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PERIODIC SOLUTIONS OF DIFFERENTIAL-DELAY
EQUATIONS WITH MORE THAN ONE DELAY

STEVEN CHAPIN

Introduction. In this paper we prove the existence of nontrivial
periodic solutions of certain differential-delay equations with more than
one delay. The method of proof involves techniques which have been
used to study differential-delay equations with a single delay, and part
of our motivation is to show how these techniques can be generalized.
Our results also imply a nonuniqueness result for periodic solutions of
some differential-delay equations with more than one delay which have
been studied by R.D. Nussbaum.

In [5]) Nussbaum studies the differential-delay equation

(0.1) z'(t) = —af(z(t - 1)),

where a is a positive parameter and f is an odd function (f(-z) =
-f(z),Vz) which decays like 77 at infinity and satisfies zf(z) > 0 for
all z. Nussbaum’s original motivation for studying (0.1) was the case
f(z) = z(1+ |z|7*t1)! for which (0.1) has been suggested as a model
for a somewhat more complicated equation which was introduced in a
study of physiological control systems [2,3]. By now there is a good deal
of evidence to suggest that for such f the dynamics of (0.1) are quite
complex [7,8]. Nussbaum proved (with some additional hypotheses on
f, which, nonetheless, included the case f(z) = z(1 + |z|"*!)™!) that
for a large enough (0.1) has a periodic solution the minimal period of
which tends to infinity as a tends to infinity. These periodic solutions
also have special symmetry properties. The proof involves a careful
asymptotic analysis of some of the solutions of (0.1), and while the
analysis depends on certain special features of the function f, it appears
that the techniques involved can be applied to a much larger class
of functions. In fact, this author has been able to use these general
methods to study (0.1) for the case in which f decays exponentially at
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556 STEVEN CHAPIN

infinity, e.g., f(z) = zexp(-bz?),b > 0 [1].
In this paper we shall apply the same general techniques used in [5]
to study the differential-delay equation

N
(0.2) o(t) =-a ) Af(a(t - pi)),

i=0
where a is a positive parameter and Ag,...,An, Po,...,pn are all

positive constants. We consider the same class of functions as in
[5], and prove an analogous result. That is, for a large enough
(0.2) has a periodic solution the minimal period of which tends to
infinity as a tends to infinity. As in the case of (0.1) these solutions
have special symmetry properties. These results directly imply a
nonuniqueness result for so-called “slowly oscillating” periodic solutions
of the equation

N
(0.3) () = -a Z f(z(t —1))

which is studied by Nussbaum in [6].

1. Consider the differential-delay equation

N
(1.1) 2(t) =-a)_ Mf(z(t - p)),
=0

where o is a positive parameter, and Ag,...,An, Do,...,pn are all
positive constants. Assume that we have arranged the terms in (1.1)
so that pg < p; <--- <pn.

A C! function z(t) will be called a slowly oscillating periodic solution
of (1.1) if z(¢t) solves (1.1), and there are numbers ¢; > pny and
g2 > q1+pn such that z(¢t) > 0for 0 < t < q1,z(t) < 0for q; <t < go,
and z(t + g2) = z(t) for all t. (The word “slowly” refers to the fact
that the separation between the zeros of z(¢) is greater than the largest
delay, that is, py.)

We want to consider the case where f is odd and decays like 2™ at
infinity. Therefore, we will always assume that f satisfies the following
(see [5]):
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Hl. f: R — R is an odd, continuous map. There exists a
number z, > 0 such that f|[0,z.] is nondecreasing and f|[z.,o0)
is nonincreasing. There exists positive constants a,d,r and ¢ and a
constant zg such that

(1.2) (a—dz@)z " < f(z) < (a+dz™ %)z, z 2> z0.

Our goal is to prove the following.

THEOREM 1.1. Suppose that f satisfies H1.) and that r > 2 and
o >r/(r—1)(r and o as in H1.) Then there ezists an ag > 0 such that

(i) Equation (1.1) has a slowly oscillating periodic solution z,(t) for
all a > ag.

(ii) za(t) > 0 on an interval (0,¢q),

(iii) za(t + ga) = —z4(t) for all t, and

(iv) limg— o0 go = 00.
Furthermore, there exists a constant 3 = [(r) such that one has

Ga > Bo" "% a > ag.

REMARK 1.1. It is easy to check that if v+ > 0 and r > 2, then the
function

f(z) = (sgn (z))]z["(1 = |z|7*7) !

satisfies H1. and gives a class of examples for Theorem 1.1.

Before beginning the proof of Theorem 1.1, let us establish some
notation which will remain constant throughout. First, note that by
changing the timescale and multiplying @ by a positive constant we
can always assume that Ay = pg = 1. Therefore, we will always assume
that (1.1) is of the form

N
(1.3) 2'(t) = —a[f(z(t — 1)) + Y _ M f(x(t — p))],
i=1
where 1 < p; <py <--- < pn.

Also, since we can replace f(z) by a™!f(z), we will always assume
that a = 1 in HI1.
From now on, unless stated otherwise, we will assume that f satisfies
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H1.; the letters r,z.,d,o and zo will always be used as in H1. Let a;
and a2 denote fixed positive constants which satisfy

a1z’ < f(z) Saz 7,z 214,
and define functions b, (z) and bs(z) by

bi(z) =1+ (-1)7dz 7,5 = 1,2,
so that one has

bi(z)z ™ < f(z) < ba(z)z7, 2 > 0.

Let C[0, pn] denote the Banach space of continuous real-valued func-
tions on [0, py] with the usual sup-norm, and recall that the “initial-
value” problem

N
Z(t)=-ay_ Aif(z(t —pi))t > py
1=0

z|[0,pn] = &

has a unique solution, which will be denoted by z(t) = z(t;9,a).
Finally, if o and k are positive constants define the closed, bounded,
convex subset K, x C C[0,pn] by

Kok ={¢ € C[0,pn]|¢(0) < pN (N + 1)Amaxaf(z4)
¢ is nonincreasing, ¢(pn) = ka®,e = (r +1)71},
where Amay = max{1,A;X2,...,AN}.
In addition, we will always take € = (r + 1)7*.
The main idea in the proof of Theorem 1.1 is to obtain various

estimates on z(t;@,a) for ¢ € K, and o large. As a first step we
prove two lemmas which are variants of Lemmas 1.1 and 1.2 in [5].

LEMMA 1.1. Suppose that f satisfiesH1. and ¢ € K, . Assume that
pn (N + 1)Amaxaf(z.) > ko,
30 Ko i 18 not the empty set. Define

21 = 21(¢, a) = inf{t > 1]z(¢) = 0}.
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If k > 2(a2Amax(N + 1)) and (1/2)kaf > z., then z; > pn + 2.
If we have a > (z,.)z(f:f‘ f(s)ds™t), then z(z; — 1) > z..

PROOF. It follows from the form of f that

N
'(t) > ~alf($(pn)) + 3_ Aif (6(pn — p1 +1))]

i=1
> —a[Amax(N + 1) f(6(pn))]
> —0Amax(N + 1)az(ka®) 7, py St <py + L.
Thus
z(py + 1) > ka® — agAmax(N + 1)k "af
> (1= (1/2)" ko > (1/2)kot.
Since, we are assuming that (1/2)ka® > z. we can repeat the argument
on the interval [px + 1,pny + 2] to obtain
2(py +2) > k10 — a2 Amax(N + Dki7af,

where k; = k — agdmax(N + 1)k, If k > 2(agAmax(N + 1))¢, then
one can easily check that k; > (a2Amax(V + 1))¢; and from this one
deduces that z(py + 2) > 0. This proves that z; > py + 2.

To prove that z(z; — 1) > z., suppose not, and let t; be the first
time ¢t > 0 such that z(t) = z. (so, by assumption, z; —¢; > 1). z(t) is
decreasing and concave down on [pn,t; + 1]. In particular, this implies
that |2’(¢1)| < z(t1) —z(t1 +1) < z,. Using the concavity one sees that

z(t; —1+4+s) <z +(1-8)zs, 0<s<1

It follows that

(t1+1)—a:,—a/f (t1 — 1+ 83))ds

ﬂZA/ J(a(ts = i+ 5))ds
(1.5) S-’C:"a/ F(a(ty — 1+ 8))ds
0

1
< zo-a / f(za — (1 - 8)z.)ds
0
2z.

=z, —a(z,)? f(u)du

Ta
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The assumption that o > (z.)?%(/. fz f(u)du]™! implies that the right-
hand side of (1.5) is negative while we are assuming that z(¢; + 1) > 0.
Thus, we obtain a contradiction which implies that z(2; — 1) > z..

For notational convenience set K, = ko k, where k = 2(agAmax(N +
1))¢. Also, given ¢ € K, define z;,m,é, and é; by
z1 = z1(¢, @) = inf{t > 1|z(t) = 0},
m=m(¢,a) =z(z — 1),
8 =6(p,a) = inf{t > 0|z(z; — t) = z.},
61 = 61(¢, a) = inf{t > 0|z(z; +t) = —z.}.
LEMMA 1.2. Suppose that f satisfiesHl.,r > 1, and ¢ € K,. Assume

that « 13 large enough so that the conclusions of Lemma 1.1 hold. Then
there exists positive constants ¢; and co, given by

er =af{(r =17 (1 -2,
c2 = (a2dmax(N +1))%,

such that

(1.8) ciaf <m < cyaf.

Also, if o s sufficiently large, then there ezists a constant cz indepen-
dent of o and ¢ € K, such that one has

(1.7) cam <6 <6< zomt,
and
(18) abf(m+mb) < 2. < @6Amax(N + 1) f(m),

aélf(m) <z, < aﬁlf\max(N + l)f(m - mél)

PROOF. We know that z(z; —1) > z., so z(t) is concave down on the
interval (21 — 2, 2] and m > z'(2; — 1). It follows that

1 N 1
m=a/(; f(ac(zl—2+t))dt+ai=zlz\,‘/0 flz(z1 —pi — 1+ ¢))dt

> a/o flo(zs = 2+ £))dt > a/O fim+ (1= tym)dt

= ;‘;— /: " f(wdu.
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This implies that m > c¢;af, where c¢; is given in the statement of the
lemma.
One also has

m=a / " p)dt + o / T e

2—2 z1—p1—1
21 —PN
+ ~+a/\N/ f(z(t))dt
z

1—pN—1
< 0Amax(N + 1) f(m) < admax(N + 1)agm™

so that m < (Amax(V + 1)ag)®a®

This proves (1.6).

Lemma 1.1 implies that § < 1. z(t) is concave down on the interval
[P, 21), so one has

N
2'(t) < ~af(z(zs —1-6)) —a)_ Aif(z(z1 = pi = 6))
i=1
<-af(z(z1—1-6)),z21 =6 <t <21

(1.9)

Similarly, one has

(1_10) ( ~O‘f —O‘Z’\ f 21 Pi )
> —a/\ma_x(N-i- l)f( ),z1 —6 <t < 2.

(1.9) and (1.10) imply that
(1.11)
—af(m+6ém) > -af(z(z1 —1-9))
> 2'(t) > —0Amax(N +1)f(m),21 —6 <t < z1.

The inequality (1.11) together with the mean-value theorem gives the
first part of (1.8).

It remains to prove (1.7) and the second part of (1.8). The argument
used in Lemma 1.1 shows that if

3z.
a > 2z ; f(u)du)_l,
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then 6 < 1/2. Since we know that z(t) is concave down on [2; — 1,2; —
8 + 1], this implies that

(1.12) 6 <6 <z.mt.
Now the same type of argument as above gives
(1.13) —0Amax(N +1)f(m—méb;) < z'(t) < —af(m),z; <t < 21+ 64,
provided that (1 — é;)m > z..

Since §; < 1/2, we can use (1.6) to choose « large enough so that
(1—-461)m > z., and, hence, (1.13) holds. The inequality (1.13) and the
mean-value theorem imply the second part of (1.8). If we also choose

« large enough so that m/2 > z. (a computation shows that it suffices
to choose a > (2z./c1)"*!), then one obtains

z. < af(m —méy)b1 Amax(N + 1)

(14 < af ()6 hmaelV +1).

Using (1.14) and (1.6) a computation gives
1 — -1 — -
(1.15) 61 > {z.(i)'c?'l(Ama_x) YN +1)7Yeg ym ™,

which completes the proof.

For notational convenience, given ¢ € K, define functions ¢, ¥, ¥7,
and 3 as follows:

Yo(t) =z(z1 —1+1), 0<t <1,
t

bi(t) = a / f(Wols))ds, 0<t<1,
0

ity =-z(z1+1t), 0<t<1,
t

W) =a / F(Wi(s))ds, 0<t<1.
0

It turns out that the crux of the proof of Theorem 1.1 lies in
estimating z(z; + 2pn) in terms of powers of m for ¢ € K, and o
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large. To do this we need to first estimate ¢;(1) and ¢3(1); this is
accomplished by Lemmas 1.3 and 1.4.

LEMMA 1.3. Suppose that f satisfies H1., 7 > 1, and ¢ € Ko. If a 15
large enough, then there exists a positive constant dy, independent of o
and ¢ € K,, such that

002 @) [7 s@de+ sm)” [ 5(0ue - dim

PROOF. This is essentially Lemma 1.3 of [5]. We give the proof only
for the sake of completeness.
Because 1 is concave down on the interval [1 —§, 1] and ][0, z.] is
nondecreasing we have
1

o fo(s))ds > a/6 f(s61z.)ds
(1.16) 1-6 60 .
a
=) [ s

It also follows by concavity that for 0 < s <1 —6 one has
Yo(s) < zu + (1= 6 — 5)[¥p(0)
<z, 4 (1 =6 —s)af(m) = bo(s),
and using this estimate gives for 6, <¢t <1-— 6

t
Yi(t) >z + i f(Bo(s))ds

1 (1-86-61)af(m)+z.
>aot o [ 7(€)de.
f(m) Ja=s—tyaf(m)+z.
Using the fact that 6 + &, < 2z./m and (1.6), we can find a positive
constant k (independent of a and ¢ € K,) such that
2z,
(1.18) (1-6—61)af(m)+z. > (1— :l

If we put ¢ = 1 — 6 in (1.17), use (1.18) and the assumption r > 1, we
obtain

(1.17)

Jaf(m) + 2. 2 km + z..

1 o0 1 *
6l - 6) zz.+m/1_ f(&)de—m/km F(€)de

k=T by(km)

(1.19) L pes
22t o | 1O - mD 3
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where b; and b, are given by (1.4).

The lemma now follows easily from (1.16) and (1.19).
LEMMA 1.4. Suppose that f satisfies Hl.,r > 1,0 > r(r — 1)7}, and

¢ € K,. If a 13 large enough, then there exists a positive constant ds,
independent of o and ¢ € K, such that

¥3(1) aé/ f(&dé+(f / f(€)d€ — dgm™

PROOF. It is not difficult to see that 1] (t) is concave up on the interval
[0, 61], so we have

61 51
af f@i(s)ds < e f({—x.)ds
(1'20) 0 a(;) :.1 ob Ta
< (% /0 f(wdu < (%) /0 F(u)du.

Tu

Note that

1-6
Yi(1=6)=1(1-6 +GZ/\/ f(z(21 — pi + 8))ds
> (1 = 96).

It follows from Lemma 1.3 that if a is sufficiently large, then we can
find a positive constant ¢4 (independently of & and ¢ € K, ) such that
(1.21) Y1(1 = 8) > eqm”.

Now using (1.21), the fact that 7 (1 — 6) > z., and the estimates of
Lemma 1.2 we see that

1

(1.22) af f(@1(s))ds < adf(¥1(1 - 6))
S C!(Sf(C4mr) S Cs,

where c5 is a constant independent of o and ¢ € K,,.

1-6
a / F(¥5(5))ds

61

It remains to estimate
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For notational convenience set u = ¥(61) and v = ¢¥§(0). o(t) is
concave down so it follows that

Yo(t) Su+v(t—6), 6 <t<1.

Using the fact that f|[z.,00) is nondecreasing we obtain

t N t
Vi(t) =z, + 0/61 f(4o(s))ds + a;/\i /51 f(z(21 — pi +8))ds
t t
>zot+oa | f(¥o(s)) 2x.+oz/ fp+v(s—61))ds = 0(t).
61 é

Thus,

1-6 1-6
(1.23) o swiedsa [ rea

51 61

To estimate the right-hand side of (1.23) we need to estimate x and v.
We claim that if « is large enough, then there exist positive constants
¢e,C7, and cg (independent of o and ¢ € K, ) such that

cem < u<m,
(1.24) o ==
crm < |v| < cgm.

First note that by concavity of z(t) on the interval [2; — 2,z;] one
obtains z(z; — 2) < 2m. It follows from this, and Lemma 1.2, that

N
[¥6(0)] = af(z(z1 — 2)) +a »_ Aif(z(z1 — pi — 1))
=1

> af(z(z —2)) > af(2m) > cm,

where c¢7 is a fixed positive constant.
Similarly, concavity of ¥ implies that

N
[¥5(0)] < [#6(1)| = af(m) +a ) Aif(z(z1 — pi))

=1

< a(N + 1)Amaxf(m) < cgm
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for a fixed positive constant cg. This gives the second part of (1.24).
Again using the concavity of g, it is easy to see that

m > 9o(61) > m(1 — 6,).

But é; < 1/2, so this implies the first part of (1.24).
Next we claim that if a is large enough, then there exists a positive
constant cg (independent of o and ¢ € K,,) such that

1-6 o)
(125)  a /5 f(ol(t»dtsﬁ / F(€)dE — cqm™ .

But this is essentially the content of Lemma 1.4 of [5]. (It is at this
point that the assumption ¢ > r(r — 1)} comes in.) We note that
our f satisfies the same hypotheses; that 6, is defined the same way in
terms of u,v and é;; and that u,v, 6, and 6; satisfy the same estimates
in terms of m. It follows that the proof of Lemma 1.4 of [5] implies
that (1.25) holds under our hypotheses. We leave it to the reader to
check the exact details.
The lemma now follows by combining (1.20) and (1.25).

We are now in a position to prove our key lemma, which gives the
desired estimate of z(2; + 2pn) for ¢ € K, and « sufficiently large.

LEMMA 1.5. Suppose that f satisfies H1.,r > 2,0 > r(r — 1)}, and
¢ € K,. If a is large enough, then there exists a positive constant ds,
independent of o and ¢ € K, such that

Z(Zl + 2pN) < —d3m"1.

PROOF. Assume that « is large enough so that the conclusions of
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Lemmas 1.3 and 1.4 hold. For ¢ > 1, define functions I, I5, and I3 by

- Z /\,-/ | f(z(s))ds,

z1+1
Bl =-a 3 A [ Sl
pi<t—1 zi-1
S [T o
- i ;
t—1<p;<t+1 z21-1
21—p|+t
Lity=—a 3 X / R EDE

pi<t—1
One can check that
o(zy +1) = L(t) + L(t) + Is(t), t>1.
And it is easy to see that

(1.26) L(t) <0, t>1.

Next, if 1 < ¢t < 2, then one has

z1—1+t
L(t) = -a / " fe(s))ds

1—1

(127) 21 —pi+t
—- Z /\1-/ f(z(s))ds = Jy(t) + J2(t).

t—1<p,<t+1 1—1

pi#1
We can estimate J; (t) as follows.

21

z1—1+4t
(1.28) Ji(t) = -« - (z(s))ds - / | f(z(s))ds

= —p1 (1) + Y3t — 1) < —¥1(1) + ¥3(1).

The second equality follows from the definition of ; and 3 and the
oddness of f; the inequality since %3 is increasing.
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Since we are assuming that r > 2, Lemmas 1.3 and 1.4 imply
that, perhaps by increasing «, one can find a positive constant c¢;q
(independent of a and ¢ € K, ) such that
(1.29) ~1(1) + ¥5(1) < —c1om” 1.

Also, using Lemmas 1.3 and 1.4, it is not difficult to see that
(1.30) J2(t) <0, t > 1.

Therefore, using (1.27)-(1.30) we obtain

(1.31) I(t) < <jom™ 1<t <2
If t > 2, then
z1+1
(132)  Lt)=-a 3 A / F(2(s))ds + Ja(t),
pi<t—1 z1-1

where J2(t) is defined as above.
Now, by exactly the previous argument we obtain

L{t)<- ) Xciom™™! + Ja(t)

pist—1

<= Y Mewom™' < —iom”™h, £ > 2,
P-St—l

(1.33)

since Zpg<t-—1 A > 1.
Thus, we have shown that

(1.34) I(t) € —c;om™ 1, t > 1.

Finally, we make the following

CLAIM. If « is large enough, then there exists a constant c¢;; such
that

(135) Is(t) S cum,l S t S 2pN~

¢11 can be chosen independent of o, ¢ € K,, and t € [1,2pn].
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PROOF OF CLAIM. For 1 <t < 2, since p; > 1 for all 7, it follows that
I3(t) = 0. Now suppose that there exists an a; such that for o > ay,

(1.36) Iit)<cym<t<J,

where J is an integer, J > 2, and ¢y is a positive constant.
Then (1.26), (1.34), and (1.36) imply that for a large enough one has

(1.37) z(z; +t) <—ciom” P +eym, 1<t < J.

It follows (using the assumption r > 2 and perhaps increasing o again)
that

(1.38) z(z +t) << ;m™1 1<t <,

where ¢, is a positive constant. Using (1.38), the definition of I3,
and the properties of f, it is easy to see that for o large enough, say
a2 ajyi1,
Lt) < e Z Af(eym™ (T - 1)
pi<t—1
<cjpm, 1<t <J+1,

Cj+1 a positive constant. It follows by induction that (1.36) holds for
every integer J > 2. The claim follows by taking J > 2pn in (1.36).

The lemma is now proved by combining (1.26), (1.34), and (1.35),
and setting t = 2py.

PROOF OF THEOREM 1.1. (Cf. the proof of Theorem 1.1 of [5]) If f
satisfies the hypotheses of Theorem 1.1, ¢ € K,, and « is large enough,
then by Lemma 1.5 we can find a positive constant d3, independent of
a and ¢ in K, such that

z(z1 + 2pn) < —dgm” L.

Thus, using the estimates of Lemma 1.2, and, perhaps, increasing « if
necessary, we obtain

z(z1 + 2pN) < —ko®.

It follows from the proof of Lemma 1.5 that z(t) < 0 for 2; < ¢t <
21 + pn, and so z(t) is nondecreasing on the interval [z, + pn, 22],



570 STEVEN CHAPIN

where 25 is the second zero of z(t).
Now, set

T =1(¢, ) = inf{t > 21 + 2pn|z(t) = —ka®}
and define the map S, : Ko — C[0,pn] by
Sa¢ =9 where 9(t) = -z(r —pn +¢),0 <t < pn.

It is easy to see that S, is a continuous, compact map, and the remarks
above show that S,(K,) C K,. Therefore, the Schauder fixed point
theorem implies that S, has a fixed point ¢n. If z1(t) = z(¢; @, @) is
the corresponding solution, then z,(t) is periodic of (minimal) period
2(7 — 1) and can be extended to all of R by periodicity. If z; is the
second (strictly positive) zero of z;(t), then z(t) = z1(t + 22) is the
periodic solution of Theorem 1.1 with ¢, =7 — 1.

It still remains to estimate the (minimal) period of z,(t). We use
a trick that is used in [4]. Since z4(¢) is decreasing on the interval
[pN + 1, gq], it follows that

To(t —1) 2 z4(t), PN +2<t<ga— 1
f is decreasing on the interval [z.,00), so this implies that
(1.39) af(za(t —1)) < af(za(t)), py +2<t<ga — 1.

Using (1.3) to solve for af(z4(t — 1)) and (1.39) one obtains

N
2, (t) < af(za(t)) — o D Nif(zalt — pi)
(1.40) o
< af(za(t)) < aze(za(t))™, PN +2<t < g — 1.
The inequality (1.40) implies that
(1.41) ~(za(t)) 24 (t) < a2q, pv +2<t < ga— 1,
and integrating (1.41) from py + 2 to g, — 1 gives

(142)  (r+1)7(zalpy +2))"" —=m"*!] < azafga — pn - 3].
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It follows from Lemma 1.5 that z,(pn + 2) can be bounded below by
a positive constant times m™—1. If we use this fact and the estimates
of Lemma 1.2, then the estimate on g, follows easily from (1.31), and
this completes the proof of the theorem.

REMARK 1.2. Consider the equation

N
(1.43) Z(t)=-a ) f(z(t—1)).
1=1

This is, of course, a special case of equation (1.1) with A; = 1 and
pi = ¢+ 1. Equation (1.43) is studied by Nussbaum in [6] where it
is proved (as a special case of a more general theorem) that, for f
a suitable odd function and o sufficiently large, (1.43) has periodic
solutions of minimal period 2(N + 1). In particular, from [6, Cor. 1]
we have the following. Suppose that f: R — R is a continuous, odd
function such that zf(z) > 0 for all z. Assume that f'(0) > 0 and
limg_ f(z)2™' = 0. Then if & > po = (Froywsn) tan (gD
(1.43) has a nonconstant periodic solution ys(t) such that y,(t) > 0
for 0 <t < N +1,ya(~t) = ~ya(t) and yo(t + N + 1) = ~y,(t) for all
t. If, in addition, zf(z) > 0 for z # 0 it is easy to show that y,(t) >0
for0<t<N+1.

Thus, if f satisfies H1. and f/(0) > 0, Theorem 1.1 implies that, for
a sufficiently large, (1.43) has at least two distinct slowly oscillating
periodic solutions. (Choose a large enough so that g, in Theorem 1.1
is greater than N + 1.) The functions f(z) = z(1 + |z|"*!)71,r > 2,
provide examples.

REMARK 1.3. The number ug is Remark 1.2 comes from looking at
the spectrum of (the complexification of) the operator

t N
(Lz)(t) = ~af'(0) /0 2(s — j)ds
1=1

which results from considering the linearization of (1.43) at 0. (Here
L is considered as a map of the real Banach space of real-valued
continuous functions satisfying z(t + N + 1) = —z(t) and z(-t) = —z(t)
for all ¢ into itself. See [6, Lemma 3 and Corollary 1] for details.) The
solutions y,(t) described in Remark 1.2 actually bifurcate from the
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constant solution z =0 at o = o [6. Theorem 5.
The constant o in Theorem 1.1 essentially must be chosen large
enough so that (in our previous notation)

z(z1 + 2pn) < —(pos. const)m™™ ! < —kaf, a > ag.

By a more careful analysis one could obtain an explicit upper bound
for ap. This would depend on the size of f(z) for large z and so, in
the case of (1.43), there would be no relationship to pg; moreover, the
computations involved would be very unpleasant.
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