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EXTREMA AND NOWHERE DIFFERENTIABLE FUNCTIONS 

E.E. POSEY AND J.E. VAUGHAN 

ABSTRACT. We give simple, unified constructions of continuous, 
nowhere differentiable functions that (1) have no proper local 
maxima or proper local minima, (2) have no proper local maxima 
but have proper local minima at every point of a dense set, and (3) 
have proper local maxima at every point of a dense set; and proper 
local minima at every point of another dense set. 

1. Introduction. A function / : R -> R is said to have a proper (or strict) 
local maximum at p in R provided there exists e > 0 such that if 0 < 
\x — p | < £, then f(x) < f(p). A function / : R -> R is said to have a local 
maximum at p e R provided there exists s > 0 such that if \x — p\ < e, 
then f(x) ^ f(p). The terms proper local minimum and local minimum 
are defined in the obvious way. The main purpose of this paper is to give 
simple, unified constructions of the following examples. 

EXAMPLES 1.1. There exist continuous, nowhere differentiable, real 
valued functions/, g, and h of a real variable such that 

A. The function / has no proper local maxima and no proper local 
minima, and, furthermore f"l(y) is a perfect subset of R for every y e R. 

B. The function g has no proper local maxima, but has proper local 
minima at every point of a dense subset of R. 

C. The function h has proper local maxima at every point of a dense 
subset of R and has proper local minima at every point of another dense 
subset of R. 

We also mention the following result which concerns all local extrema 
of continuous, nowhere monotone functions. In particular, it applies to 
the function / of Example A. 

THEOREM 1.2. iff: R -> R is a continousfunction which is not monotone 
over any interval, then the set of points where f has a local maximum and 
the set of points where f has a local minimum are both dense in R. Further, 
both of these sets are sets of first category. 
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The dense sets mentioned in Theorem 1.2 can be uncountable. This is 
easy to see using the function/of Example 1.1(A), which obviously is not 
monotone over any interval. It is easy to check that / - 1 (0) is the set of 
absolute minima for/, and/ _ 1( l ) is the set of absolute maxima for / Since 
these sets are non-empty perfect sets, they both have the cardinality of the 
continuum. 

The examples are constructed using standard techniques. In each 
example, we construct a Cauchy sequence (/,) of "sawtooth" functions in 
the space of continuous functions, and the limit of this sequence is the 
desired example. We believe that our constructions, taking into account 
the definition of the functions and the verfications of the properties, are 
especially simple because, for every «, the construction offn+1 from/n is 
repetitive and easy to visualize. In addition, the three examples are unified 
in the sense that given one of the constructions, any of the others can be 
obtained from it by simple and obvious modifications. Thus, the effort 
needed to construct and verify these three examples is reduced. The con
structions are given in §2, 3 and 4, and the proof of Theorem 1.2 is given 
in §5. We conclude this section with a discussion of some known results 
which are related to the examples in 1.1. 

EXAMPLE A. It is obvious that functions like/which have/_ 1(j) perfect 
for all y in R have no proper local extrema. Continuous functions which 
have f~\y) perfect for all y in R have been constructed. The first was by 
J. Gilles [4] (also see [2, Remark 4.4] for a discussion of an error in the 
paper by Gilles). Another construction of such a function is attributed to 
J. Foran in [1, p. 223]. Our function/has no finite or infinite derivative 
at any point. 

EXAMPLE B. AS far as we know, our construction in §3 is the only ex
plicit construction of a function having the properties of Example B. 
Further, it can be shown that the standard Baire category argument cannot 
be used to prove that such functions exist because the set of all functions 
having the property of Example B i s a set of first category in the space of 
continuous functions. Thus, it seems that Example B is new. In [5], we 
constructed a continuous function having proper local maxima on a dense 
set, but this is not as strong as Example B. 

EXAMPLE C. The existence of continuous functions which have proper 
local extrema on a dense set was proved by A.M. Bruckner and K.M. 
Garg [2] using the Baire category technique. An explicit construction of 
a function having the properties of Example C was given by F.S. Cater 
[3]. His construction, like that of Gilles and ours in [5], uses infinite series. 
The function h of Example C, like / and g, is the limit of a sequence of 
functions which are numerically explicit and easy to visualize. 
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2. Construction of the function f of Example 1.1. Let C(R) denote the 
set of all bounded, continuous functions F: R -» R, and define the sup 
norm on C(R) in the usual way : 

HF« = sup{|F(*) | :xeR}. 

In all three examples we will start our sequence, with f0 defined as 
follows: f0 is the unique continuous, piecewise linear function f0: R -* R 
such that for every integer «, 

fl if « is even 

and which is linear over [n, n + 1] for every integer n. 
We define for each n ^ 0 the discrete, countable sets Pn = {q(2~3n): 

q is an integer}. Thus P0 is the set of integers, Px is the set of fractions 
of the form (#/8), and so on. 

Notation. If p, p' are consecutive in Pn , we denote the nine consecutive 
elements {p + k • 2~3w-3: 0 g k g 8} in Pw+1 by p, pl9 p2,. . . , p6,P7>P'-
We denote the set of non-negative integers by œ. 

To finish the construction of the sequence {/„} we need to describe how 
to construct fn+1 from fn. We do this by looking at each pePn and 
defining fn+1 over the interval [/?, /?'], where p' is the immediate successor 
of p in Pn. There are two cases depending on whether fn is decreasing over 
[/>, /?r]or increasing over[/?, /?']. The instructions, however, read the same 
in each case (see figures 1 and 2). 

2.1. If fn is defined on [/?, /?'], where p e Pw and ;?, /?i,/?2, • • • Pi> P' a r e 

consecutive in Pn+i, then define /w+1 to be the unique continuous, piece-
wise linear function which is linear over [/?, px], [pÌ9 p3], [ps, p5], [p5, p7], 
and [/?7, p'\ and such that 

a. /*fi( /0 = /„(p) and/^ iC/ i ' ) = /W(p') 

b. /w+i(Pi) = /„(p4) 

C /»+i(P2> = fn(P2) 

d. /^-i(Ps) = /»(P) 

e. /w+i(P4) = /»(P4> 

f. fn+l(pù=fn(p') 

g- /»+i(Pe) = /»(Pe) 
h. fn+liPl) = /»(P4> 

this by elementary considerations in Euclidean Geometry. To prove (5) 
let j < n + 1. By the induction hypothesis we are given that the maxi-
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FIGURE 1. FIGURE 2. 

We now state the conditions on the sequence {/„} that we need in order 
to prove part A of Example 1.1. 

We proceed by induction, and start with f0 and P0 as noted above. 
Assume we have constructed f and P{ for 0 ^ i ^ n such that the fol
lowing hold 

2.2. Induction hypotheses. 
( 1 ) / is a continuous, piecewise linear function which is linear over 

[/?, p'] for each pePn (where p' is the immediate successor of/? in Pn). 
(2)IL/ï-i-./-| | < 1/2'-. 
(3) If p e Pi-i, then ftp) =/Up)-
(4) Let p, p' be consecutive in Pt-__v Then /• is defined from f_x over 

[p, p'\ using the instructions of 2.1. 
(5) If p, p' are consecutive in Pj when j < /, then 

ma.x{fj(x):p è x ^ p'} = msLx{f(x): p ^ x ^ p'} and 
min{/}(x): p ^ x ^ p'} = min{./•(*): p ^ x g /?'}. 

(6) If p, p' are consecutive in P{_x and s is the slope of the line segment 
which is the graph of fi_x over [/?, />'], then the slopes of f over [/?, /?J, 
t/>3» M a n d [P7» P'] a11 e c l u a l ± 4 s a n d t n e s l o P e s o f y«' o v e r t/7!' ^3] a n d 

[/75, p7] both equal ± 2$. 

The inductive step. Condition (4) of 2.2 tells how to construct fn+1 

from/,, ; so we need to show that the other conditions in 2.2 hold for n + 1. 
Conditions (1) and (3) are obvious. To see that conditions (2) and (6) 

hold, let/?, p' be consecutive in Pn. Consider the graph offn over [/?, /?'] 
to be the diagonal of a rectangle with vertices {pjn(p)\(pjn(p')\ (p',fÄP))> 
and (//, fH{p')). In going from/n t o / n + 1 we partition the interval [p, />'] 
into eight intervals of equal length. Thus the diagonal is also partitioned 
into eight segments of equal length. Conditions (2) and (6) follow from 
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mum of/} over [p, p'] equals the maximum of/„ over [p, />']. Let {sk: 0 <; 
^ m} be the sequence of all consecutive points in Pn such that p = 
SQ < Si < • • • < ,sw_x < sm = p'. By the way/w+1 was constructed from 
fn over each interval [sk, sk+i] (0 ^ k ^ ra), we see that the maximum 
value of fn+1 over fo, ^+ 1] equals the maximum value of /„ over [sk, 
sk+1] (which is either fn(sk) or fn(sk+1) since fn is linear over |>Ä, sk+1]). 
It follows that the maximum value of fn+1 over [p, pf] equals the maximum 
value of fn (or fj) over [p, p']. A similar argument works for minimums. 
This completes the induction and the construction of fn for all n ^ 0. 

As discussed above we take / = linv+oo fn. Then / is continuous, and 
for all x G R we have/(x) = limM_>00 fn(x). 

2.3 CLAIM. For every j e R , the set f~l(y) is a perfect (possibly empty) 
subset of R. 

PROOF. Let y G R, x £f~l(y), and e > 0. We need to show that there 
exists z G R such that 0 < | x — z | < e and f(z) = /(x) = y. Choose n 
so large that if p, p' are consecutive in Pn, then p' — p < e. Choose p, 
p' G Pn such that /? ^ x < p'. If x e P then also choose A so large that 
x G Pn (i.e., x = /?), and take z — /?3, Hence, we assume x <£ P. Since /„ 
is linear over [p, p'], one of fn(p),fn(p') is the maximum value of/„ over 
[/?,/?'] and the other is the minimum such value. By 2.2 (5) it follow that 
f(x) lies in the closed interval / which has end points f(p) = fn(p) and 
f(p') = fn(p'). Let q, q' be consecutive in {p, /?1? . . . , p7, p'} such that 
q < x < q'. Note that for every j> G /, the piecewise linear function fn+1 

crosses level y at least two times (usually three times); so there exists 
0 e IP* P'] s u c n t n a t a ^ x anc^ fn+iiß) = y = f(x), since /w+1 is linear 
(hence one-one) over [q, q']9 a£[q, q']. Let r, r' be consecutive in {/?, 
/ ? ! , . . . /?7, />'} such that a G [r, r']. Since fn+1 is linear over [r, /-'], we see 
that b = f(a) lies in the closed interval with end points f(r) = /w+iW 
and f(r') = /„-HO"')- By the intermediate value theorem, there exists 
z G [r, r'] such that/(z) = y. Since [r, r'] f| (#, #') = 0 , we see that z ^ x. 
Thus, x is not isolated in f~l(y). 

2.4 CLAIM. The function f is nowhere differentiate. 

PROOF. Let x e R. By 2.2 (6) there exists for all / G CO consecutive ah b{ 

in P, such that a^ ^ x ^ b{ and 

which implies by 2.2(3) that 

\(Aat) - ROM* - b,)-i\ à i , 

Thus/does not have a derivative at x. 
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FIGURE 3. FIGURE 4. 

2.5 CLAIM. The function f has no finite or infinite derivative at any point. 

PROOF. This follows at once from 2.4 (which shows that the difference-
quotients have ±oo as a cluster point) and 2.3 (which shows that the 
difference-quotients have 0 as a cluster point). 

It can be shown that /has infinite one-sided derivatives at certain points 
x$P. 

3. Construction of the function g in Example 1.1(B). The function g is 
similar to/except that we want g to have proper local minima on a dense 
set. Loosely speaking, it is conditions 2.1(/) in the decreasing case, and 
2.1(d) in the increasing case which kill off proper local minima for the 
function/ Thus, we change those conditions to read as follows (for nota-
tional convenience we denote this new version offn by gn). 

3.1. (2.1(/) (decreasing case) revised forg). g,(/?5) = g,_i(/>2) (see Fig. 3). 
3.2. (2.1(d) (increasing case) revised for g). g,(/>3) = g,_i(/>6) (see Fig. 4). 
We leave it to the reader to make the appropriate changes in the in

structions 2.1 so that gn+1 is linear over the correct intervals (see figures 
3 and 4). 

Let g = lim^oo gn. Thus g is a continuous nowhere differentiable func
tion, and g has a proper local minimum at each point of a dense set D. 
This last claim follows easily from the following lemma which was sug
gested by the referee. 

LEMMA 3.3. Let p, q be consecutive in Pn such that gn(p) < gn(#), then 
for every k ^ 0 the following statement holds 

S(k): For every x in the closed interval having end points p, q, 

gn+M - gn(p) è (1/2) \X - p\. 

PROOF. (By induction on k). If s is the slope of a line segment which is 
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part of the graph of gn, then | j | ^ 1 ^ 1/2; so S(0) holds. We assume 
S(k) and prove S(k + 1). Let x be in the closed interval with end points 
p, q. Pick r, s consecutive in Pn+k such that x is in the closed interval with 
end points r, s, and such that gn+k(r) < gn+k(s). By the way g(n+k)+1 was 
constructed from g(w+ft)(see figures 3 and 4) it is clear that 

gn+h+i(x) - gn+k(r) è (1/2) \x - r\. 

Since r is in the closed interval with end points p, q, S(k) implies 

gn+k(r) - gn (P) à (1/2) \r - p\. 

By adding these two inequalities we get 

gn+k+i(x) - gH (P) ^ 0/2) \x - P\ 

which completes the proof. 

The set D where g has a proper local minimum is given by D = 
U {Dn: n e co}, where Dn = {p e Pn: gn has a proper local minimum at /?}. 
This can be seen as follows. If p e Dm then, by 3.3, gn+k(x) — gn(p) è 1/2 
\x — /?| for k è 0 whenever x e [/? — 2_3n, /? + 2_3w]. Since gn(p) = ^(/?), 
letting k -+ co yields g(x) — g(/?) ^ 1/2 |x — /?|. The proof that g has 
no proper local maxima uses ideas similar to those in the proof of 2.3. 

4. Construction of the function h in Example 1.1(C). We indicated in 
§3 how to avoid killing off proper local minima. For the function h9 we 
want to avoid killing off both proper local minima and proper local 
maxima; so we need to change the definition of g„(/?3) (decreasing case) 
and gn(ps) (increasing case). For notational convenience we denote these 
new functions by hn. 

4.1. (2.1(d) (decreasing case) revised for h). hn+i(p^) = h„(p6). 
4.2. (2.1(/) (increasing case) revised for h). hn+1(p5) = hn(p2). 
As was the case for/, the instructions for h read the same in both the 

increasing and decreasing cases. 
An alternative suggested by the referee is to define gn = 1 — gn, for 

n ^ 0, and modify gn to get hn+i in the same manner that fn was modified 
to get gn+i (i.e., to avoid killing off local minima). Then h =* lim hn 

satisfies Example 1.1 C, and A = 1 — A, where A is the function defined 
above. 

5. Proof of Theorem 1.2. We break the proof into three very simple 
lemmas. 

LEMMA 5.1. Iff: R -* R is any function {not necessarily continuous) and 
X — {*:/has a local maximum at x] then Y — f(X) is countable. 

PROOF. For each y in Y, pick xy in X such that/(xy) = y, and pick ra-
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tional numbers ay, by such that (1) ay < xy < by and (2) for all x in(ay, by), 
f(x) ^ f(xy) = y. The map that assigns y to the interval (ay, by) is one-to-
one; so y is countable. 

LEMMA 5.2. Iff: R -> R is continuous and nowhere constant, then X = 
{x:fhas a local maximum at x} is a set of first category. 

PROOF. By the hypothesis on / the set f~\y) is nowhere dense for all 
y in R. Thus, X = U {f'Ky) fi A": y ef(X) = Y) is a set of first category 
by Lemma 5.1. 

LEMMA 5.3. Iff: R -> R w continuous and nowhere monotone, then the 
set X = {x:/has a local maximum at x} is dense in R. 

PROOF. Let {a, b) be an arbitrary open interval. Since/is not decreasing 
on {a, b) there exist points s and t in (a, ò) such that s < t and/fa) < f(t). 
By continuity, there exists an open interval (r, w) c (s, t) such that, for 
all x in (r, w),f(x) is in (f(s),f(t)). Since/is not increasing on (r, w), there 
exist points w, v in (r, w) such that u < v and /(w) > /(v). By continuity, 
there exists x in |>, v] such that/(x) is the maximum value o f / o n [s, v]. 
Now both/(.y),/(v) < f(u) and w e (s, v), hence x is a point where/has a 
local maximum. 

Similar arguments work for local minima, and that completes the proof 
of Theorem 1.2. 

Lemma 5.1 improves the result stated in [6, p. 117] which only shows 
that Y has measure zero, and is essentially given in [7; Prob. 5, p. 33]. 

We wish to thank Anatole Beck for reference [7], Andrew M. Bruckner 
for reference [4] and other interesting references, and the referee for several 
helpful comments. 
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