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BEZIER-CURVES WITH CURVATURE AND 
TORSION CONTINUITY 

HANS HAGEN 

ABSTRACT. One of the main problems in computer-aided design 
is how to input shape information to the computer. In the analytic 
description and approximation of arbitrary shaped curves the Be-
zier-curves are of great importance (see [5]). A Bezier-curve is a 
segmented curve. The segments X/(u): = E ^ 0 6m/+; • JSf*(w - w// 
W/+1 - u/) of a Bezier-curve of degree m over the parameter in­
terval U/ ^ u ^ W/-I-1 use the Bernstein-polynomials as blending 
functions. The coefficients bm/+t are called Bezier points. They 
form the so called Bezier polygon, which implies the Bezier-curve. 

A.R. Forrest analyzed the Bezier techniques in [4] and extended 
these techniques to generalized blending functions. 

W. J. Gordon and R. F. Riesenfeld provided in [5] an alternative 
development in which the Bezier methods emerge as an application 
of the Bernstein polynomial approximation operator to vector-
valued functions. 

As connecting conditions between the curve-segments are always 
chosen the so called C2— or C3 — continuity. (A segmented curve is 
said to have C(*>-continuity if an only if X<-k\tt) = Xik\tj) at the 
connecting points /,•;/ = 1,. . . , /i, where Xik:> := (d/dtk)X; k e N.) 

In this paper we create, after a brief survey of the fundamentals 
of differential geometry, a tangent, a curvature, and a torsion con­
tinuity, using the geometric invariants of a curve. 

Considering C2—(C3—) continuity, we have only one choice 
for ^m(/+i)+2(̂ wc/+i)+3)» 0 — / ^ k. In the third part of this 
paper we show that curvature continuity offers a "straight line of 
alternatives" and torsion continuity offers a "plane of alternatives." 

We give also constructions for the Bezier polygons of Bezier 
curves with curvature - and torsion - continuity, which are con­
venient for a graphic terminal. 

1. Fundamentals of differential geometry. 

DEFINITION 1.1. (a) A parametrized Cr-curve is a Cr-differentiable map 
X: I -* En of an open interval / of the real line R into the euclidean space 
E». 

(b) A parametrized Cr-curve X: /-> En is said to be regular if X(t) ^ 0, 
for all t e /, where X = d/dtX. 
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REMARK. Let X: / -* En and X: I -> En be two curves. A diffeomorphism 
(j)\ï -+ /such that x = x ° ^ is called a parameter transformation. The map 
(f> is called orientation preserving if <j)' > 0. Relationship by a parameter 
transformation is an equivalence relation on the set of all parametrized 
curves in En. A Cr-curve is an equivalence class of parametrized Cr-curves. 

DEFINITION 1.2. (a) Let X: I -+ En be a Cr-curve. A moving frame along 
X(I) is a collection of vector fields, 

e{: I -+ En,\ ^ / ^ n, 

such that, for all / e /, <^, ?y> = 5,-y. 
(b) A moving frame is called a Frenet-frame, if, for all k, 1 S k ^ «, 

the &-th derivative X{k)(t) of A^f) lies in the span of the vectors ei(t),..., 
ek(t). 

PROPOSITION 1.3. Let X: I -+ E be a curve such that, for all t e /, the 
vectors Xa)(t)9 Xi2)(t), . . . , X{n~l\t) are linearly independent. Then there 
exists a unique Frenet-frame with the following properties: 

(i) For 1 ^ k g n - 1, Xa)(t), . . . , X{k)(t) and ex{t\ . . . , ek{t) have 
the same orientation, 

(ii) e\{t), . . . , en(t) has the positive orientation. 

PROOF. See [1, p. 11]. 

PROPOSITION 1.4. (a) Let X(t), t e /, be a curve in En together with a 
moving frame {e,-(f )}» 1 ^ i fi n, t e I. Then the following equations for the 
derivatives hold: 

èi{t) = 2 w,-X0*/0, 
7=1 

(b) If{et(t)} is the Frenet-frame 

ai(0 = ||Jr(1>(OL 

//**>« af<0 = 0,/tfr / > 1, and w{j{t) = 0,forj > i + 1. 

PROOF. See [1, p. 12]. 

DEFINITION 1.5. Let X: /-> £ n be a curve satisfying the conditions of 
(1.3) and consider its Frenet-frame. The j'-th curvature of X, / = 1, . . . , 
n — 1, is the function 

w#v - w»-.»+i(0 
jr<i>(/)ll 
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For the Frenet-frame we may now write the Frenet-equations in the fol­
lowing form : 

(1.6) èi(t) 

0 /ci 0 

— Ki 0 K2 

-K2 * 

0 

et{t). 

REMARK. The /-th curvature of a curve X(t), / = 1, . . . , « — 1, is a 
geometric invariant. 

It is a fundamental result of (local) differential geometry that these curva­
ture functions determine curves satisfying the nondegeneracy conditions 
of (1.3)! 

THEOREM 1.7. (a) Let X: I -> En and X: I -* En be two curves satifying 
the hypotheses of (1.3), insuring the existence of a unique distinguished 
Frenet-frame. Denote these Frenet-frames by{e{(t)}and {ët{t)} respectively, 
1 ^ / fg n. Suppose, relative to these frames, that K({t) = Kj(t), 1 ^ / ^ 
n — 1, and assume \\Xa)(t)\\ = ||Z(1>(f)||. Then there exists a unique isome-
try B = En -» En such that X = B<>X. 

(b) Let Ki(s), . . . , Kn-i(s) be differentiable functions defined on a neigh­
borhood ofOeR with K;(s) > 0, 1 S i è n — 2. Then there exists an in­
terval I containing 0 and a curve X: I -» En parametrized by arc length 
which satisfies the conditions (1.3) and whose i-th curvature function is 
K{{s\ 1 ^ i ^ n - 1. 

PROOF. See [1, p. 14-15]. 

If we investigate regular plane curves and regular space curves, we will 
always choose the Frenet-frame as the moving frame on our curve. The 
Frenet equations for a plane curve are 

(1.8) 

c(tV_ * ( 1 ) ( 0 
* l W " "" ||jr<i>(/)|| ' 

êx(t) = wne2(t\ 

è2(t) = -w12?i(t). 

There is only one curvature: K(t) «= (w12(t))l\\X(t)\\. The curvature of a 
planar curve is given by the formula 
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(1 9) Kit) = d * W ) , Z ( 0 ) 
( ) ( ) ll*(Olls 

The Frenet equations for a space curve are 

0 Kl(t) 0 

ê,(0 = \\X(t)\\ ' 
(1.10) 

Mt) 

- * i ( 0 o «2(0 
0 - A : 2 ( 0 0 J 

e,C), ' = 1, 2, 3, 

exit): = 
ll*(0ll 

and the curvatures m(t) and £2(0 will be denoted *(?) and t(t) and called 
the "curvature" and "torsion" of the curve. The curvature of a space 
curve is given by the formula 

d i n ll[*(0,ifr)]|| 
( U 1 ) " ( ) ll*(»ll3 ' 
where [, ]: E3 x E3 -+ E3 is the cross product, and the torsion of a space 
curve 

n m _ det(Z(Q, 1(Q, !(?)) 

Here ^ is called tangent vector, e2 principal normal vector, and e3 binor­
mal vector. 

PROPOSITION 1.13.^ space curve is planar if and only if its torsion vanishes 
identically. 

PROOF. See [2, p. 40]. 

2. Tangent, curvature, and torsion continuity for curves. We now create 
"geometric continuities" using the geometric invariants described in 
Chapter 1. 

DEFINITION 2.1, Let X: I -> E3 be a curve such that, for all tel, the 
vectors Xil)(t)9 X(2)(t) are linearly independent. 

(i) This curve is said to have tangent continuity if and only if 
{XI\\X\\)(t) is continuous. 

(ii) This curve is said to have curvature continuity if and only if 
(Â7l|Jf ||(f) and tc(t) are continuous. 

(iii) This curve is said to have torsion continuity if and only if 
{XI\\X\\){t) and n(t) and r(t) are continuous. 

REMARKS. 1) Since a space curve is planar if and only if its torsion van­
ishes identically, it is sufficient to consider tangent and curvature conti­
nuity for a planar curve. 
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2) A segmented curve is said to have C(k)-continuity if and only if 
X{k){t?) = Xik)(tf) at the connecting points / ,- , /= 1, . . . , n. 

3) Curvature continuity includes the "natural spline condition" for 
cubic splines given by W. Boehm in [3] as a special case. 

4) C2-continuity implies curvature continuity and C3-continuity implies 
torsion continuity, but converses generally are not true. But if we choose 
the parametrization per arc length, curvature continuity implies (^-con­
tinuity and torsion continuity implies C3-continuity. 

5) Curvature continuity implies the "second-degree geometric continu­
ity" of Barsky and Beatty. They consider in [1] a "curvature vector" K(t)9 

which has the property 

K(t) = K • e2 

If we have continuous curvature A: the Frenet-equations imply a continuous 
principal normal vector e2 and therefore we have a continuous curvature 
vector. 

Considering segmented curves we can use the tangent, the curvature 
and the torsion continuity to establish connection conditions. Let Xt: 
[t//_i, U[] -» E3; I = 1, . . . , k be the curve segments, with X^ui) = Xt 

For the tangent continuity it is sufficient that 

(2.2.Ì) X^iud = Uui), / = 2, . . . , *, 

at every node «,. 
For the curvature continuity it is sufficient that 

(2.2.Ü) X^iud + h-iii-i(Md> = Xfaò 

and 

ii-i(ud = Xi(ud, I = 2, . . . , *, 

at every node uh 

For the torsion continuity it is sufficient that 

(2.2.iii) */-i("j) + ^ - A _ i + <?,_Â-i = #/(w,), 

*/-i("/) + h-iXi-i = X(u,)9 / = 2, . . . , £, 

and ^/-i(w/) = Xfoi). 
at every node w,. 

3. Bezier-Curves with geometric continuity. In the analytic description 
and approximation of arbitrary shaped curves the Bezier-curves (see [4]) 
are of great importance. 

DEFINITION 3.1. A Bezier-curve is a segmented curve. The segments 
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X/iu), S = 0, . . . , k of a Bezier-curve of degree m over the parameter 
interval u/ S u ^ w/+1 are 

The Bernstein polynomials 

Bf(t) ••= (™) (1 - ty-i t\ O g ^ l , 

are used as blending functions. 

Figure 1. 

REMARKS. 1) Let X/ •= u/+l - u/9 / = 0, . . . , k, be the length of the 
parameter interval belonging to the segment x/w). 

2) The coefficients bm/+i are called Beizer points. They form the so 
called Bezier polygon. 

3) The edges bm/bm/+l and bm{/+l)^x bm{/+1) are tangents at the boundary 
points bm/ and bmi/+1) of the segment •xv(w). These boundary points are 
(in general) the only Bezier points the Bezier curve passes through. 

4) Bezier-curves have the convex-hull and the variation diminishing 
property (see [3]). 
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5) As connection conditions, are usually chosen the C1- and C2-
continuity. 

Using curvature- and torsion-continuity offers more possibilities. Con­
sidering the two Bezier-segments 

xM = £ K,M • Bf( u * \ \ u,£u£ u/+l9 
t=0 \ u/+\ ~~ u/ J 

and 

W " ) = £ bm^+l)+JBl( u~u'+* \ u,+1 è u è u/+2ì 
J=0 \ u/+2 ~~ u/+l / 

we get, as derivatives at the common nodes: 

*P(u/+i) = -j-(bmi/+1) - éw(/+1)_1), 

* / 2 ( w / + l ) = T2 ' ( ^w( /+ l ) "" ^ w ( / + l ) - l + ^ w ( / + l ) - 2 ) ' 

v(3)r,v x - m(m-\){m-2)(h ~, ~, , v 
•V W + l J T3 l ° w (/+1) ÔOm (/+1) - 1 "T ^ m (/+1) - 2 ^m (/+1) -3J > 

and 

*/¥l(M/-fl) = 1 (^W+l )+ l "" ^W+l))> 
>Wl 

•*/+l(w/+l) ^ T2 (^W+l)+2 "" 26 m (/+D+1 + 6 m ( / + 1 ) ) , 

v(3) A, \ _ rn{m— \){m-2)fu ~, ~, A \ 
- V - H W + i ; T3 V^w (/+1) +3 "" 3°m (/+1) +2 "+" J 0 m (/+1) +1 ~~ °m (/+1) /• 

Therefore, a Bezier curve has tangent-continuity if 

( 3 . 1 . 1 ) ^m(/+l) — ^ m ( / + l ) - l = ^ m ( / + l ) + l — *m(/+l)> 

curvature-continuity if 

n 1 9^ ll[(^m(/+l) "~ ^m(/+l)-l)> (^W-fl)-2 ~" ^W+l)-l)]ll 
== IIK^W+1) "" ^m(/+l)-l)> (^m(/+l)+2 "" *m(/+l))l II 

and 

^m(/+l) "" ^ m ( / + l ) - l = ^m( /+ l )+ l "" ^w(/+l)» 

and torsion-continuity if 
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( . <[(^m(/+l) — ^m(/+l)-l)v(^m(/+l)-2~ ^m(/+l)-l]>(^m(/+l)-2""^m(/+l)-3)> 

= < [(bm U+D~ bm (/+i) - i ) , (bm (/+1) -2 - &w (/+1) _i)], (bm ( /+1) + 3 - bm ( /+1) ) > 

and 

and 

ll[(^m(/+l) "~ ^m(/+l)-l)> (^m(/+l)-2 — *m(/+l)-l)]ll 

= IIK^m(/+l) — bm(/+l)-l), tfW+D+2 — ^m(/+l))]ll 

bm{/+\) ~ bm(/+i)-i = bm{/+l)+l — èm(/+1). 

THEOREM 3.2. Lef X: I -+ E3 be a Bezier curve, 

I = [w0, . . . , wj, 

V / . A Ä L f i rn / U - li. X/(u) = £bm/+ï.B?(-^-
W/+1 - w / / 

/ = 0, . . . , / : tf«d Uy ^ u ^ u/+l. 

(a) ^ Bezier curve has tangent-continuity if 

(3.2.1) Z>w(/+1)+1 = 2èm(/+1) — £„,(/+!)_! 

(b) y4 Bezier curve has curvature-continuity if 

H 9 9Ì ^m(/+l)+2 = C/0 * (bm(/+l) — bm(/+1)-i) + Äm( / + 1 )_2, 

^«(/+1)+1 = ^w( /+ l ) ~~ "m(/+l)-l-

(c) y4 Bezier curve has torsion-continuity if 

bm (/+1) +3 = C/\\Pm (/+1) ~~ bm (/+i)-i) + C/2(bm (/+!) -2 "" ^m (/+lj -l)> 

(3.2.3) bm{/+l)+2 = C/Q{bm{/+l) — 6OT(/+1)_1)-|-6m(/+1)_2, 

"m (/+1) +1 = 2^m (/+1) ~~ "m (/+1) - 1 -

REMARKS. 1) Since X: I -> E3 is planar if and only if its torsion vanishes 
identically, we consider only tangent- and curvature-continuity for planar 
curves. 

2) Considering Bezier curves with C2- or C3-continuity we have only 
one choice for bm(/+1)+2 and bmi/+1)+3. In the case of curvature-
continuity we have a one parameter family of alternatives and in the case 
of torsion-continuity we have a two parameter family of alternatives! 

Theorem (3.2) implies easy constructions for the Bezier-polygons of 
Bezier curves with tangent-, curvature-, and torsion-continuity. 
(3.3.1) Bezier-polygon-construction for tangent-continuity: 
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b-i b0 bx b_ib0 = bobi 

(3.3.2) Bezier-polygon-construction for curvature-continuity: 

1) 6_i6o = hbi 

2) b_2b-i = b_id0 

Figure 2. 

Span (52, b2) implies the one parameter family of alternatives to choose 

bm(/+i)+2' 

REMARKS. (1) The construction (3.3.2) is of course not the only one. But 
it is most convenient for graphic terminals, since it uses only "midpoint-
constructions." 

(2) Since a space curve is determined by two planar projections, the 
above techniques can be used to construct space curves. 
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