BEZIER-CURVES WITH CURVATURE AND TORSION CONTINUITY

HANS HAGEN

ABSTRACT. One of the main problems in computer-aided design is how to input shape information to the computer. In the analytic description and approximation of arbitrary shaped curves the Bezier-curves are of great importance (see [5]). A Bezier-curve is a segmented curve. The segments $x_{\ell}(u) := \sum_{m}^{i=0} b_{m\ell+i} \cdot B_{\ell}^{m}(u-u_{\ell}/u_{\ell+1}-u_{\ell})$ of a Bezier-curve of degree m over the parameter interval $u_{\ell} \le u \le u_{\ell+1}$ use the Bernstein-polynomials as blending functions. The coefficients $b_{m\ell+i}$ are called Bezier points. They form the so called Bezier polygon, which implies the Bezier-curve.

- A.R. Forrest analyzed the Bezier techniques in [4] and extended these techniques to generalized blending functions.
- W. J. Gordon and R. F. Riesenfeld provided in [5] an alternative development in which the Bezier methods emerge as an application of the Bernstein polynomial approximation operator to vector-valued functions.

As connecting conditions between the curve-segments are always chosen the so called C^2 or C^3 continuity. (A segmented curve is said to have $C^{(k)}$ -continuity if an only if $X^{(k)}(t_i^+) = X^{(k)}(t_i^-)$ at the connecting points t_i ; $i = 1, \ldots, n$, where $X^{(k)} := (\partial/\partial t^k)X$; $k \in N$.)

In this paper we create, after a brief survey of the fundamentals of differential geometry, a tangent, a curvature, and a torsion continuity, using the geometric invariants of a curve.

Considering $C^2-(C^3-)$ continuity, we have only one choice for $b_{m(\ell+1)+2}(b_{m(\ell+1)+3})$, $0=\ell \le k$. In the third part of this paper we show that curvature continuity offers a "straight line of alternatives" and torsion continuity offers a "plane of alternatives."

We give also constructions for the Bezier polygons of Bezier curves with curvature – and torsion – continuity, which are convenient for a graphic terminal.

1. Fundamentals of differential geometry.

DEFINITION 1.1. (a) A parametrized C^r -curve is a C^r -differentiable map $X: I \to E^n$ of an open interval I of the real line R into the euclidean space E^n .

(b) A parametrized C^r -curve $X: I \to E^n$ is said to be regular if $\dot{X}(t) \neq 0$, for all $t \in I$, where $\dot{X} = \partial/\partial t X$.

Received by the editors on November 13, 1983 and in revised form on January 11, 1985.

REMARK. Let $X: I \to E^n$ and $\tilde{X}: \tilde{I} \to E^n$ be two curves. A diffeomorphism $\phi: \tilde{I} \to I$ such that $\tilde{x} = x \circ \phi$ is called a parameter transformation. The map ϕ is called orientation preserving if $\phi' > 0$. Relationship by a parameter transformation is an equivalence relation on the set of all parametrized curves in E^n . A C^r -curve is an equivalence class of parametrized C^r -curves.

DEFINITION 1.2. (a) Let $X: I \to E^n$ be a C^r -curve. A moving frame along X(I) is a collection of vector fields,

$$e_i: I \to E^n, 1 \leq i \leq n,$$

such that, for all $t \in I$, $\langle e_i, e_i \rangle = \delta_{ii}$.

(b) A moving frame is called a Frenet-frame, if, for all k, $1 \le k \le n$, the k-th derivative $X^{(k)}(t)$ of X(t) lies in the span of the vectors $e_1(t), \ldots, e_k(t)$.

PROPOSITION 1.3. Let $X: I \to E$ be a curve such that, for all $t \in I$, the vectors $X^{(1)}(t), X^{(2)}(t), \ldots, X^{(n-1)}(t)$ are linearly independent. Then there exists a unique Frenet-frame with the following properties:

- (i) For $1 \le k \le n-1$, $X^{(1)}(t), \ldots, X^{(k)}(t)$ and $e_1(t), \ldots, e_k(t)$ have the same orientation,
 - (ii) $e_1(t), \ldots, e_n(t)$ has the positive orientation.

Proof. See [1, p. 11].

PROPOSITION 1.4. (a) Let X(t), $t \in I$, be a curve in E^n together with a moving frame $\{e_i(t)\}$, $1 \le i \le n$, $t \in I$. Then the following equations for the derivatives hold:

$$\dot{X}(t) = \sum_{i=1}^{n} \alpha_i(t) e_i(t),$$

$$\dot{e}_i(t) = \sum_{i=1}^n w_{ij}(t)e_j(t),$$

where $w_{ij}(t)$: = $\langle \dot{e}_i(t), e_j(t) \rangle = -w_{ji}(t)$.

(b) If $\{e_i(t)\}$ is the Frenet-frame

$$\alpha_1(t) = ||X^{(1)}(t)||,$$

then $\alpha_i(t) = 0$, for i > 1, and $w_{ij}(t) = 0$, for j > i + 1.

Proof. See [1, p. 12].

DEFINITION 1.5. Let $X: I \to E^n$ be a curve satisfying the conditions of (1.3) and consider its Frenet-frame. The *i*-th curvature of $X, i = 1, \ldots, n-1$, is the function

$$\kappa_i(t) := \frac{w_{i,i+1}(t)}{\|X^{(1)}(t)\|}.$$

For the Frenet-frame we may now write the Frenet-equations in the following form:

(1.6)
$$\dot{e}_{i}(t) = \|\dot{X}\| \begin{bmatrix} 0 & \kappa_{1} & 0 & \cdots & \cdots & 0 \\ -\kappa_{1} & 0 & \kappa_{2} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -\kappa_{2} & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \kappa_{n-1} & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & -\kappa_{n-1} & 0 \end{bmatrix} e_{i}(t).$$

REMARK. The *i*-th curvature of a curve X(t), $i = 1, \ldots, n - 1$, is a geometric invariant.

It is a fundamental result of (local) differential geometry that these curvature functions determine curves satisfying the nondegeneracy conditions of (1.3)!

THEOREM 1.7. (a) Let $X: I \to E^n$ and $\tilde{X}: I \to E^n$ be two curves satisfying the hypotheses of (1.3), insuring the existence of a unique distinguished Frenet-frame. Denote these Frenet-frames by $\{e_i(t)\}$ and $\{\tilde{e}_i(t)\}$ respectively, $1 \le i \le n$. Suppose, relative to these frames, that $\kappa_i(t) = \tilde{\kappa}_i(t)$, $1 \le i \le n-1$, and assume $\|X^{(1)}(t)\| = \|\tilde{X}^{(1)}(t)\|$. Then there exists a unique isometry $B = E^n \to E^n$ such that $\tilde{X} = B \circ X$.

(b) Let $\kappa_1(s), \ldots, \kappa_{n-1}(s)$ be differentiable functions defined on a neighborhood of $0 \in R$ with $\kappa_i(s) > 0$, $1 \le i \le n-2$. Then there exists an interval I containing 0 and a curve $X: I \to E^n$ parametrized by arc length which satisfies the conditions (1.3) and whose i-th curvature function is $\kappa_i(s)$, $1 \le i \le n-1$.

Proof. See [1, p. 14-15].

If we investigate regular plane curves and regular space curves, we will always choose the Frenet-frame as the moving frame on our curve. The Frenet equations for a plane curve are

(1.8)
$$e_{1}(t) := \frac{X^{(1)}(t)}{\|X^{(1)}(t)\|},$$
$$\dot{e}_{1}(t) = w_{12}e_{2}(t),$$
$$\dot{e}_{2}(t) = -w_{12}e_{1}(t).$$

There is only one curvature: $\kappa(t) := (w_{12}(t))/\|\dot{X}(t)\|$. The curvature of a planar curve is given by the formula

(1.9)
$$\kappa(t) = \frac{\det(\dot{X}(t), \ddot{X}(t))}{\|\dot{X}(t)\|^3}.$$

The Frenet equations for a space curve are

(1.10)
$$\dot{e}_{i}(t) = \|\dot{X}(t)\| \begin{bmatrix} 0 & \kappa_{1}(t) & 0 \\ -\kappa_{1}(t) & 0 & \kappa_{2}(t) \\ 0 & -\kappa_{2}(t) & 0 \end{bmatrix} e_{i}(t), \quad i = 1, 2, 3, \\
e_{1}(t) := \frac{\dot{X}(t)}{\|\dot{X}(t)\|},$$

and the curvatures $\kappa_1(t)$ and $\kappa_2(t)$ will be denoted $\kappa(t)$ and $\tau(t)$ and called the "curvature" and "torsion" of the curve. The curvature of a space curve is given by the formula

(1.11)
$$\kappa(t) = \frac{\|[\dot{X}(t), \ddot{X}(t)]\|}{\|\dot{X}(t)\|^3},$$

where [,]: $E^3 \times E^3 \rightarrow E^3$ is the cross product, and the torsion of a space curve

(1.12)
$$\tau(t) = \frac{\det(\dot{X}(t), \ddot{X}(t), \ddot{X}(t))}{\|[\dot{X}, \ddot{X}]\|^2}.$$

Here e_1 is called tangent vector, e_2 principal normal vector, and e_3 binormal vector.

PROPOSITION 1.13. A space curve is planar if and only if its torsion vanishes identically.

Proof. See [2, p. 40].

2. Tangent, curvature, and torsion continuity for curves. We now create "geometric continuities" using the geometric invariants described in Chapter 1.

DEFINITION 2.1, Let $X: I \to E^3$ be a curve such that, for all $t \in I$, the vectors $X^{(1)}(t)$, $X^{(2)}(t)$ are linearly independent.

- (i) This curve is said to have tangent continuity if and only if $(\dot{X}/\|\dot{X}\|)(t)$ is continuous.
- (ii) This curve is said to have curvature continuity if and only if $(\dot{X}/\|\dot{X}\|(t))$ and $\kappa(t)$ are continuous.
- (iii) This curve is said to have torsion continuity if and only if $(\dot{X}/\|\dot{X}\|)(t)$ and $\kappa(t)$ and $\tau(t)$ are continuous.

REMARKS. 1) Since a space curve is planar if and only if its torsion vanishes identically, it is sufficient to consider tangent and curvature continuity for a planar curve.

- 2) A segmented curve is said to have $C^{(k)}$ -continuity if and only if $X^{(k)}(t_i^+) = X^{(k)}(t_i^-)$ at the connecting points t_i , $i = 1, \ldots, n$.
- 3) Curvature continuity includes the "natural spline condition" for cubic splines given by W. Boehm in [3] as a special case.
- 4) C^2 -continuity implies curvature continuity and C^3 -continuity implies torsion continuity, but converses generally are not true. But if we choose the parametrization per arc length, curvature continuity implies C^2 -continuity and torsion continuity implies C^3 -continuity.
- 5) Curvature continuity implies the "second-degree geometric continuity" of Barsky and Beatty. They consider in [1] a "curvature vector" K(t), which has the property

$$K(t) = \kappa \cdot e_2$$

If we have continuous curvature κ the Frenet-equations imply a continuous principal normal vector e_2 and therefore we have a continuous curvature vector.

Considering segmented curves we can use the tangent, the curvature and the torsion continuity to establish connection conditions. Let X_l : $[u_{l-1}, u_l] \rightarrow E^3$; $l = 1, \ldots, k$ be the curve segments, with $X_{l-1}(u_l) = X_l$ (u_l) .

For the tangent continuity it is sufficient that

(2.2.i)
$$\dot{X}_{l-1}(u_l) = \dot{X}_l(u_l), \quad l = 2, \ldots, k,$$

at every node u_i .

For the curvature continuity it is sufficient that

(2.2.ii)
$$\ddot{X}_{l-1}(u_l) + \lambda_{l-1}\dot{X}_{l-1}(u_l) = \ddot{X}_l(u_l)$$

and

$$\dot{X}_{l-1}(u_l) = \dot{X}_l(u_l), \quad l = 2, \ldots, k,$$

at every node u_i .

For the torsion continuity it is sufficient that

(2.2.iii)
$$\ddot{X}_{l-1}(u_l) + \mu_{l-1} \ddot{X}_{l-1} + \delta_{l-1} \dot{X}_{l-1} = \ddot{X}_l(u_l),$$

$$\ddot{X}_{l-1}(u_l) + \lambda_{l-1} \dot{X}_{l-1} = \ddot{X}(u_l), \quad l = 2, \dots, k,$$
 and
$$\dot{X}_{l-1}(u_l) = \dot{X}_l(u_l)$$

at every node u_l .

3. Bezier-Curves with geometric continuity. In the analytic description and approximation of arbitrary shaped curves the Bezier-curves (see [4]) are of great importance.

DEFINITION 3.1. A Bezier-curve is a segmented curve. The segments

 $x_{\ell}(u), \ell = 0, \ldots, k$ of a Bezier-curve of degree m over the parameter interval $u_{\ell} \le u \le u_{\ell+1}$ are

$$x_{\ell}(u) := \sum_{i=0}^{m} b_{\ell m+i} \cdot B_{i}^{m} \left(\frac{u - u_{\ell}}{u_{\ell+1} - u_{\ell}} \right).$$

The Bernstein polynomials

$$B_i^m(t) := \binom{m}{i} (1-t)^{m-i} t^i, \quad 0 \le t \le 1,$$

are used as blending functions.

Figure 1.

REMARKS. 1) Let $\lambda_{\ell} = u_{\ell+1} - u_{\ell}$, $\ell = 0, \ldots, k$, be the length of the parameter interval belonging to the segment $x_{\ell}(u)$.

- 2) The coefficients $b_{m\ell+i}$ are called Beizer points. They form the so called Bezier polygon.
- 3) The edges $\overline{b_{m\ell}b_{m\ell+1}}$ and $\overline{b_{m(\ell+1)-1}b_{m(\ell+1)}}$ are tangents at the boundary points $b_{m\ell}$ and $b_{m(\ell+1)}$ of the segment $x_{\ell}(u)$. These boundary points are (in general) the only Bezier points the Bezier curve passes through.
- 4) Bezier-curves have the convex-hull and the variation diminishing property (see [3]).

5) As connection conditions, are usually chosen the C^1 - and C^2 -continuity.

Using curvature- and torsion-continuity offers more possibilities. Considering the two Bezier-segments

$$x_{\ell}(u) = \sum_{i=0}^{m} b_{m\ell+i} \cdot B_{i}^{m} \left(\frac{u - u_{\ell}}{u_{\ell+1} - u_{\ell}} \right), \quad u_{\ell} \leq u \leq u_{\ell+1},$$

and

$$x_{\ell+1}(u) = \sum_{j=0}^{m} b_{m(\ell+1)+j} B_{j}^{m} \left(\frac{u - u_{\ell+1}}{u_{\ell+2} - u_{\ell+1}} \right), \quad u_{\ell+1} \leq u \leq u_{\ell+2},$$

we get, as derivatives at the common nodes:

$$\begin{split} x_{\ell}^{(1)}(u_{\ell+1}) &= \frac{m}{\lambda_{\ell}} \left(b_{m(\ell+1)} - b_{m(\ell+1)-1} \right), \\ x_{\ell}^{(2)}(u_{\ell+1}) &= \frac{m(m-1)}{\lambda_{\ell}^{2}} \left(b_{m(\ell+1)} - 2b_{m(\ell+1)-1} + b_{m(\ell+1)-2} \right), \\ x_{\ell}^{(3)}(u_{\ell+1}) &= \frac{m(m-1) \left(m-2 \right)}{\lambda_{\ell}^{3}} \left(b_{m(\ell+1)} - 3b_{m(\ell+1)-1} + 3b_{m(\ell+1)-2} - b_{m(\ell+1)-3} \right); \end{split}$$

and

$$\begin{split} x_{\prime+1}^{(1)}(u_{\prime+1}) &= \frac{m}{\lambda_{\prime+1}} \left(b_{m(\prime+1)+1} - b_{m(\prime+1)} \right), \\ x_{\prime+1}^{(2)}(u_{\prime+1}) &= \frac{m(m-1)}{\lambda_{\prime+1}^2} \left(b_{m(\prime+1)+2} - 2b_{m(\prime+1)+1} + b_{m(\prime+1)} \right), \\ x_{\prime+1}^{(3)}(u_{\prime+1}) &= \frac{m(m-1) \left(m-2 \right)}{\lambda_{\prime+1}^3} \left(b_{m(\prime+1)+3} - 3b_{m(\prime+1)+2} + 3b_{m(\prime+1)+1} - b_{m(\prime+1)} \right). \end{split}$$

Therefore, a Bezier curve has tangent-continuity if

$$(3.1.1) b_{m(\ell+1)} - b_{m(\ell+1)-1} = b_{m(\ell+1)+1} - b_{m(\ell+1)},$$

curvature-continuity if

(3.1.2)
$$\| [(b_{m(\ell+1)} - b_{m(\ell+1)-1}), (b_{m(\ell+1)-2} - b_{m(\ell+1)-1})] \|$$

$$= \| [(b_{m(\ell+1)} - b_{m(\ell+1)-1}), (b_{m(\ell+1)+2} - b_{m(\ell+1)})] \|$$

and

$$b_{m(\ell+1)} - b_{m(\ell+1)-1} = b_{m(\ell+1)+1} - b_{m(\ell+1)},$$

and torsion-continuity if

$$(3.1.3) \begin{cases} \langle [(b_{m(\ell+1)} - b_{m(\ell+1)-1}), (b_{m(\ell+1)-2} - b_{m(\ell+1)-1}], (b_{m(\ell+1)-2} - b_{m(\ell+1)-3}) \rangle \\ = \langle [(b_{m(\ell+1)} - b_{m(\ell+1)-1}), (b_{m(\ell+1)-2} - b_{m(\ell+1)-1})], (b_{m(\ell+1)+3} - b_{m(\ell+1)}) \rangle \end{cases}$$

and

$$||[(b_{m(\ell+1)} - b_{m(\ell+1)-1}), (b_{m(\ell+1)-2} - b_{m(\ell+1)-1})]||$$

$$= ||[(b_{m(\ell+1)} - b_{m(\ell+1)-1}), (b_{m(\ell+1)+2} - b_{m(\ell+1)})]||$$

and

$$b_{m(\ell+1)} - b_{m(\ell+1)-1} = b_{m(\ell+1)+1} - b_{m(\ell+1)}$$

THEOREM 3.2. Let $X: I \to E^3$ be a Bezier curve,

$$I = [u_0, \dots, u_k],$$

$$X_{\ell}(u) = \sum_{i=0}^{m} b_{m\ell+i} \cdot B_i^m \left(\frac{u - u_{\ell}}{u_{\ell+1} - u_{\ell}}\right)$$

$$\ell = 0, \dots, k \text{ and } u_{\ell} \le u \le u_{\ell+1}.$$

(a) A Bezier curve has tangent-continuity if

$$(3.2.1) b_{m(\ell+1)+1} = 2b_{m(\ell+1)} - b_{m(\ell+1)-1}$$

(b) A Bezier curve has curvature-continuity if

(3.2.2)
$$b_{m(\ell+1)+2} = C_{\ell} \cdot (b_{m(\ell+1)} - b_{m(\ell+1)-1}) + b_{m(\ell+1)-2}, \\ b_{m(\ell+1)+1} = 2b_{m(\ell+1)} - b_{m(\ell+1)-1}.$$

(c) A Bezier curve has torsion-continuity if

$$b_{m(\ell+1)+3} = C_{\ell 1}(b_{m(\ell+1)} - b_{m(\ell+1)-1}) + C_{\ell 2}(b_{m(\ell+1)-2} - b_{m(\ell+1)-1}),$$

$$(3.2.3) \quad b_{m(\ell+1)+2} = C_{\ell 0}(b_{m(\ell+1)} - b_{m(\ell+1)-1}) + b_{m(\ell+1)-2},$$

$$b_{m(\ell+1)+1} = 2b_{m(\ell+1)} - b_{m(\ell+1)-1}.$$

REMARKS. 1) Since $X: I \to E^3$ is planar if and only if its torsion vanishes identically, we consider only tangent- and curvature-continuity for planar curves.

2) Considering Bezier curves with C^2 - or C^3 -continuity we have only one choice for $b_{m(\ell+1)+2}$ and $b_{m(\ell+1)+3}$. In the case of curvature-continuity we have a one parameter family of alternatives and in the case of torsion-continuity we have a two parameter family of alternatives!

Theorem (3.2) implies easy constructions for the Bezier-polygons of Bezier curves with tangent-, curvature-, and torsion-continuity.

(3.3.1) Bezier-polygon-construction for tangent-continuity:

$$b_{-1}$$
 b_0 b_1 $b_{-1}b_0 = \overline{b_0b_1}$

(3.3.2) Bezier-polygon-construction for curvature-continuity:

$$1) \ \overline{b_{-1}b_0} = \overline{b_0b_1}$$

2)
$$\overline{b_{-2}b_{-1}} = \overline{b_{-1}d_0}$$

$$\overline{d_0b_1} = \overline{b_1b_2}$$

3)
$$\overline{d_0b_0} = \overline{b_0\tilde{b}_2}$$

Span (\tilde{b}_2, \bar{b}_2) implies the one parameter family of alternatives to choose $b_{m(\checkmark+1)+2}$.

REMARKS. (1) The construction (3.3.2) is of course not the only one. But it is most convenient for graphic terminals, since it uses only "midpoint-constructions."

(2) Since a space curve is determined by two planar projections, the above techniques can be used to construct space curves.

REFERENCES

- 1. B. Barsky J. Beatty, Local Control of Bias and Tension in Beta-splines, Computer Graphics 17 (1983), 193-278.
 - 2. P. Bezier, Numerical Control, Mathematics and Applications, Wiley, London, 1972.
- 3. W. Boehm, On cubics: a survey, Computer Graphics and Image Processing 19 (1982), 201-226.
- **4.** R. Forrest, *Interactive interpolation and approximation by Bezier polynomials*, The Computer Journal **15** (1972), 71–79.
- 5. W. Gordon, R. Riesenfeld, Bernstein-Bezier-Methods for the Computer Aided Design of Free-Form Curves and Surfaces, Journal ACM 21 (1974), 293-310.
 - 6. W. Klingenberg, A Course in Differential Geometry, New York, Springer, 1978.
 - 7. E. Kreyszig, Differential Geometry, University of Toronto Press, 1959.

ABT. MATHEMATIK DER UNIVERSITÄT, POSTFACH 500500, D-46 DORTMUND 50, WEST GERMANY