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REFINED TAUBERIAN GAP THEOREMS FOR 

POWER SERIES METHODS OF SUMMABILITY 

A. JAKIMOVSKI 1 , W. MEYER-KONIG AND K. ZELLER 

1. Introduction. Besides the usual Tauberian gap theorems there 
are refined forms which, e.g., deal with mixed conditions or lead to 
summability instead of convergence. Here we are concerned with an 
instance of the latter kind. Let us assume that ^ o ° an *s a SaP se i*ies : 

(1.1) an = 0, for n ^ /c0, fci, • • • 

({kn} a given sequence of integers, 0 < ko < k\ < •••). Hardy-
Littlewood's classical high indices theorem for AQ (Abel's method of 
summability) states that 

cx> oo 

AQ - ^ an — s implies ^ an = s 
o o 

if fcn+i > ckn for a constant c > 1. Now let p be a non-negative 
integer. Then, according to a special case of a theorem of Korenblyum 
(see [11]), 

oo oo 

(1.2) AQ — ^ an = s implies Cp — 2 J o,n = s 
o o 

if 

(1.3) fcn+p+i > ckn for a constant c > 1 
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(Cp =Cesaro's method of order p). Results of the same type as 
Korenblyum's theorem were given by Borwein-Cass [1] and Jakimovski-
Russell ([7; p. 116], [8; p. 135 (condition (# p ) , p. 136]). 

One of the main purposes of the present paper is to show (see §8) that 
a gap series which is summable by a power series method Q of type 
PTR (see §4) is also summable by some generalized Cesaro method (see 
§3) if a gap condition of type (1.3) is fulfilled. The above result follows 
from some general theorems of independent interest. 

A method of proving Tauberian gap theorems, depending on the 
concept of gap-perfectness (of a summability method, or an FK-space), 
was developed in [16] and [17]. This method is extended in §6 so as to 
be of use for our present purpose (see Theorem 6.3). After formulating 
and proving Theorem 5.1, on the iteration product summability of a 
PTR method and certain generalized Cesaro methods, and Theorem 
7.1, which is a refined Tabuerian gap theorem for generalized Cesaro 
methods, we come to our main theorem in §8: Theorem 8.1. 

2. Nota t ions . We are dealing with sequences, series, d by x = 
{%m} = {xo,xi,--•}, with x-i = 0 in formulas. If nothing is said 
about n, then n = 0,1, • • • (and n —• oo if a limit process is involved), 
and likewise for m. We also write xn = (x)n. Given an (infinite) series 
Yln

an (o r ^2an shortly), and also, more generally, given an a, then 
Sn = ao H h an; if conversely, some argumentation starts with an s, 
then automatically an = sn — s n_i . Sometimes we start a priori with 
a couple (a, s). And Q is always a sequence of real positive numbers: 

(2.1) qn > 0, and qn = q0 + • • • + qn. 

Special sequences are e = {1,1,1, • • •} , eo = {1,0,0, • • • } , e\ = 
{0,1,0, • • •}, • • •. A matrix, say B, is an (infinite) matrix with complex 
elements bnrn = (jB)n,m- The 5-transform Bs of a sequence s is said to 
exist if, for each fixed n, the series (Bs)n = Ylm bnmSm converges. A 
normal matrix is a lower triangular matrix with non-vanishing elements 
in the main diagonal. The identity matrix is denoted by J, and S is 
the normal matrix with the elements ( 5 ) n m = l(ra = 0, • • • n). For a 
pair (a, s) s = Sa, a = S~xs. The diagonal matrix with the elements cn 

in the main diagonal is denoted by diagcn. Given the pair (a, s), then 
B — J2 an = 8, (or: ^ an is summable B to the value s) as well as the 
equivalent statement B — l imsn = s (or: s is limitable B to the value 
s means that Bs exists and that limSn = s. The series-convergence-
domain B of B is the set of all a for which ^2an ls summable B, the 
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sequence-convergence-domain B is the set of all s limitable B; B andB 
are (isomorphic) FK-spaces. By replacing n with x (0 < x < 1) and 
n —• oo by x —» 1~, one obtains a semi-continuous sequence-to-function 
summability method. 

3. Generalized Cesàro methods. There is a long history con­
cerning methods of Cesàro type (variants, generalizations, comparison 
theorems, etc.). Many references can be found in [19; Ch. VI]; here we 
mention Faber 1913, Dobrowolski 1926, Jurkat 1953, Burkill 1961, and 
for new developments Borwein, Meir, Russell (see [2]), and Kuttner 
[14]. We repeat now the definition of the generalized Cesaro methods 
of orders p = 0,1, • • • (cf., e.g., Russell [18; p. 419]). We assume that 
q is a given sequence (see (2.1) and observe that q-i = q_1 = 0). For 
p — 1,2, • • -, let Sp = S'p(q) be the normal matrix with the elements 

\^p)nim — qm+p-i — qm-i = Qm + ' • • + <Zm+p-l 

(m = 0 , - - - , n ; p = 1,2, •••)• 

Then (proof by induction) Sp • • • Si S has the elements 

(m = 0,--- ,n;p = l , 2 , - ) -

Now we define the normal matrices (C, q, 0), (C, g, 1), • • • : 

(CìqìO)^I,(Cìqìp) = (dmg(qn---qn^p_ir
1)Sp---S1 (p = l ,2 , . - . ) . 

The generalized Cesàro methods (C, g, p) are the summability meth­
ods connected with these matrices. It follows from (3.1) that (for 
p = l , 2 . . - ) 

(Sp--- Sie)n = (Sp-- • S1Se0)n = qn • • -qn+p_1 

(so the row-sums of (C,q,p) equal one) and, given a couple (a, s), that 

{{C,q,p)8)n=j^{\-^)--{\-^=±-)am. 
m = 0 ™ ^ n + p - 1 

Together with q we consider the sequences q^ : 

Qn] = (Qn + -'- + qn+p)qn ' ' ' Qn+pfan+p > ° (p = 0, 1, • • -)î 
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then q(°i = q and (proof by induction) 

(3.2) q ^ =qP +---+qW =qn---<in+p>0 (p = 0,l,---). 

We define the normal matrices Mp = Mp(q): 

(Mp)n<m = qtf/q^ (m = 1, • • • ,n;p = 0,1 • • •)• 

The summability method connected with Mv is the method of 
weighted means with weights qn . For p = 1,2 • • -, we have 

( C ^ p + l X C ^ p ) " 1 = ( d i a g ^ - ' - ^ + p r ^ S p + i C d i a g ^ - ' - ^ + p . ! ) ) 

and therefore (for m = 0, • • •, n;cf. (3.2)) 

( ( C , 0 , p + I X C , ? , ? ) " 1 ) « , ™ = qm • • • 5 m + p - l ( 5 m + p - Qm-l)/qn ' ''Qn+p 

= \^p)n,m' 

Since (C, q, 1) = M0 it follows that 

(C,g ,p+ 1) = Mp(C,<?,p) = Mp • • MiMo (p = 0,1, • • •)• 

From now on, in dealing with the methods (C, q, p) and Mp(q) we shall 
always assume that ^2qk = oo. Then all these methods are regular, 
and we have 

(C,q,p) C (C,g ,p+1) with consistency (p = 0,1,..). 

(C, e, p) is the ordinary Cesaro method Cp. If we put Ao = 0, An+i = qn 

then (C, g,p) coincides with the method (C, A,p) in [18, p. 419]; A0 > 0 
is allowed there, too. 

In §7 we shall use the connection between (C,q,p) and the Riesz 
methods (R, A,p). Given a sequence A(0 = AQ < Ai < • • •, An —• oo) 
and an integer p(p = 0,1, • • •), then (i2, A,0) means convergence, and 
for p = 1,2, • • • we have 

(Ä,A,p) - V ^ f l n = (Ä,A,p) - l i m s n = hm Y ] ( l - ) + a n 
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(w > 0; x\ — xp for x > 0, xp+ = 0 for x < 0) if the latter limit exists. 
One knows (Russell [18], Meir [15]; cf. Borwein-Russell [2]): 

LEMMA 3.1. For each p — 0,1, • • -, the methods (C,q,r) and (iü,A,p) 
are equivalent if XQ = 0 and An+i = qn. 

4. The class PTR. This class of methods was introduced in [10]; 
the three letters refer to Power series, Totally monotone, Regular. We 
recall: 

Let q (for the moment not necessarily with qn > 0) be a real totally 
monotone sequence, i.e., a sequence admitting a representation 

qn = [ vnda{v) > 0, 
Jo 

a(v) real, increasing (wide sense) and bounded in 0 < v < 1, and 
furthermore assume that ^2an = oo. It follows that qn > ç n + i > 0, 
so we are in harmony with our agreement (see §2) that q always is a 
sequence of positive numbers. We put q(x) = YlQnXn for 0 < x < 1. 
Then the power series method Q = Q(q) of type PTR is defined by 
means of the (sequence-to-function) matrix Q having the elements 

{Q)x,m = {l/q(x))qmxm (0 < x < 1; m = 0,1, • • • x - 1-). 

The convergence-domain (Q as well as Q) is an FK-space ([10; 
Lemma 3]) and we have ([10; Theorem 4]) 

LEMMA 4.1. IfQ is of type PTR, then the FK-space Q is gap-perfect. 

More about gap-perfectness is said in §6. 

5. Interrelation between C and Q. We introduce the methods 
Qo(q), Qi{q), ' ' •• Let us assume that a q is given and that 

(5.1) Y]] qn = oo, q(x) — ^ qnx
n exists for 0 < x < 1. 

It is easy to see that, for each p = 0,1, • • -, (5.1) is equivalent to 

(5.2) Ylqn)n = °°> 9(P)(X) = Ylqn)xTl eXÌStS f0r ° - X < L 
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Now we define the method Qp = Qp(q) by means of the (sequence-
to-function) matrix Qp(p = 0,1, • • •) with the elements 

(l/g<*> (x))q$xm (0 < x < 1; m = 0,1, • • •, ; x - 1-). 

Qp is regular. 
If Q(q) is any method of type PTR, then (5.1) and (5.2) are fulfilled, 

i.e., Qo,Qi, • * ' are defined (with QQ = Q). We announce Theorem 5.1 
which is essential to the proof of Theorem 8.1. 

THEOREM 5.1. Let Q(q) be of type PTR and p be an integer 
(p = 0,1, • • •). If s if limitable Q{q), then (C, q,p)s is limitable Qp(q) 
with consistency. 

The proof follows from Lemma 5.2. We prepare the formulation of 
this lemma. To begin with we introduce some notations. Firstly, given 
a q and a series 2 a n , we put 

u (0 ) = s, uM = Spu^-V (p = 1,2,.. •), 

*(p) = (C,g,p)s (p = 0,l,-. .)î 

then we have 

*<°> = „<°> = s, # > = (?„ • • - f l n + p - l ) - 1 « ^ (P = 1,2, • • •)• 

Secondly, given a g and any sequence t, we define formally 

Q*(t,x) = ^ g n ^ n , Q ; ( Ì , Z ) = ^ ^ ^ n (p = o,i ,• • •). 

Now we assume that Q(q) is of type PTR and that ]T an is such that 
<2*(s,x) exists for 0 < x < 1. Since gn = / 0 Vida{v\) we have (for 
0 < x < 1) 

/ da(v1)-l-^-Q*(s,xv1)= f daMil + v^T^nH^r 
J0 1 - XVi J0 *—' 

= £ f1 da(vi)K + v?+1)uMxn 

Jo 

= ^2(qn + qn^i)u{
n
1)xn 

= Ylti)tk1)xn = QUt{1\x). 
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The existence of the first of these expressions, even if s would be 
replaced by {|so|? I5i|» • • •}, is clear; therefore all our expressions exist. 
Thus we have proved the case p = 1 of 

LEMMA 5.2. Let Q = Q(q) be of type PTR and the series ^Zan be 
such that Q*(s,x) exists for 0 < x < 1. Then, for p = 1,2, ••• and 
0<x < 1, 

g ; ( t ( p \ a ) = / da(vp).-- / da(i;i) 
./o Jo 

{ Y[ (1 + Vj + • • • + VJ)(1 - XVj • • • Vp)
 1}Q*{8i XVX • • • Vp). 

The existence of both sides of this equation is guaranteed by the 
hypotheses. 

In order to prove the general case we start with the right-hand side 
of our formula: Instead of Q* we introduce u^1) (see above); then 
u^2\ • • • ,u(p\ and finally t^v\ The procedure is seen clearly enough if 
we execute the case p = 2; 

f da(v2)
l + V2+Vlj2(qn + ft.+i)t#>(xv2r 

JO •*• ~~ * ^ 2 

da(va)(«J + « ? + 1 + <;2"
+2) X)(S2« (1 ))na;n f 

Jo 

We state the following important consequence of Lemma 5.2. If 

Q*{aux) <Q*(s 2 ,x) i n O < z < 1, 

for two real series Y2an Ü — 1» 2), and if Vf> = (C, g,p)s^, then 

Q^i* 0 ,* ) < Q*p{t{
2
p\x) in o < x < 1. 

This is the basis of the 

PROOF OF THEOREM 5.1. The case p = 0 is trivial, therefore let p 
be a positive integer. We assume that Q — lim sn — s and furthermore, 
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without loss of generality, that s is real and that s equals 0. Then, 
given any e > 0, there exists p = p(e) > 0 such that 

{Qs)x < £ + PQo/q{x) = (Q(se + peo))x, for 0 < x < 1. 

With t = (C,q,p)s our consequence of Lemma 5.2 yields 

(Qpt)x < £ + p(Qpw)x, for 0 < x < 1, 

where w = (C, q,p)eo is a null-sequence; it follows that 

(Qpt)x < 2e for 0 < 6(e) < 1. 

Together with the opposite consideration we get the assertion. 

An immediate consequence of Theorem 5.1 is the following consis­
tency theorem. 

THEOREM 5.3. Let Q(q) be of type PTR and p be an integer 
(p = 0,1, • • •). Then the methods Q(q) and {C,q,p) are consistent 

6. Gap-perfectness. If A: is a sequence of integers with 0 < ko < 
k\ < • • -, then we say that the sequence x satisfies the gap condition 

G(k) if xn = 0, for n ^ fco, &i, • • •, 

G(k) shall also denote the set of all x fulfilling this condition. A series 
J^a n is said to satisfy the gap-condition G(k) if a E G(k). Given an 
FK-space E and a fc, the fc-gap-perfectness of E is defined as follows: 
Each x € E satisfying G(k) can be approximated with arbitrary 
accuracy by elements of E which are finite (coordinates ultimately zero) 
and satisfy G(fc). E is called gap-perfect if it is fc-gap perfect for all fc. 
We need the following result (see [17 Satz 1] and the references in [10] 
to Kolodziej and Mazur-Sternbach). 

LEMMA 6.1. / / the set of all convergent sequences in an FK-space E 
is not closed in E, then E contains bounded divergent sequences as well 
as unbounded sequences. 

Important for us is a corresponding statement where the convergent 
and the bounded sequences are replaced by certain other sets of se­
quences: 
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LEMMA 6.2. Let F be an FK-space, B be a normal matrix, and 
assume that the set of all those elements x of F, for which Bx is a 
convergent sequence, is not closed in F. Then F contains sequences y 
for which By is bounded and divergent, as well as sequences z for which 
Bz is unbounded. 

There are other modifications of this type (more general B, spaces 
of series, etc.). For the proof we apply Lemma 6.1 to the FK-space E 
(isomorphic to F) consisting of all sequences Bx with x G F. Essential 
now for our purposes is the following theorem which will be proved by 
means of the first part of the assertion of Lemma 6.2. 

THEOREM 6.3. Suppose that E is an FK-space which, for a given 
k, is k-gap-perfect, and that B is a normal matrix for which Be and 
all Ben are convergent sequences. Suppose furthermore that, for each 
x € Ef)G(k), for which BSx is bounded, BSx is convergent. Then 
even x G EÇ\G(k) alone implies that BSx is convergent. 

PROOF OF THEOREM 6.3. The FK-space Ex = Ef)G(k) is a closed 
subspace of E and is isomorphic to the FK-space F consisting of all 
sequences Sx with x £ E\. By gap-perfectness each element of F can 
be approximated by ultimately constant sequences, hence (because of 
our hypothesis about Be,Ben) by sequences having a convergent B-
transform. If now there would exist an element of F with a divergent 
B-transform, the hypothesis of Lemma 6.2 would be fulfilled and there 
would exist an element y G F for which By is bounded and divergent; 
but this is not possible according to the last hypothesis of Theorem 
6.3. 

7. A refined gap theorem for C. By combining some known 
results we obtain the following theorem about the generalized Cesaro 
methods. It will be needed in §8, but is of independent interest, too. 
Now and afterwards, instead of Çn, we also write q(n). 

THEOREM 7.1. A series J2an summable (C,(?,r) is also summable 
(C, q,p), if it satisfies a gap condition G(k) for which 

(7.1) liminf g(fcj+p+i)/5(ifcj) > 1 
j—*oo 

holds (q fixed, qn —> oo; r and p integers, 0 < p < r). Here, as is true 
generally, (C, #, p) and (C, <?, r) are consistent. 
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PROOF. The proof is described by the following chain (always with 
consistency, if one observes that (qn) is bounded and qk —• oo) 

(C, q, r) - ^2 an -> (R, A, r) - ^ an 

- (Ä,AV) - Y,< - (Ä,A*,p) - Y,< 

-> ( Ä , A , p ) - ^ a n - • (C,ç,p) - ^ a n , 

where Ao = 0, An +i = qn1 and (with j = kn) A* = AJ; a* = ay. The 
first step is justified by Lemma 3.1, and likewise the last step. The 
second and fourth step are immediately clear. The step in the middle, 
leading from r to p, follows from [1, ; p. 205, Theorem], cf. [7; p. 116, 
Theorem A]. 

8. A refined gap theorem for Q. Our final result is Theorem 
8.1. 

THEOREM 8.1. Let Q= Q(q) be of type PTR and p be an integer 
(p = 0,1, • • •). Suppose that each series J2an, which is summable Qp(q) 
and for which s is bounded, is also summable Mp(q) with consistency. 
Then each series J2 an which is summable Q is also summable (C, q, p) 
with consistency, if a satisfies a gap condition G{k) for which (7.1) 
holds. 

PROOF. Let c (respectively m) be the set of all convergent (resp. 
bounded) sequences. We assume that the supposition about Qp = 
Qp{q) and Mv = Mp(q) is fulfilled, and that a & is given for which (7.1) 
holds. Let the FK-space Q be denoted by E and the matrix (C, ç, p) 
by B. We want to show: 

a e E P) G (h) implies Bs G c. 

Because of Theorem 6.3, since E is k-gap-perfect (Lemma 4.1), it is 
sufficient to show that 

{a e ED G(k), Bs G m} implies Bs Ec 

Now let a fulfill the hypothesis to the left. It follows from Theorem 5.1 
that Bs E Qpi and from the supposition of our theorem that MpBs G c. 
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Since MPB = (C,q,p + 1), Theorem 7.1 yields (C,q,p)s G c. The 
assertion about consistency is guaranteed by Theorem 5.3. 

The case p = 0 of Theorem 8.1 was treated in [10]. 
The transition from Qp to Mp (cf. the assumption in Theorem 8.1) is 

freuently possible, and certainly if, roughly speaking, the qnn behave 
regularly. This is stated more exactly in the following lemma which is 
based on a theorem of Jakimovski-Tietz ([9; Theorem 4.1]). 

LEMMA 8.2. Given Q(q) of type PTR and p(p = 0,1, • • •), suppose 
that qn = R(n), where R(x) > 0 is a function which is continuous 
for x > 0 and, furthermore, is regular in the sense that there exists a 
constant p > -1 such that R(Xx)/R(x) —> Xp for each X > 0 as x —• oo. 
Then, if s is bounded, summability Qp(q) of^an implies summability 
Mp(q) ofJ2an with consistency. 

PROOF. We need some preparations. The fact that R(x) is a function 
of the said type shall be expressed by writing R(x) € Vp. From 
(R(x -f l)/R(x)) —* 1 as x —• oo (see [9; Lemma 3.1]), we deduce 

R{x + 2) _ R(x + 2) R(x + 1) R(x + 3) 
R(x) ~~ R{x +1 ) R{x) ~* ' R(x) "" 

Furthermore, we have (see [9; Lemma 3.2]) 

R*{x) = / R{t)dt e Vp+uqjR*(n) - 1, 
Jo 

and (again see [9; Lemma 3.1]) 

R*{[x])/R*{x) - 1, R*{[x] + 1)/R*(x) -+ 1. 

Let the function R(x) for x > 0 be defined in the following way: 

R(n) = gn, A(x) linear in each interval n < x < n + 1. 

Since, with n = [x], 

^ I ^ ^ I M < EEL < 9n+i fi*(n+l) 
R*(n)R*{x) - R*{x) - R*(n+1) R*{x) ' 
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it follows that (R(x)/R*(x)) —• 1 as x —> oo, and this, for each A > 0, 
yields 

R(Xx) _ R(Xx) R*(Xx)R*(x) + 1 -ßMaV 
S £ f - Ä*(Ax) Ä*(*) Ä(x) A ' Le-' Ä (*} € W 

The case p = 0 of our lemma is an immediate consequence of [9; 
Theorem 4.1](cf. [10; Lemma 13]); therefore, we assume now that 
p = 1,2, ••. We put 

R(P)(X) = (R(x) + • • • + R(x + p))R{x) • • • R(x + p - 1), for x > 0; 

then Ä<P)(n) = q{
n
p) and, for each A > 0, 

R{p){Xx)/R{v){x) = R1{x)R2(x) 

with 

i?(Az) + --- + fl(Az + p) fl(As) Ä(Air + p - l ) 

In dealing with R\(x), dividing each term of the numerator and also 
of the denominator by R{x), and writing, e.g., 

Ä(Ax + l) . , e R(\x + l)R(\x) 
—' ,—- m the form — n / x x ' . , 

R{x) R{Xx) R(x) 

we get 

In dealing with #2(2) and writing, e.g., 

Ä(Az + l) . , p Ä(Az +1) Ä(Az) Ä(x) 
m the form 

R{x + 1) R{Xx) R(x) R(x + 1) 

we get R2{x) — (A^+1)p. It follows that 

RM{\x)/R^{x)^\^f>+1^, i.e., fiW(i)6Vw+p+p, 

Application of [9; Theorem 4.1] now completes the proof of our 
lemma. 
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9. Examples. The following three examples are in correspondence 
to the three examples considered in [10;§8]. The former examples 
coincide with the case p = 0 of the present ones. Each of our examples 
is characterized by a certain q\ as to the appertaining methods <2, the 
sequences q, and the functions a(v) with qn = J0 vnda(v) we refer the 
reader to [10]. The case p = 0 of Example 1 yields Hardy-Littlewood's 
theorem for AQ whereas the general case is due to Korenblyum (see 
§1). The results of our Examples 2 and 3b, in the case p = 0, are due 
to Krishnan [12], [13]. In connection with example 3b and [13], the 
paper [4] is of interest. 

Given two methods of summability C and D we say that a gap 
condition G(k) is of type (C,D) if each series Ylan summable G and 
satisfying G(k) is necessarily summable D with consistency. 

EXAMPLE 1. qn = 1,<Q = A0, p fixed (p = 0,1, • • •), {C,q,p) = Cp. 
Theorem 8.1 together with Lemma 8.2 (with R(x) = 1) yields G(k) is 
of type (Ao,Cp) if 

(9.1) l i m i n f t e ± i > i . 
j—>-oo kj 

EXAMPLE 2. qn = (n+ß),ß real and fixed ( - K ß < 0), Q = Aß(Aß 

the generalized Abel method, cf. [6; Theorems (8.3) and (8.4)], [5; p. 
18], [19; p. 186]), p fixed (p = 0,1, • • •)• Writing qn in the form 

Qn = Unfa + if""1 With fin -+ + , 

we see that in our present case (7.1) coincides with (9.1). Therefore 
Theorem 8.1 together with Lemma 8.2 (with R(x) = T(x+ß+l)/{T(x+ 
l)T{ß+l)) yields: G{k) is of type (Aß, (C,q,p)) if (9.1) is fulfilled. 
Here (C,q,p) can be replaced by {C,p). 

EXAMPLE 3.1. qn = (n + l ) 7 , 7 real and fixed (-1 < 7 < 0), p fixed 
(P = O,I , . . . ) . 

(a) Case -1 < 7 < 0. Using Lemma 8.2 with R(x) = (x + I)1 

we obtain: G(k) is of type (Q, (C, g,p)) if (9.1) is fulfilled. Since 
(C,q,p) is equivalent to (i?, {0ìqOìqlì • • -},p) (see Lemma 3.1), since 
(Ä, {O,^,^! , • • -},p) is equivalent to (R, {0,1,2, • • -},p) (see [3; p. 35, 
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#2])» and since (iü, {0,1,2, • • -},p) is equivalent to (C, e,p) = Cp (again 
see Lemma 3.1), we have the following result: G{k) is of type {Q,CP) 
if (9.1) is fulfilled. 

(b) Case 7 = - 1 . Q is the logarithmic method L, (C, <?, 1) = Mo(q) is 
the logarithmic method t, and (C,q,p) is equivalent to the method ^p 

(Kuttner [14; Theorem 2]; £p the p-th power of the matrix f). Writing 
qn( for n = 1,2, • • •) in the form #n = £n log(n + 1) with £n —• 1, we 
see that now (7.1) coincides with the condition 

(9.2) l i m i n f l o g f c ^ p + 1 > L 

i—oo log kj 

Therefore (with R(x) = (x + 1 ) _ 1 in Lemma 8.2) we can state: G(k) is 
of type (L,tP) if (9.2) is fulfilled. 
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