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INTEGRAL REPRESENTATIONS OF LINEAR 
FUNCTIONALS ON FUNCTION MODULES 

GERHARD GIERZ 

A B S T R A C T . An integral representation for linear function­
a l on function modules is given under the condition that the 
function module is 'uniformly separable'. This result is a gen­
eralization of Riesz' Representation Theorem for linear func­
t i o n a l on C{X). The results apply to spaces of (weighted) 
vector valued functions and to Grothendieck's G-spaces. 

1. Introduction. Function modules were first introduced by R. 
Godement [5], I. Kaplansky [7], and M.A. Naimark [13] under the 
name of Continuous Sums. They considered spaces E of functions a 
defined on a topological space X with values in given Banach spaces 
Ex,x G X, satisfying the following axioms: 

(1) E is a closed linear subspace of the Banach space {a G ELex Ex : 
s u p l € X | |^(^) | | < oo}, equipped with the norm ||a|| = s u p ^ x ||a(x)||. 

(2) The function x »—• | |a(x)| | : X —• Z is upper semicontinuous for 
every a € E. 

(3) Ex = {a{x) :aeE} for every x € X. 
(4) E is a Cb{X)-mod\ile with respect to the multiplication (/, a) i—• 

fa where (fa)(x) = f(x)a(x) and where Cb{X) denotes the algebra of 
all bounded continuous scalar valued functions on X. 

Let us agree to call E a function module over X. For a given x G X, 
the Banach space Ex is called the stalk over x. 

Function modules are important in the representation theory of C*-
algebras (see Dauns and Hofmann [3]). For compact Hausdorff spaces 
X, the notion of function modules is also equivalent to the notion of 
spaces of section in a Banach bundle over X (see [4] for the details 
of this equivalence). Examples for function modules are the Banach 
spaces Cb(X), Cb(X, F) (the space of all continuous functions with val­
ues in a given Banach space F) as well as spaces of continuous functions 
equipped with a weighted norm. 

The object of the present note is to study the dual space of a function 
module. For all the examples mentioned above, integral representations 
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of linear functionals are known (e.g. [2], [16]). In this paper, we will 
concern ourselves with the following. 

PROBLEM. Let E be a function module with base space X and with 
stalks Ex,x € X, and let 0 : E —• k be a bounded linear func­
tional on E. Can we find a family of bounded linear functionals 
rjx : Ex —• £, x G X, and a finite Borei measure / i o n i such that 

(1) x i—• ^ ( ^ ( x ) ) : X —• £ is Borei measurable for every a G £ , 
(2) </>(cr) = J x rjx(a(x))d^t(x) for every a € E? 
In the appendix of [4] it was shown that this is possible if X is com­

pact and metric, or, more generally, if every Borei measure on X admits 
a strong lifting in the sense of [6]. Recently, A. Seda [15] has shown 
that the strong lifting property of the base space X is also necessary in 
order to represent every linear function on every function module over 
X by an integral. 

The results just mentioned are not the best possible ones. Since V. 
Losert [10] has constructed a compact space without the strong lifting 
property, Seda's result implies that the result from [4] does not even 
cover Riesz' representation theorem on linear functionals on C(X). In 
the center of these notes stands an integral representation for linear 
functionals which includes Riesz' theorem. 

There are various different approaches to our results. For example, 
(3.2) is equivalent to a disintegration theorem for measures due to G. 
Mokobodzki [11]. A second proof of (3.1) would utilize the fact that 
the dual of a function module E is norm isomorphic to the space of 
all C(X)-module homomorphisms on E which take values in the space 
M(X) of all regular Borei measures on X. Our approach shows that it 
is really the M-structure of a function module which makes an integral 
representation of linear functionals possible. 

Banach spaces are always denoted by the letters E, F, etc. The dual 
space of E (i.e., the space of all bounded linear functionals on E) will 
be denoted by E'. The polar or annihilator of a subspace F C E will 
be denoted by E°. The word 'compact' always includes the Hausdorff 
separation axiom. 

2. Preliminary Results. From now on, we fix a function module 
E with compact base space X and with stalks Ex,x E X. For every 
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closed subset A C X let 

NA = {a e E : a(x) = 0 for all x G A}. 

Then A^i is an M-ideal of E (see [4, 13.6]), i.e., there is a projection 
pA : E' - • N°A such that 

(L) \\4>\\ = \\PA{4>)\\ + \\4>-PA(<I>)\\ 

holds. In general, a projection satisfying (L) is called an L-projection; 
the collection of all L-projections is a complete Boolean algebra (see 

[i])-
We continue this section with a short summary of the results of the 

appendix of [4]: 
If U C X is open, define pu : E' —• E' by 

Pu = ids ' -px\u-

Then pjy is the complement of the L-projection px\u in the Boolean 
algebra of all L-projections on E'. For M C X in general, let 

p*(M) = sup{p^ : A C M,A closed}, 

p*(M) = mî{pu : M C C/, U open}, 

where suprema and infima are taken in the Boolean algebra of all L-
projections. If p*{M) = p*(M), we let 

PM =p*(Af) =p*(M) . 

The set W(£) = { M c X : P*(M) = p*{M)} is a scomplete Boolean 
algebra containing the Borei sets of X. If <f> : E —• R is a bounded 
linear functional, then 

f i * : - M ( £ ) - £ 

M ^ | | P M ( 0 ) | | 

is a finite a-additive measure on M(E) and 

^:M{E)-^E\ 
Mn->pM(0) 
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is a a-additive vector-valued measure. Following ideas of J.Kupka [9] 
one can show that there is a function 77̂  : X —• E' such that 

I/* (M) = PM{4>) = / v<j>(x)dßct>(x) 
JM 

in the sense that 

JM fM 

for every a € E. Moreover, | |PM(<£)|| = P<t>{M) = fM \\v<i>(X)\\dn<f,(x), 
which yields | | ^ ( x ) | | = l/i^-almost everywhere. 

Now note that the evaluation map ex : E —* Ex,a »—• a(x) is a 
quotient map of Banach spaces with kernel N{xy (this result is due to M. 
Dupre, see also [4, 2.10]). Hence, by duality, we may identify E'x with a 
subspace of E'. Once we have carried out this identification, equations 
like 0(<J) = <t>(a(x)) become meaningful, provided that 0 G E'x. Thus, 
if we can show that ry^(x) G Ex for almost all i e l , then we will have 
represented <j) via integration in the desired fashion. 

PROPOSITION 2.1. Let $ e E be given. 
(i) For every a E E we have r)(p(x)(a) < \\(T(X)\\ ji^-almost every­

where. Especially, \<t>{(r)\ < Jx\\a(x)\\dp,(p. 
(ii) For every f G C(X),a e E we have rf^fa) — {fr\$){p) 

/j,<p-almost everywhere. 

PROOF. In order to verify (i), we have to show that, for every 
measurable M G M (E), the inequality 

/ ^(x)(a)d/i0(x) | < sup | |a(x)|| / dii<t>{x) 
1 J M ' zGM J M 

holds. This inequality may be rewritten as 

(*) | p * (*)(*)! < \\pM{<t>)\\ sup \\a(x)\\. 
x€M 

We prove (*): Let A C X be closed. Then pA : E' - • N°A 

is an L-projection onto N\ = (E/NA)'- Since we have \\a + 
AUII = s u p ^ ^ | |a(x)| | (see [4,4.5]), we obtain \pA{<j)){a)\ < \\pA{<t>)\\ 
\W + NA\\ = \\pAm™pxeA\\<r(x)\\. 

If M G M (E) is arbitrary, then we have 

PM{<!>) — lim{PA(^) : A C M,A closed} 
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(see [4,21.8]), hence the result follows in this case from continuity. 
For a proof of (ii), we have to verify that, for every M G M (E), the 

equation 

/ ri<t>{fv)dn<t> = / {fV4>){cr)dfi<p 
J M J M 

holds. Thus, let e > 0. For every integer n we define An = {x G M : 
ne < f(x) < (n + l)e}. Using (*) again, we obtain 

< I / (Voi/* - (" + l/2)ea))dpA + I / ((n + l/2)e - f)^{a)d^ 

< | p ^ n W ) ( ( / - ( n + l/2)e)(i7)|+ / ^ ^ W * 
JAn * 

<\\PAM\\ sup | | ( / ( x ) - ( n + l /2 )£V(x) |K^ | |p A n (0 ) | | /2 
x€A n 

< e | | p ^ W H / 2 + e||pAB (0)||/2 

Since M is the union of the An and since A t-> \\PA{<I>)\\ is countably 
additive, we obtain 

/ (rit(f°) - Urn>)){°)W*\ < ^ I P M ( 0 ) | | . 

Since e > 0 was arbitrary, this is as desired. 

3. The main result and applications to spaces of vector 
valued functions. Let us consider again a bounded linear function 
4> : E —• JZ on a function module E. We construct the function 
770 : X —• £ and the measure //^ as in §2. We then know from (2.1.(i)) 
that |r70(cr)| < ||<7(x)|| for all x 6 X\N, where TV is a set of measure 0 
depending on a. Let us suppose for a moment that the set N would not 
depend on a. Then we could set r\^{x) — 0 for x G N. We would obtain 
|r/0(x)(a)| < ||tr(x)||. Especially, a(x) = 0 would imply ^{a) = 0, i.e., 
V4>{x) € Nfxy = E'x. We could write <j>(a) = fxr](t)(x)((T(x))dfi4>{x) and 
we would have found an integral representation of </>. 

PROPOSITION 3.1. Let E be again a function module over a compact 
base space X and let <f> : E —• R, be bounded linear functional. Further­
more, assume that E admits a subspace F such that 
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(a) \V4>{x){cr)\ < \\<r{x)\\ for ail x G X,a G F; 
(b) {(j(x) : a G F} is dense in the stalk Ex for every x G X. Then 

there is a maping £ : X —+ E' such that 
(i) U(x)\\<lfor allxeX, 

(ii) Ç{x) G E'x for all xeX, 
(iii) pM(<ß){(T) = fM t(x)(a(x))dp+(x) for all a G E, M G M(E). 

PROOF. For a given x G X let Fx = {a(x) : o G F}. We define a 
linear functional on Fx by 

& : ^ - £ 
<r(z) ^ ^ ( x ) ( a ) . 

Then property (a) implies that £x is well defined and has norm no 
larger than 1. Let Ç(x) : Ex —• R be the unique continuous extension 
of fx to Fx. Clearly, | |f(x)| | < 1 for all x G X. It remains to show 
that the function x »-> £(x)((j(x)) is /i^-integrable for every a G E and 
that (iii) holds. First notice that it is enough to verify that for every 
a G E we have Ç(x)(cr(x)) = r7^(:r)(<T),/^-almost everywhere. We will 
consider three cases. 

Case 1. {a G F). In this case we even have £(x)(a(x)) = rj^(x)(cr) 
for all x G X. 

Case 2. {a = £ ? = i /<**, where £ G C ( X ) , ^ G F, 1 < * < n). We 
obtain 

£(z)(a(x)) = t(x)(Ë(fiVi)(x)) = X>(*)tf*)(<7,(*)) 
1 = 1 1 = 1 

n n 

t = l i = l 
n 

= ^ W4>(z){fi<7i) /i</>-almost everywhere by (2.1) 
i = i 

n 

i = l 

Case 3. (a e E arbitrary). Since by the Stone-Weierstrass theorem 
for bundles (see [4,4.3]) the elements of the form YJi=\ fia%-> f% € 
C{X),Gi G F are norm dense in F , this case follows from Case 2 and 
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the fact that a countable union of sets of measure 0 is again of measure 
0. 

In order to formulate the next theorem, we need another notation. 
Let us suppose that we are given a function module E over X and 
let us assume that E admits a countable subspace F C E such that 
Fx = {&{%) : 0" G F} is dense in the stalk over x for every x G X. 
In this case we will call E a uniformly separable function module. 
Examples for uniformly separable function modules are spaces of the 
form C(X),C(X,G), where G is separable in the usual sense, and 
spaces of section in locally trivial n-dimensional vector bundles. 

THEOREM 3.2. Let E be a uniformly separable function module and 
let <j> : E —» JZ be a bounded linear functional. Then there exists a 
regular Borei measure \i^ on X and a family £</>(x) G E'x of linear 
junctionals on the stalks of norm at most 1 such that 

(i) x H-* ^<p(x)(a(x)) is Borel-measureable for every a G E, 
(ii) <j>{<r) = fx f0(x)(*(x))d/i*(s)-

PROOF. Since E is uniformly separable, we can find a countable 
subspace Fo C E over the field of rationals such that {cr(x) : a G FQ} 
is dense in Ex for every x G X. Let rj^ be constructed as in §2. 
Using (2.1), we can find a set TV c X of //^-measure 0 such that 
\n<t>{x){a)\ < \\<J{X)\\ holds for all x G X\N and all a G F0. We alter 
the function rj^ : X —• E' on N by letting it be constant 0 there. Hence 
we may assume that 

\V4>{x){a)\ < \\a{x)\\ for all x G X and all a G F0. 

Clearly, this last inequality carries over to the uniform closure F of FQ 
which is a real subspace of E satisfying the conditions (a) and (b) of 
(3.1). Hence (3.1) yields all the assertions of (3.2) with the exception 
of the Borel-measurability of the functions x »-• ^(x)(cr(x)),a G E. 
The fact that we indeed can choose ^ to be weak-*-Borel measurable 
follows as in [4, 21.21]. 

Let us close these notes by pointing out a few applications of (3.1) 
and (3.2). Firstly, in the case where E = C(X,G) we do not have to 
insist on E being uniformly separable, or, equivalently, on G being 
separable. In this case, the constant functions cu,u G G, form a 
subspace F C C(E,G) satisfying the assumptions of (3.1). 

COROLLARY 3.3. Let X be a compact space and let G be a Banach 
space. Then for every bounded linear functional (f) on C(X, G) there 



552 G. GIERZ 

exists a positive regular Borei measure \i^ and a weak-*-^i^-integrable 
function £<£ : X —• G' such that (f>(a) — fx ^(p(x)(a(x))d/j/(p(x) for every 
a € C(X,G). If G is separable, then ^ can be chosen to be weak-*-
Borel measurable. 

Our next corollary deals with weighted function spaces. Again, let 
X be a compact space and let u : X —+ R be a strictly positive upper 
semicontinuous function. Let CU{X) be the completion of C(X) in the 
norm 

| |/IU = supa/(x)|/(x)| . 
xex 

Then CU(X) is a uniformly separable function module over X. All the 
stalks of this function module are isomorphic to R. 

COROLLARY 3.4. CU{X)' ~ M{X). Under this identification, a 
regular Borei measure fi operaters on CUJ(X) by a >-+ fx uj(x)a(x)d/j/(x). 

It should be pointed out that these corollaries are of course not new. 
These results may be found in the papers of R. Buck [2], J. Wells [17], 
W. Summers [16], and G. Kleinstuck [8]. 

Our last aplication deals with Grothendieck's G-spaces. Recall that 
a closed linear subspace G C C(K),K compact, is called a G-space, 
provided that there are triples (x^, yi, r^) E K x K x R,i e J, such that 
G = {f e C{K) : f{xi) = rtf(yi) for all i G / } . In order to avoid 
technical difficulties, we will assume that 0 is not in the weak-*-closure 
of the extreme points of the dual unit ball of G ; as a matter of fact, 
every G-space can be 'approximated' by G-spaces with this property. 
In this case G can be represented as a function module over a compact 
space X with one-dimensional stalks in such a way that all extreme 
points of the dual unit ball are given by point evaluations at points 
x E X (see [12, 3.6(vi)] and [12,4.1]). Let us call this representation 
the canonical representation of G. 

An integral representation for linear functionals on G-spaces is known 
in the separable case [12]. We are now able to extend these results in 
the following way: 

COROLLARY 3.5. Let G be a G-space such that 0 is not a weak-*-
limit of the extreme points of the dual unit ball. Assume that G is 
represented in the canonical way as a function module over a compact 
space X. Then for every bounded linear function <t> on G there exists a 
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positive Borei measure fi on X and a family (Çx G E'x ~ H)xex such 
that 

(i) x i—• £x(a(x)) is Borei measurable for every o G G. 
(ii) (\){o) = fx Cx{a{x))dß{x). 

PROOF. We only have to show that the canonical function mod­
ule representing G is uniformly separable. To this end, let U C G' 
be a weak-*-open neighborhood of 0 missing all extreme points of 
the dual unit ball. We then can pick <7i,...,<7n G G such that 
{ip G G' : |^(o»)| < 1,1 < i < n} C U. Hence for every extreme 
point 7T of the dual unit ball there exists an i such that |7r(tr»)| > 1. 
For the canonical function module, the extreme points are exactly the 
mappings ±£ x , x G X, where ex denotes point evaluation. We now 
may conclude that for every x G X there is an 1 < % < n such that 
<T{(x) ^ 0. It follows that the rational linear span of {cri,... ,an} is a 
countable set F c G such that {cr(x) : a G F} is dense in the stalk 
Ex ~ Z for every x G X. 
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