n, where \I> defined by 
y&n = C<ifn — C\dgn, is an oscillatory solution of (E~). Since U is 
nontrivial, we may suppose without loss of generality A2UN > 0. As a 
consequence of Lemma 2.1, l i m n - ^ AUn = oo. Moreover, the relations 
AYn > 0, A2Yn < 0, A 3 y n > 0, n > N imply that {Ar n } is asymptotic 
to a finite constant. Now T(x, AUn) = (A2Un)(x -n) + Af/n, n < x < 
n + l,n > 1 defines the graph of {AUn}. Let {x{} be an increasing 
sequence of nodes of {A\Pn}. Then at each X{ we have 

(8) T(xl,AUn) = C1T(xi,AYn). 

We have arrived at a contradiction since the left member of (8) becomes 
unbounded as i —• oo, whereas the right member of (8) is bounded as 
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i —» oo. This contradiction proves the first part of the theorem. 
Suppose that condition (ii) holds, and that every nonoscillatory 

solution of (E~) is strongly increasing. If U is a nonoscillatory solution 
of (E~) such that conditions (1) hold for each n> N, then differencing 
Gn we obtain as a result of (4) the inequality 

(9) AG n < - ( A 2 t / n ) 2 . 

Summing both sides of (9) from TV to m - 1, we obtain 

m—1 m —1 

Gm < GN - J2 (A2£/n)2 < GN - (A2UN)2 Y,1-*'00 

N N 

as m —• oo. Hence linin—ooGn = -oo holds for every nonoscillatory 
solution of (E~). By Theorem 2.4, there exists a solution of (E~) 
satisfying Gn > 0 for each n > 1. Such a solution clearly satisfies 
limn—oo Gn > 0, and hence must be oscillatory. 

The following example shows that it is possible for every solution of 
(E"") to be nonoscillatory. 

EXAMPLE. Consider the equation 

An easy calculation will show that [/, defined by Un = 1 - 2""*, is a 
minimally increasing solution of (E). As a consequence of Theorem 3.8 
every solution of (E) is nonoscillatory. 

We record as our final result a sufficient condition for (E~) to be 
oscillatory in terms of the coefficient function {Pn}. This result is a 
discrete analogue of Jones [5, Theorem 2]. 

THEOREM 3.9. / / £ ° ° Pn = oc, then (E") is oscillatory. 

PROOF. In light of Theorem 2.4, it is enough to show that limn^oo Gn 

= -oo for every nonoscillatory solution of (E"). However, this clearly 
is the case if £ ° ° Pn = oo, for conditions (1) and (2) imply 

m - l 

Gm < GN - 2{UN+2? ^Pn^-OO 
N 
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as m —• oo, where U is any nonoscillatory solution of (E ). The 
theorem follows. 
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