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ON THE SPACES CLASSIFYING COMPLEX VECTOR BUNDLES 
WITH GIVEN REAL DIMENSION 

ANDREW BAKER 

ABSTRACT We compute the integral cohomology ring of the space 
classifying complex vector bundles of real geometric dimension at 
most n and generalise this to any complex oriented theory ; also we 
rederive an integrality condition of Astey and Gitler for certain 
AT-theory characteristic classes of such bundles and relate these to a 
"universal unit" of Ray, Switzer, Taylor. 

Introduction. We will compute the integral cohomology ring of the 
space BUn which classifies complex vector bundles of real geometric di­
mension at most n. The form of the result depends on the parity of n but 
in each case there is neither torsion nor non-zero odd degree cohomology. 
In particular our results give polynomial generators well related to the 
Chern classes of the canonical complex bundle over BUn. We generalise 
this to an arbitrary "complex oriented" cohomology theory E*( ) (e.g., 
A/T/*( ), KU*( )) ; the method we use for this involves calculating the 
is-homology of the Bott space SO/U and the construction of a dual basis 
in ^-cohomology. Finally we consider a specific element in KU°(BUn) 
which has been used by L. Astey and S. Gitler to derive non-sectioning 
results for bundles ; we also explain the relation between this and a "uni­
versal unit" of [12]. 

The results of §1 and §2 are contained in the author's 1980 Ph.D. thesis 
and an earlier preprint (October 1980). §4 contains results found after 
conversations with S. Gitler. There is some overlap with the results of 
[6], in particular the idea of the proof of Theorem (2.2) is the same although 
we give our version to highlight certain details we require for later use. 

The author wishes to thank the British SERC and the Canadian NSERC 
for funding whilst parts of this research were carried out and would also 
like to thank Nigel Ray and Francis Clarke for advice and ideas over 
many years, and Sam Gitler for several helpful discussions. 

1. For any "stable subgroup" G of the infinite special orthogonal group 
SO we have G vector bundles and virtual bundles defined using the exist­
ence of inclusions (assumed as part of the data) 
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704 ANDREW BAKER 

G(n) <= SO(n) and G(«) <= G(« + 1). 

See [7], [11], [12]. 
It is then an interesting question to ask whether a particular G bundle 

£ -* X has reû/ geometric dimension at most n. This problem arises for 
example in connection with embeddings and immersions of manifolds. It 
is standard in topology to reformulate this in terms of the pullback (of 
fibrations) diagram 

BGk
n ^BGik) 

Xn 

(1.1) A Bjh 

BSCm—^BSCKK) 
Jjln 

Here 1 ^ n ^ k S oo. 
We can actually define BGk

n from this diagram where all maps are the 
obvious ones between the featured classifying spaces. Alternatively, we 
have as explicit models 

(1.2) BGk
n = E xG{k)SO(k)/SO(n). 

Here SO(co) = SO and G(oo) = G and E = ESO denotes a contractible 
free right SO, and hence SO(r), space for all r; G(k) then acts via the 
inclusion representation into SO(k); finally SO(n) acts on the left of 
SO(k) in the obvious way. 

Hence for a G{k) bundle £ -> X the realification /*£ has geometric di­
mension at most n iff its stable classifying map lifts to BG™. 

Note that we can generalise all of the above in two directions : 
(a) By taking a stable subgroup of the orthogonal group 0 ; 
(b) By taking G = U o<«G(/0 where there are compatible representations 
pn:G(n) -> 0(n). The main examples are Spin, Pin, Spinc and Pinc. We 
could also use the more general notion of ".Y-structure" [7]. The details 
are left to the interested reader. From now on we concentrate on the case 
k = oo and will set BGn = BG™. 

We will use the following notation. 

(1.3) an -• BSO(n) is the canonical «-plane bundle or virtual bundle 

if n = oo. 

(1.4) yn -> BG(n) is the canonical G(n) «-plane bundle induced 

from an by Bjn; this is virtual if « = oo. 

(1.5) £n -• BGn is the pullback of an by pn. 
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(1.6) £« -> BGn is the pullback of y -> BG by %M (this is a 

(/-virtual bundle). 

PROPOSITION 1.7. r£w w equivalent as a real virtual bundle to £w — £*, 
w/zere e£ denotes the n-dimensional trivial real bundle. 

There are obvious maps 

(1.8) qn: BGn-+BGn+1 

obtained using the inclusions SO(n) -• SO(n 4- 1). 

PROPOSITION 1.9. We have 

q*Çn+1 S f n + ef 

Furthermore, the map qn:BGn -* BGn+i is equivalent to the sphere bundle 
projection S(Çn+1) -> ^öw + 1 . 

The proof is easy and follows from the definitions and a well-known 
analogous result for the map BSO(n) -> BSO(n + 1). 

PROPOSITION (1.10) There is an equivalence h.SOjG ^ BGX with the 
properties that % ^ %\-K where % :SO/G -* £G includes the fibre of BG -• 

The proof is again easily seen from the definitions and a careful com­
parison of the various bundles involved. 

2. We now take G = U, the unitary group, with 

G(2k) = G(2k + 1) = U(k) c S6>(2£ + 1). 

We will compute the integral cohomology of the spaces BUN, and as a 
corollary in Section 3 will deduce results on their cohomology with respect 
to any "complex oriented" theory. 

Our results will require induction on n to calculate the cohomologies 
of BU2n and BU2n+h starting with knowledge of the case BUi, provided 
by 

LEMMA 2.1. H^BU^ = Z[yh yz, . . . , y2k+h . . J 
where y2k+1 = (l/2)ziC2A+i(Ci). 

In the above ck( )denotes the Ä>th Chern class. The proof uses (1.10) 
and the fact that SO/U is a Bott space with SO/U Ä flg £Spin, and from 
[4] 
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H*SO/U = Z[y[9 y* • • • , J W • • •] 

where y2k+1 = (1/2) c2yH-i(%*r)-
Recall that the projection qk:BUk -> BUk+i has an interpretation as the 

projection map of the sphere bundle £Ä+1 -> BUk+i. Hence we can use the 
Gysin sequence to calculate H*(BUk+i) form H*(BUk) since the bundle 
£k+i is orientable. 

THEOREM 2.2. H*(BU2n) = Zfa, c2, . . . , cn, w„, >>w+1, >>n+2, . . . , y2w_2, 
^2»-l, J2n+1, 72n+3, • • • , J^r+l, • • •] > ^ "> fl/w/ H*(BU2n+l) = Z[cl9 

C2, • • • > <V >Vn, J>»+2, • • • , ^ J>2»+i, .V2»+3, J^n+s, • • .] for r ^ n, where 

yk = \ ck(t,N) 

Wn = -J [Cn(£>2n) " Kf 2»)]-

//ere we use e(£2n)
 t0 denote the Euler class of the bundle £2n. 

The proof will follow by induction on the integer n in the statement 
of the Theorem with the aid of (2.1) and the following Lemmas. 

LEMMA 2.3. If 

H*(BU2n-Ù = Z[Ci, C2, . . . , Cn_i, J„, J„ + 1 , . . . , }>2n_2, J>2»-1, 

.F2n+1> • • > ^2r+l? • • •]» 

H*(BU2n) = Z[cl9 c2, . . . , cn, H>„, j>n+1, . . . , >>2n_2, y2n+1 , >>2B+I, 

^2»+3» • • • > J2r+1> • • •]• 

Here all notation agrees with that in (2.2). 

LEMMA 2.4. If 

H*{BU2n) = Z[Ci, C2, . . . , C„, W„, J>w+1, J>n+2, . . . , J2n-2, J>2»-1, 

J^a+b J^n+S, - - - , J^r+b • • -1 ***» 

H*(BU2n+1) = Z[Ci, C2, . . . , C„, >>w+1, >>n+2, . . . , J2w, ^2«+l, .V2«+3, 

^2n+5» • • • •> .V2r+1> • • •]• 

Here all notation agrees with that in (2.2). 

We thus only need to prove (2.3) and (2.4). We will only sketch the main 
points. 

PROOF OF (2.3): We have a Gysin sequence 
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. . .-*-> H*-2*{BU2n) -^ H*(BU2n) — H*(BU2H_à — • • • 

Here e denotes multiplication by the Euler class e(£2») (raising degree by 
In) q = q*n-i and (J) is the Gysin boundary map which lowers degree 
by In — 1. However it is easily seen that this splits into a short exact 
sequence with <jj identically 0 and H*{BU2r) having trivial torsion and odd 
degree groups by the induction hypothesis. Now setting wn to be any 
element of H2n(BU2n) such that q(wn) = yn we obtain a relation of the 
form 

Cn(£>2n) = aetf2n) + bwn + 6 

where a, b e Z and 6 is decomposable. We have on applying q that 
cn(Ç>2n-i) = byn + q(d), hence b = 2 and 0 = 0 by the induction hypothesis 
and decomposability. But now we can see that a is odd by, for example, 
considering the bundle yn -> BU(n) which has a lift to BU2n. After rede­
fining wn (if necessary) by adding an even multiple of e(£2») w e c a n finally 
deduce that 

Cn(%2n) = e(%2n) + 2ww. 

The rest of the proof is routine. 

PROOF OF (2.4) : Once again our Gysin sequence 

. . . - ^ H*(BU2n+l) — H*^»+HBU2n+1) — H*^\BU2n) - ^ • • • 

splits into a short exact sequence since e(£2»+i) = 0; this follows by con­
sidering the coefficient sequence induced by the multiplication by 2 map 
on Z wherein we have e(%2n+x) = <5w2n(£2*+i), which is 0 since w2„(£2»+i) = 
p2C„(Z2n+i) '•>nere 5 and p2 are the boundary and reduction maps respectively. 
We can therefore deduce that there is a class z e H2n(BU2n) such that as 
an //*(i?£/2rH-i)-module 

H*(BU2H) = H*(BU2n+1) {1, z}. 

We also have a single multiplicative relation 

z2 = j3. z + a. 1 

for some a, ße H*(BU2„+i). Now observe that in fact we can take ± wn 

for z since this class is characterised by the property 0(z) = 1 (see [8]) 
and ± wn also satisfies this by an analysis of im q making use of the in­
duction hypothesis. We then obtain (with careful checking of the effect 
of the sign chosen) 

(2.5) w2 = /3.w„ + a. 1, 

(2.6) » = j8, 
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by [8] (9.1). 
We can compute a and ß by the following line of argument. We have 

three identities : 

(2.7) e(£2n¥ = pn(Ç2n) = q[pn(Ç2n+1)]; 

(2.8) e(Ç2n) = cn&2n) - 2wn; 

(2.9) pM2n) = ( - lM2c2w(C2n) - 2c1(Ç2w)c2M_1(Ç2w) + . . . + ( - l)»cn&2nn 

The first of these is a basic relation between Euler and Pontrjagin classes, 
the second a part of our inductive assumption, and the third uses the 
definition of the Pontrjagin class as 

( - l )^2n(£ 2 „®C) 

together with the identification 

É2» ® C S Ç2w + S , 

and the Cartan formula. 
Combining these yields 

-*cnwn + 4w2 = ( - l)»[2c2w(Ç2n) - 2c1(Ç2>2n_1(Ç2n) 

+ ••• +(-l)W-12^-l(C2«K+l(C2n)]. 

We can now apply cj> to (2.10), and by appealing to [8] §3, Lemma 1 use 

(2.11) 4(cHWn) = CM"») 

to deduce 

(2.12) ß = cn. 

This last step requires the facts that im q = ker (jj and that H*(BU2n) is 
torsion free. Now (2.5), and (2.12) imply 

(2.13) a A = wl - cnwn 

in H*»(BU2n). 
Finally we can combine (2.10) and (2.13) to deduce 

(2.14) -y c2n(Ç2w) = ( - l)n a. 1 (mod decomposables) 

in H*»(BU2n). 
This allows us to define y2n e Hin(BU2n+i) as 

yin = ~2 C2»(C2n+l) 

= a (mod decomposables). 
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To complete the proof requires a straightforward verification that the 
elements of cl9 c2, • . . , cn, yn+1,. . . , y2n_x, y2n, y2n+i, ^2»+3,. . . are indeed 
a set of polynomial generators. 

A number of immediate corollaries follow from Theorem (2.2). In par­
ticular results of [13] for mod p cohomology and the following form of 
"splitting principle" for complex bundles with lift to BUN. 

Consider the bundle 7*w x %* 7* -• BU{n) x SO/U; since %*? is trivial 
as a real bundle (it is the pullback of the composition % • r:SO/U -» BU -> 
BSO which is trivial) there is a lift g of yn x y*y to BU2n; set g' = g2n • g: 
BU(n) x SO/U -> BU2n+1. Notice that 

g**n = Yg*[Cn(Z2n)-e(S2n)] 

= Cn-iin) ® y[ + • • • + 1 ® -1 cw(%*r)-

THEOREM 2.15. g*:H*(BU2n) -> H*(BU(n) x 50/1/) w Û monomor-
phism onto a direct summand; similarly for g'*. 

The proof is direct from (2.2). Note that this result allows, for example, 
calculation of the action of the Steenrod algebra on H*(BUN) since this 
is known on H*(BU(n) x SO/U) = H*(BU(n) ® H*(SO/U) with (mod 
p) coefficients; cf, [13]. We can also calculate the Pontrjagin classes of 
%N in terms of our generators. 

3. In this section we will investigate the construction of algebra gen­
erators for E*(BUN) for a "complex oriented ring spectrum" (£", xE) with 
xE G E2(CP°°). The reader is referred to[l] for a detailed exposition of the 
relevant notions. In particular, we have that E*(CP°°) is the free E* module 
on a basis {ßE : n ^ 0], and that E*(CP°°) is the power series ring on xE, 
£*[[JC£1] oyer E* = E_*\ moreover, with respect to the ^-theory Kro-
necker product, we have 

<(**)', ßf> = òu 

hence, {(xE)*} and {ßf} are dual bases over E*. We also have a canonical 
formal group law FE(X, Y) e E*[[X, Y]] associated to the pair (E, xE) 
and hence a unique "formal inverse" series [— 1]E(X) e E*[[X]] with 

FE(X,[-l]EX) = 0. 

The canonical map /: CP°° = BU(l) -* BU induces a monomorphism 

i*: E*(CP°°)-* E*(BU) 

and this allows us to identify /* ßE with ßE and obtain 

E*(BU) = E*[ßE: n ^ 1]. 
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Dually we have 

E*(BU) = E*[[cE: n ^ 1]] 

where cE is the n-Xh universal i:-theory Chern-Conner-Floyd class, for 
which 

i*cE = 0, n > 1 

= xE, n = 1. 

These satisfy the Cartan formula, as do the ßE, with respect to the canoni­
cal diagonals in £'-(co)homology. For a complex bundle £ -> X, with 
classifying map f: X -+ BU it is usual to write 

cE($)=f*cE. 

If £ -• A" is a /^-dimensional real bundle which is M {/-orientable (for ex­
ample, stably complex) then there is a canonical E-E\x\er class eE(£) e 
Ek(X); if £ is in fact an «-dimensional complex bundle, then eE(%) = 
cE

n(0. 
Our main result is the following, where we leave the precise definitions 

of various classes to the body of this section. 

THEOREM 3.1. For a complex oriented ring spectrum (E, xE) we have 
classes 

cE = <£(££) e E**(BUN). 

wEeE*>(BU2„), 

and yE e E2k(BUN) for certain values of k depending on N, such, that. 

E*(BU2„) = E*[[cf, . . . , cE„, wE, yE
+1, yE

+2,. .., 

J^w-l* y2n+l> y2n+3i • • •> J^r+l* • • •]]> 

E*(BU2n+l) = E*[[cE, . . . , cE, yE
+1, yE

+2, . . ., 

y2n-l'> y2n> ^w+l? J2»+3> • • • •> J^r+l» • • •]]• 

Moreover•, we Aave 

M = cf(Ç2n) - <?s(£2w) (mod filtration) 

cf(Ctf) — 2yf (mod filtration, decomposables) 

and h%yE = yf e E2k(SO/U) whenever this class is defined. 

In this statement we make use of the composites 

hN: SOjU-^BU1 > BUN 

(see (1.10)). The statements "mod filtration" refers to the skeletal filtra-
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tion on E*(BUN) which agrees with that of the associated Atiyah-Hirze-
bruch Spectral Sequence (AHSS); similarly, "mod decomposables" 
refers to the decomposables in the £*-algebra structure of E*(BUN) 

We begin by observing that the overall form of (3.1) is suggested by the 
triviality 

PROPOSITION 3.2. We have 

E*(BUN) ^ £* ® H**(BUN\ 

hence E*(BUN) is the power series ring on a set of generators in one-to-one 
correspondence with those of H*(BUN). 

This is a consequence of a standard AHSS argument. The subtlety is 
of course to provide good explicit generators. 

From now on we will assume given a pair (E, xE) and often delete E 
from the notation if no confusion is likely to result. We will also tacitly 
assume that E* is torsion free, since by universality of the pair (MU, 
xMU) this will make the statements of some results rather simpler. 

We begin by investigating E*(SO/U); recall that BUX ^ SO/U. Our 
technique will involve a calculation of E*(SO/U) suggested to the author 
by Francis Clarke, and then the construction of elements dual to certain 
basis elements for this algebra. 

Consider the bundle (7- — 7-*) -^ BU; since the realification r(j — 7-*) 
is trivial there is a lift to the fibre of Bj: BU -+ BSO -> but this fibre is 
SO/U included by %; SO/U -> BU Indeed, such a lift <j>: BU -> SO/U 
is unique up to homotopy. We can take both % and ^ to be infinite loop 
maps, which induce E* algebra maps on ^-homology. 

PROPOSITION 3.3. We have E*(SO/U) = E*[0*\n ^ l]K6E(T)6E([- l]E 

(T) = 1> where 6E = 0,(j3JD and 

0E(T) = 2 91 T* G E*(SO/U) [[T]]. 
o2« 

The notation 

<0E(T)0B(l-MT))= 1> 

signifies the ideal in E*(SO/U) generated by the coefficients of the series 

0B(T)0*(l-lWn) - 1. 

PROOF OF (3.3). We have E*(BU) = E+ [ßn\\ ^ n]. Also we have that 
X*: E*(SO/U) -> E*(BU) is a monomorphism (by the corresponding 
result in the case E = H and the collapsing of the relevant AHSS — 
see [11], [12]. Similarly fa: E*(BU) -* E^{SOIU) is onto. Note that 1 • <l> 
classifies y — 7-* and hence 
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X*Mß(T)) = ß(T)ß([-l](T))-\ 

This follows from basic properties of the series ß(T) = 2o^« ßnT
n related 

to the actions of the diagonal, Whitney sum and bundle conjugation 
(the last relies on the fact that ß(T) arises in E*(CP°°)flTl\ together with a 
formula to be found in [10]). Hence 

X*(d(T)0([-l](T)) = 1. 

Since %* is a monomorphism we get the relation 

0(T)0([-\](T)) = 1. 

The remaining details make use of the collapsing of the relevant AHSS. 
For a space x with E+(X x X) ^ E*(X) ® E*E*(X) let A: X -+ X x 

X denote the diagonal and let 

PE*(X) = {x G Ë+(X)\Mx) = x ® 1 + 1 ® x] 

be the ^-module of primitives. 

COROLLARY 3.4. PE*(SO/U) is a free E* summand of E*(SO/U) with 
basis {7C2k+i\k ^ 0} where 

and af = ßfaf-x - j3föf_2 + * * ' + (— l)Ä_1A:/3f is the Newton polyno­
mial in the j3f 's. 

Of course, PE*(BU) is the free ^-module on the öf's. The proof of 
this Corollary involves a careful bookeeping exercise in the AHSS for 
E*(SO/U) preceded by a separate verification for the case E — H. 

It is worthwhile observing that we can identify E*(BU) with the E*-
algebra of symmetric functions on indeterminates w1? u2, . . . ; then ßk = 
2]«iw2... uk and ak = £wf. Hence we can interpret E*(SO/U)as a suitable 
quotient of E*(BU) = E*[ßi, ß2, . . .]. Upon setting 0k = Y*u\ui • • ^ and 
^* = Z X w e n a v e t n e relations amongst the generators 0k of E*(SO/U) 

(3.5) n o + «.-r)o + «,-[-i](r)) = i. 
On applying the natural logarithm function In to the series of relations 

(3.5) we obtain 

(3.6) 2 ^ D * " 1 TTnT» = In 0(D 

and hence 

(3.7) 2 ^ L ) " " 1 for* + JT,([- i] (D)«] = o. 
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This gives for example the recursive formulae 

(3.8) it2k=-2k[ 2 ! = ! ) ' ' % ( [ - i ] ( D ) ; ] 2 , 
ls*/£2*-l J 

where the notation [f(T)]r signifies the coefficient of Tr in the power series 
f(T). More generally, any symmetric function with occurrences of the 
w/s to even degree can be expressed in terms of those with only odd 
degree occurrences using the relations of (3.5) repeatedly; the main 
formula required for this is [—1] (T) = — T + . . . and so a basis for 
E*(SO/U) consists of the functions 

(3.9) 7T(2si+1, 2S2+1,..., 25m+1) = M 1 + 1 . • . U%m+1 

which can be expressed as .^-polynomials in the 0/s. 
Now we return to E*(SO/U). By the definition of the indecomposable 

quotient, QE*(SO/U) = Ë*(SO/U)2. Then 

(3.10) QE*(SO/U) s HomE*(PE*(SO/U\ £*). 

To obtain a basis for QE*(SO/U) we can dualise the basis {flr2*+i|fc è 0} 
of PE*(SO/U); more precisely, we define ;fm e E*k+2 (SO/U) by 

Ofm> KQn+i,..., 2rm+i)> = 0, unless m = 1 and rx = k; 

<jirt^2*+l> = I-

PROPOSITION 3.12 E*(SO/U) = E*[[yg+l\k g 0]]. 

The proof again involves first the verification of the case E — H and 
then the use of the collapsing AHSS for E*(SO\U). Beware —the 
generators y^+i only agree with the j>2/m

 m ° d decomposables ! 
Now we-can attempt to compare %*c% with our given generators of 

E*(SO/U). 

PROPOSITION 3.13. In E*(SO/U), 

%*<f = j f - L [([-l](D)*k>f (mod decomposables) 

where yf denotes the dual of icf with respect to the basis of E*(SO/U) 
described earlier in the section. 

PROOF. First set c(T) = £0<^ cjT* e E*(BU) [[T]]. Then 

= S cn(Tn + ([-l](T))n) (mod decomposables). 

Now (z7cky = (<f>*z, aky for zeE*(SO/U) and so since 
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<cy, ak} = 5jtk (Kronecker delta) 

<z, aky = 0 if z is decomposable, 

we have the state* result. 
Notice that this yields in particular 

(3.14) %*£•£+! = 2v&^i + (higher filtration and decomposable terms). 

N.B. This result involves formidable recursive formulae for the elements 
y% even mod decomposables. It is not clear that even for a theory such 
as KU*( ) these generators are easy to work with. It may be that there 
are more convenient systems of generators with simpler formulae taking 
the place of those in (3.13) (cf. [6]). 

Notice that 

(3.15) e*(£2n+1) = 0 in E*(BU2n+1\ 

since when E = MU, MU2n^1(BU2n+i) = 0 and from this the general case 
follows by universality of MU. 

We can now prove Theorem (3.1) by mimicking the proof of (2.2) using 
as starting point the description of E*(SO/U) given in (3.12). 

4. In this section we will rederive some results of Crabb and Steer [5], 
and Astey and Gitler [2] which have been used to obtain several non-
sectioning conditions for bundles. Their approach is to work "intrinsi­
cally" with respect to a given stably complex bundle, whilst we will use 
our "universal" results on KU*(BUn). Our approach also reveals an 
interesting connection between their modified total Chern classes and a 
certain "universal unit" of [12]. 

Recall that for a complex bundle £ -> X (of dimension m ^ oo say) 
there are characteristic classes j-n(0 e KU°(X) such that 

(4.1) c™{Q = /»r»(0 

where KU* = KU* = Z[t, t~l] with t e KU2 the Bott generator and 
c%u( ) the KU-theory Chern class as in §3. We also have the total y 
class f(0 = 1 + r i ( 0 + r 2 (ö + . . . e KU%X). Note that each r

n(Q is a 
reduced class whilst f(Q is a one dimensional virtual bundle. We will 
denote the universal 7-'s by yn = j-n(f) and f = f(j) e KU°(BU). We will 
need the following identification: 

(4.2) f ( 0 = det C 

where det £ is the line bundle obtained from the principal U(m)-bund\e 
of £ with the aid of the determinant representation det: U(m) -> U(l). 

DEFINITION 4.3. A O = Eo^(0/2)'>'"(Q G KU°(X) ® Z[l/2]. (This is 
denoted cKU(Q in [2].) 
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Then F has the properties 

ACi + C2) = ACOAC2), 

F{X) = -1 (1 + A) if A -> x is a line bundle. 

THEOREM 4.4. ([2], [5]) Le/ Ç -+ X be a stably compier bundle such that 
there is a real bundle 6 -» X of dimension 2s + 1 with r£ ^ 6; then 

2sT{Q e KU\X). 

PROOF. From (2.15) together with the familiar AHSS argument we have 

g'*: KU°(BU2s+l) -> KU°(BU(s) x SO/U) s KU°(BU(s) ® KU°(SO/U) 

is monomorphic onto a direct summand. Observe that 

(4.4) s'T(ç2s+i) = Ar,) ® nx*r) 
and since 2sr(fs) is manifestly in KU°(BU(s)) we need only show that 
Ax*r) *s *n KU°(SO/U). To do this we will use the splitting principle 
in the form of a map 

0: ( F f C O > SO/U (with a countably infinite product) 

inducing a monomorphism onto a summand in £-cohomology where 
E is any complex oriented theory; hence % • <p also has this property. 
But on each factor of the product of projective spaces this composite 
classifies the bundle yj — y* and so we have 

<̂ *ch r(x*r) = n ch r{j] - y*) 
= Il Ch (1 + 7]) (1 + ?*)-! 

= H chi], since 97* = r]~l. 

Hence we have $* ch r(x*7) = ch (det 7-) and so since ch is a mono­
morphism we have 

(4.5) <p*X*T = det 7-

A calculation with first Chern classes shows that we even have 

(4.6) (AX*?-))2 = det x*r. 

The connection with the universal unit of [12] arises as follows. There 
is an orientation AKU for x*7 in KU°(SO/U) determined by the choice of 
xKU as t-\r] - 1) e KU2(CP°°). Then calculating ch AKU we see that 

(4.7) A™ = Az*r)-
There is a (universal) universal unit ^M [ / G MU°(SO/U) which has the 
interesting property that if 
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AMU = 2 affl (yMur 

then the ideal in MU* generated by the coefficients a^ for sequences co 
with (yMU}<o ^ l is equal to the ideal of all elements which can be given 
new {/-structures to bound; this in turn in equal to the kernel of the 
forgetful homomorphism F*: MU* -• MSO* (see [11], [12]). It would be 
interesting to know if there is a characteristic class in MU*(BUn) anal­
ogous to r with a reasonably simple description in terms of the Conner-
Floyd classes cfu. 
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