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THE APPROXIMATE SOLUTION OF 
MONOTONE NONLINEAR OPERATOR EQUATIONS 

P.M. ANSELONE AND LEI JIN-GAN 

ABSTRACT. This paper is concerned with nonlinear equations 
involving monotone operators and compact perturbations of mono­
tone operators. Projection methods determine approximate solu­
tions. Such equations are put into the more general framework of 
regular operator approximation theory, which yields the conver­
gence of approximate solutions under minimal hypothesis. Non­
linear integral equations of Urysohn type illustrate the theory. 

1. Introduction and summary. There is a considerable literature on 
monotone nonlinear operator equations and compact perturbations of 
such equations. Principal applications are given by nonlinear integral 
equations of Urysohn and Hammerstein type. Some pertinent references 
are [5], [6], and [8]. 

Regular operator approximation theory [1], which is based on inverse-
compactness concepts, provides a convenient general framework for the 
convergence of approximate solutions. The existence of solutions then 
follows in a natural way. 

The gist of regular operator approximation theory is as follows. Let 
X and Y be Banach spaces. Let A, An: X -> Y, for n = 1, 2, . . . . We 
shall compare equations 

Ax = y, Anxn = yn, x, xn e X, y, yn e Y. 

Regular convergence An 1+ A is a composite property. It includes continu­
ous convergence, 

jrXft * VT . Xfi ~~* X —r" AflXn ~~* JTlXm 

It also includes asymptotic regularity: if {xn} is bounded and Anxn -> y 
on a subsequence, then {xn} has a convergent subsequence. Assume that 
An l+A,yn-+ y, and y > 0. Define 

S = {x e X: Ax = y, \\x\\ ^ 7-}, 

Sn = {xneX: Anxn = yH, \\xn\\ è ri-
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Then Sn -> S in the sense that any ^-neighborhood of S contains Sn for 
all n sufficiently large. If Sn # 0 for infinitely many n, then S # 0 . 
Further details are given in §2. 

Suppose henceforth that X is a reflexive real Banach space with con­
jugate space X*. Symbolize the relationship between X and X* by 

<y, x> = Ax), xeX,ye X *. 

For example, X = LP[0, 1] and X* is identified with L?[0, 1], where \\p + 
l/<7 = 1 and 1 < p, q < oo. Integral equation examples will be posed in 
a Hilbert space, namely L2[0, 1]. The greater generality adopted here 
requires no more analytical effort. 

For n = 1, 2, . . . , let Pn be a bounded linear projection on X and 
P* the adjoint projection on X*. Under typical hypotheses, Pn-* I and 
P* -> /*. For example, X is a Hilbert space and P* = Pn are orthogonal 
projections. Or Pn and P* may project onto subspaces spanned by ele­
ments of countable bases of X and X*. Projections onto spline subspaces 
of function spaces have great practical importance. Some pertinent re­
ferences are [2, 4, 7]. 

Let A: X -• X*. We shall compare equations 

Ax = y, P%Axn = P*y, x,xneX,ye Y. 

We shall verify that P%A 1+A when A is bounded, continuous, and 
strongly monotone: 

(Axi - Ax2, xi - x2y ^ a\\xx - x2||
2, a > 0. 

Then regular operator approximation theory relates solutions of Ax = y 
and P*Axn = />*>•. 

Extensions of the theory pertain to equations 

(A - K)x = y, P*(A - K)xn = P^y, 

where K is compact and continuous. In special cases, K is asymptotically 
linear or quasibounded. 

Since our purpose is to present a convenient general framework for the 
convergence theory, we do not go into details of practical implementa­
tion in this paper. 

2. Regular operator approximation theory. This material is adapted from 
[1], where proofs are available. We shall use the notation 

x, xn e l , S, Sn a X, neN = {1,2,.. .}. 

Denote infinite subsets of N by N', N", . . . . The sets of all cluster points 
(limits of subsequences) of {xn} and {Sn} are 
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{xn}* = {xe X: xn -> x, n e TV'}, 

{£„}* = {xe A\* xw -> x, xn eSn,ne N'}. 

A sequence {xn} is ^/-compact (discretely compact) if every subsequence 
has a convergent subsequence. Similarly, {Sn} is d-compact if every 
sequence {xn e Sn: ne N'} has a convergent subsequence. If Sn = 0 for 
ne N9 then {Sn} is trivially d-compact. 

Set convergence is defined by Sn -> S as « -» oo if any ^-neighborhood 
of 5 contains £„ for all w sufficiently large. 

Such a set limit is not unique, i.e., 

Sn-+ S cz S' => Sn-+ S'. 

Void sets play a special role : 

(2.1) Sn = 0 for « e JV => S„ -* 5 for all S a X, 

(2.2) Sw -> 0 => Sn = 0 for n sufficiently large, 

(2.3) Sn ± 0 for n e N\ Sn-> S => S # 0 . 

Set convergence and ^/-compactness are related by 

(2.4) {Sw} ^-compact, {Sn}* a S => Sn-+ S. 

This is fundamental in the regular operator approximation theory. 
Let A, An: X -> Y. Key properties are: 
(i) A is regular if for {xn} bounded, {Axn} ^-compact => {xn} d-com 

pact; 
(ii) {An} is asymptotically regular if, for {xn} bounded, {Anxn} d-com-

pact => {xn} d-compact, and every subsequence of {An} has this property. 
Regular, convergence is defined by Anl+A if An^A and {An} is 

asymptotically regular. 
By simple arguments, 

(2.5) An-^ A => A continuous, 

(2.6) An ~̂ -> A => A regular and continuous. 

Solutions of equations 

Ax = y, Anxn = yH, x, xn e X, y, yn e 7, 

are compared with the aid of (2.3) and (2.4): 

THEOREM 2.1. Let Anl+ A,yn-+ y,y > 0, and 

S = {xeX:Ax = y9 \\x\\ ^ r}9 

Sn = {xn e X: Anxn = yn, \\xn\\ ^ 7-}. 
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Then {Sn} is d-compact, {Sn}* c S, and Sn-+ S. If Sn # 0 for ne N'9 

then S 7e 0 . 

The scope of Theorem 2.1 can be enlarged. Let K, Kn : X -* y, for « e TV. 
Then : 

(i) A îs compact if {xn} bounded => {AJC„} ^-compact; 
(ii) {Kn} is asymptotically compact if {xn} bounded => {Knxn} ^/-com­

pact. 
Asymptotically compact convergence is defined by Kn JE+ K if Kn .£> K 

and {ATW} is asymptotically compact. By simple arguments, 

(2.7) Kn^ K => Kcompact, continuous, 

(2.8) A regular, K compact => A — K regular, 

(2.9) An -^ A, Kn^K^An-Kn^A-K. 

Thus, equations {A — K)x — y and (An — Kn)xn = yn can be compared 
with the aid of Theorem 2.1. 

The identity operator / on X is regular. When Y = X, (2.8) and (2.9) 
yield 

(2.10) K compact => I — K regular, 

(2.11) Kn^K=>I - Kn^I - K. 

These are the prototypes of the regular operator approximation theory. 

3. Projections. Let T, Tn e L(X), the space of bounded linear operators 
on X. If Tn -• T, then {Tn} is uniformly bounded, by the Banach-Stein-
haus Theorem. It follows that Tn -• T => Tn _£> T. This simplifies many 
proofs. 

Let Pn e L(X), n e N, be projections with ranges and null spaces denoted 
by 

(3.1) En = ®(Pn\ Fn = ^(Pn). 

Assume that 

(3.2) dim En < oo, En c En+1, Fn => Fn+1, 

(3.3) Pw -> / a s « -> oo. 

Then {/>„} is uniformly bounded, Pw _£> /, and 

(3.4) u£n = x n ^ = °-
For example, 

(3.5) Pnx = f; </-, x} fa fa eX,fe X*. 
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For S cz X, define S± c X* by 

(3.6) S1- = {yeX*: (y, x} = 0 for x e S}, 

and similarly for » S c i * with X** = X since X is reflexive. Recall that 
S = X if and only if S± = 0*, and S = X* if and only if S x = 0. 

The adjoint projections P* e L(Z*) are determined by 

(3.7) <P*>>, x> = < j , P„x>, x e X, j e X*. 

Since ||P*|| = | |PJ , {P*} is uniformly bounded. Furthermore, 

m(Pi) = ̂ (pny = Fi, 
yr(p*) = ®{pny = i ^ , 

dim ^(P*) < oo, ^(P*) <= #(P*+1), 

^ ( P * ) 3 ^(P* + 1 ) , 

(3.8) 

(3.9) 

(3.10) (J #(/>*) = X*, 0 JV(P*) = 0*. 
n n 

Then P * j = P*y = y, for .y e ^(P*) and n ^ m. Hence P* j -> ;/, for 
j e ̂ (P*) , m G JV. It follows that 

(3.11) P* -> /* as« -» oo. 

For example, corresponding to (3.5), 

(3.12) p;y = £<*&>& <f>i*x,fi*x*. 

There is a reciprocal relationship between P„ and P*. Either could be 
introduced first. As mentioned above, if X is a Hilbert space we may 
have orthogonal projections P* = Pn. See [4] for examples of projections 
onto spline subspaces. 

Weak convergence will be used occasionally: 

(3.13) xn -> x if <>>, xny -> <>>, *>, for y e X*. 

It is easy to verify that 

(3.14) xn - - X, yn-+ y=> (yn, xn} -+ <J>, x>. 

This will simplify some arguments. Recall that any bounded sequence in 
X is weakly sequentially compact : 

(3.15) {xn} bounded => xn -* x, n G N', 

for some je G X and iV' c TV. 

4. Strongly monotone operators. Let A : X -* X*. We shall be concerned 
with equations 
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(4l) Ax = y, P%Axn = P%y, 

xeX, xn e En, y e X*. 

By (3.6) and (3.8), 

(4.2) P%Axn = P$y o (Axn - y, z> = 0, for z e En, 

(4.3) P*AxH = P*y, xneEn=> (Axn - y, xn} = 0. 

In order to apply Theorem 2.1, we shall need P*A 1* A and, in particular, 
Pi A 1+ A. Since P* _£, /*, 

(4.4) P*A - ^ A o A continuous. 

Thus, we shall assume that A is continuous. We shall also need to assume 
that A is bounded : A maps bounded sets into bounded sets. 

The operator A: X -+ X* is strongly monotone with constant a if 

(4.5) (Axx - Ax2, xx - x2y è a\\xi - x2\\
2, a > 0. 

In this case, any solution of Ax = y is unique. 

LEMMA 4.1 If A is strongly monotone, then A is regular. 

PROOF. Assume {xn} bounded and {Axn} d-compact. By (3.15), 

xn -^ x, ne N', for some x e X, N' <z N, 

Axn -* y, ne N", for some y e X*, N" <=. N'. 

Then (3.14) yields 

(Axn — Ax, xn — x} -+ 0, ne N". 

By (4.5), xn -> x, n e N". Thus {xn} is d-compact and A is regular. 

LEMMA 4.2. If A is strongly monotone and bounded, then {P%A} is asym-
potically regular. 

PROOF. Assume {xn} bounded and {P%Axn} d-compact. Then {Axn }is 
bounded. By (3.15), 

xn -• x, ne N', for some x e X, N' a N, 

P%Axn -> y, ne N", for some y e X*, N" c N'. 

Now Pn -> /, Pnxn = xn, and (3.14) yield, for n e N", 

{Ax, xn - x> -• 0, 

(AxH9 P„x - x> -> 0, 

(Axn, xn - Pnx} = (P*Axn, xn - x} -> 0, 

(Axn — Ax, xn — Xs) -> 0. 
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By (4.5), xn -> x, n e N". Thus, {x„} is rf-compact and {P*A} is asympto­
tically regular. 

LEMMA 4.3. If A is strongly monotone, bounded, and continuous, then 
P*AL>A. 

PROOF. Use (4.4) and Lemma 4.2. 

This enables us to apply Theorem 2.1 to the equations Ax = y and 
P%Axn = P*y. First, however, we shall establish the existence of solutions 
xn of P*Axn — P%y. Since rather standard ideas are involved, we give a 
concise outline. The first result is a consequence of the Brouwer fixed 
point theorem. See [8]. 

LEMMA 4.4. Let Rn be real Euclidean space with the inner product ( , >. 
Assume D a Rn is bounded, open, convex, and 0 e D. Assume F: D -» Rn 

is continuous and (Fx, x} > Ofor x e 3D. Then Fx = Qfor some x e D. 

LEMMA 4.5. Assume A is strongly monotone with constant a. Let y e X*. 
Then 

(4.6) {Ax - y, x} > 0,for \\x\\ è y > \\AO - y\\/cc. 

PROOF. (AX - y, x> = (Ax - AO, x - 0} + (AO - y, x}. 

(4.7) (Ax -y,x}^ a\\xP - \\AO - y\\ \\x\\, 

(4.8) (Ax - y, x} > a\\x\\2 -ay \\x\\ à 0. 

LEMMA 4.6. Assume A is continuous, y e X*,y > 0, and 

(4.9) (Ax-y,x}>0, for \\x\\ = y. 

Then P%Axn = P*y,for some xn e En with \\xn\\ < y, n e N. 

PROOF. Without loss of generality, dim En = n. Let {fa . . . , <j>n) be 
any basis for En. Then 

n 
xn = / J X* ri-> Xn G ^n-

The correspondence xn <-> (xf, . . . , x%) defines an isomorphism En <-• Rn. 
Let 

F: Rn - R«, Fxn = ((Axn - y, <j>{), ..., (Axn - y, 0„». 

Then F is continuous. By (4.2), 

Fx« = 0<s> P*Axn = Ply. 

Let Dn = {xn e En: \\xn\\ < y} and Dn <-• Dn c Rn. Then Dn is bounded, 
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open, convex, and 0 e Dn. Also, dDn <-• dDn. By (4.9) and a brief calcula­
tion, 

(Fxn, xn} = (Axn - y, xn} > 0, for xn e dDn. 

By Lemma 4.4, Fxn = 0, for some xn e D. Hence, there exists xn <-> xn 

such that xn e Dn and P * ^ ^ = P%y. 
With this preparation, we apply Theorem 2.1 to the equations Ax = y 

and P*Axn = P*^. 

THEOREM 4.7. Assume A is bounded, continuous, and strongly monotone 
with constant a. Then P^A 1+ A. Let y e E* and y > \\AO — y\\/a. Then 

S„ = {xneEn: P*Axn = P*y, \\xn\\ ^ r} * 0 , 

for n e N, Ax = y has a unique solution x with \\x\\ ^ y, andSn -» {x}. 

PROOF. By Lemma 4.3, P*A 1+ A. By Lemmas 4.5 and 4.6, Sn ^ 0 for 
n e N. As mentioned before, A strongly monotone implies any solution 
of Ax = y is unique. Therefore, Theorem 2.1 applies, with Sn ^ 0 and 
S = {x} Ï 0 . 

COROLLARY 4.8. In Theorem 4.7, to xn e S „for ne N. Then there exists 
c such that 

(4.10) \\xn - Jt|| ^ c\\Pnx - x\\1/2 -* 0. 

PROOF. From (4.3) and (4.5), 

a\\xn - x\\2 ^ (Axn - Ax, xn - x} = (Ax„ - y, - x > 

= (Axn - y, Pnx - x} ^ \\Ax„ - y\\ \\Pnx - x\\ ^ ß\\Pnx - x\\, 

for some ß < 00. Let c = ^/ßja. Since Pn -• /, (4.10) follows. 

5. Compact perturbations of strongly monotone operators. Let K: X -> 
X*. By (2.7), (4.4) and P* _£, /*, 

(5.1) P*K^ Ko K compact, continuous. 

Now (2.9) and Lemma 4.3 yield 

LEMMA 5.1. If A is strongly monotone, bounded, and continuous, and if 
K is compact and continuous, then 

P%(A - K)-^A - K. 

Therefore, Theorem 2.1 relates solutions of equations 

(A - K)x = y, P*(A - K)xn = P*y. 
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The existence of solutions can be guaranteed in various ways. For exam­
ple, If A is strongly monotone with constant a and if 

(5.2) <Ä*i - Kx2, Xl - *2> ^ ß\\Xl - *2||2, 

with ß < a, then A — K is strongly monotone with constant a — ß. Then 
Theorem 4.7 applies to (A - K) x = y and P*(A - K) xn = P*y. 

An operator K: X -* X* is asymptotically linear if 

(5.3) WKx T , , ^ 1 1 -> 0 as IMI - oo, K» e L(X, X*). 

Equivalently, for any e > 0, there is an R < oo such that 

(5.4) HÄJC - K^xW £ e\\x\\, for ||*|| è R. 

Then 

(5.5) ||**|| £ (\\KJ\ + e) 11*11, for ||*|| ^ *. 

If Â  e L(X, X*)9 then # is asymptotically linear with K^ = ^ . 
An operator K: X -> X* is quasibounded [3] if there exist /3 < oo and 

R < oo such that 

(5.6) IIAJCII ^ |8||x||, for ||*|| ^ i?. 

Then 

(5.7) (Kx, *> ^ ^llxP, for ||*|| ^ 7?. 

If K is asymptotically linear, then K is quasibounded with any ß > WK^W 
in (5.6) and (5.7). 

With this preparation, we give another comparison of equations 
(A - K)x = y and i>*04 - K)xn = P*j \ 

THEOREM 5.2. Assume A is bounded, continuous, and strongly monotone 
with constant a. Assume K is compact, continuous, and satisfies (5.7) with 
ß < a and R < oo. (For example, K is asymptotically linear or quasi-
bounded) Let y e X*, r è R, and 7- > \\AO - y\\/(a - ß). Define 

S= {xeX:(A - K)x = y, \\x\\ ^ r), 

Sn = {*„ e En: P*(A - K) xn = P*y, \\xn\\ ^ r } . 

ThenSn-+ S, Sn ^ 09for ne N and S =t 0. 

PROOF. By Lemma 5.1, P*04 - K)l>A - #. From (4.5), (4.7), and 
(5.7), 

{(A - AD* - 7, *> è (et - 0)11*112 - MO - y\\ ||*|| > 0, 

for ||*|| è r-
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Lemma 4.6 yields Sn ^ 0 , for n e N. Theorem 2.1 implies that Sn -> S 
and S # 0 . 

Suppose that ^ is a real Hilbert space. As usual, identify X* with X. 
Then A, K: X -* X. For example, let A — I, the identity operator on X 
Then / is strongly monotone with a = 1. Theorem 5.2 pertains to equa­
tions 

(5.8) (/ - K)x = y, />*(/ - K)xn = P%y, 

where AT is compact, continuous, and satisfies (5.7) with ß < 1 and R < oo, 
and the constant y in the theorem satisfies y ^ R and y > \\y\\/(l — ß). 

6. Integral equations. We illustrate the theory with two well known 
integral equations in the real Hilbert space L2 = L2[0, 1]. For further 
details, see [6]. 

EXAMPLE 6.1. Consider 

(6.1) x(s) - £ k(s9 t)f(x(t), t)dt = y(s\ 

with typical hypotheses 

(6.2) ||fc|| =(££*(*> WdsdtJ2 < 1, 

(6.3) f(s, t) continuous on R x [0, 1], 

(6.4) |/fa, 0 - s\ bounded on R x [0, 1]. 

Express (6.1) in operator form: 

(6.5) (/ - KF)x = y; 

(6.6) Kx(s) = fXitto t)x(t)dt; 
Jo 

(6.7) Fx(t) = f(x(t% t). 

Then AT is a compact linear operator on L2 with \\K\\ ^ \\k\\ < 1. Also, 
F: L2 -+ L2, F is continuous and asymptotically linear with F^ = I. It 
follows that KF is compact, continuous, asymptotically linear with(^F)TO 

= A:, and KF satisfies (5.7) with \\K\\ < ß < 1. Therefore, Theorem 5.2 
pertains to the equations 

(6.8) (/ - KF)x = y, P*(I - KF)xn = P*y. 

See (5.8) and the accompanying remarks. In particular, (/ — KF)x = y 
has a solution with ||x|| ^ ||j>||/(l - j8). 

EXAMPLE 6.2. Consider a generalization of (6.1), 
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(6.9) a(x(s\ s) - jQk(x, t)f(x(t\ t)dt = y(s), 

where ||&|| < oo,/satisfies (6.3) and (6.4), and 

(6.10) a(x, s) is continuous on R x [0, 1], 

(6.11) \a(x9 s)\ g c + d\x\, c, d constants, 

(6.12) J ^ Z a > 0 on R x [0, 1]. 

Express (6.9) in operator form: 

(6.13) (A - KF)x = y; 

(6.14) Ax(s) = a(x(s\ s). 

Then A : L2 -> L2, A is continuous, bounded, and monotone with con­
stant a. See [6, Chapter 1]. Assume that ||Ä"|| < ß < a. Then Theorem 
5.2 pertains to 

(6.15) (A - KF)x = y9 P*(A - KF)xn = P*y. 

Thus, (A — KF)x = y has a solution in a sufficiently large ball. 
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