a-SEPARATION AXIOMS AND a-COMPACTNESS IN FUZZY TOPOLOGICAL SPACES

A.S. MASHHOUR, M.H. GHANIM, M.A. FATH ALLA

ABSTRACT. In [11] Rodabaugh introduced the concept of α -Hausdorff fuzzy topological spaces which is compatible with α compactness [4] and fuzzy continuity. It is the purpose of this paper to extend these concepts. We define and study $\alpha - T_i$ (i = 0, 3, 4), $\alpha - T'_i$ (i = 0, 1, 2, 3, 4), α -almost compact and α -nearly compact fuzzy topological spaces. Also, we define α -continuous mappings as a generalization of F-continuous mappings. Finally, we define α S-closed fuzzy spaces and study some of their properties.

1. Preliminaries. Let X be a set. If $A \subset X$, $\mu(A)$ will denote the characteristic function for A defined on X into the unit interval I = [0, 1]. A fuzzy topology τ on X is a family of fuzzy sets (functions from X into 1) which is closed under arbitrary suprema and finite infima and which contains $0 = \mu(\phi)$ and $1 = \mu(X)$. A pair (X, τ) , where τ is a fuzzy topology on X, is called a fuzzy topological space (abbreviated as fts). A fuzzy set u of an fts (X, τ) is regular open (resp. regular closed) if $u = \overline{u}^0$ (resp. $u = \bar{u}^0$, it is fuzzy semiopen if $u \leq \bar{u}^0$. For notion and results used but not defined or shown we refer to [3, 5, 13, 16, 18].

DEFINITION 1.1 [11]. Let (X, τ) be an fts and $A \subset X$. A point $x \in X$ is an α (resp. α^*)-cluster point of A if for each $u \in \tau$ with $u(x) > \alpha$ (resp. $u(x) \ge \alpha$, $u \land \mu(X/A) \ne 0$, where $\alpha < 1$ (resp. $\alpha < 0$). The family of all α (resp. α^*)-cluster points of A will be denoted by A^{α} (resp. A^{α^*}). The α (resp. α^*) closure of A is the union of A and its α (resp. α^*) cluster points and will be denoted by $\operatorname{Cl}_{\alpha}(A)$ (resp. $\operatorname{CL}_{\alpha^*}(A)$). The subset A of X is α (resp. α^*)-closed if $\operatorname{Cl}_{\alpha}(A) \subset A$ (resp. $\operatorname{Cl}_{\alpha^*}(A) \subset A$).

PROPOSITION 1.2 [11]. Let (X, τ) be an fts. Then

(i) a subset A of X is α (resp. α^*)-closed if and only if for each point $x \in$ $X \setminus A$ there is $u \in T$ such that $u(x) > \alpha$ (resp. $u(x) \ge \alpha$) and $u \land \mu(A) = 0$. (ii) arbitrary intersection of α (resp. α^*)-closed sets is α (resp. α^*)-closed, (iii) a finite union of α (resp. α^*)-closed sets is α (resp. α^*)-closed, and, (iv) the inverse image of each α (resp. α^*)-closed set under an F-continuous mapping is α (resp. α^*)-closed.

Received by the editor on October 1, 1983, and in revised form on November 17, 1984.

DEFINITION 1.3. Let (X, τ) be an fts and let $A \subset X$. A is an α (resp. α^*)open set if X/A is α (resp. α^*)-closed. Equivalently, A is α (resp. α^*)-open if, for each point $x \in A$ there is $u \in \tau$ with $u(x) > \alpha$ (resp. $u(x) \ge \alpha$) and $u \land \mu(X/A) = 0$.

REMARK 1.4. The following notions are found in [7, 8, 11, 13]. Let $\alpha \in I$ and (X, τ) be a given fts. Put $u_{\alpha} = \{x \in X : u(x) > \alpha\}$ and $\tau_{\alpha} = \{u_{\alpha} : u \in \tau\}$. Clearly, τ_{α} is a family of α -open sets in (X, τ) . One may easily verify that τ_{α} is a topology on X.

PROPOSITION 1.5. Let (X, τ) be an fts. The family of all α -open sets in X is a topology on X coarser than τ_{α} .

PROOF. $\{\alpha$ -open sets $\} = W_{\alpha}$ [7].

EXAMPLE 1.6. Let $X = \{a, b, c\}$ and let u, v be fuzzy sets in X defined by

$$u(a) = 0.3,$$
 $u(b) = 0.5,$ $u(c) = 0.7$
 $v(a) = 0.7,$ $v(b) = 0.6,$ $v(c) = 0.9.$

Define the fuzzy topology $\tau = \{1, 0, u, v\}$ on X. For $\alpha = 0.4$, $\{b, c\}$ is a τ_{α} -open set which is not α -open.

DEFINITION 1.7. Let (X, τ) be an fts and let $A \subset X$. A point $x \in X$ is an α (resp. α^*)-weak cluster point (αw (resp. $\alpha^* w$)-cluster point, for short) of A if for every $u \in \tau$ with $u(x) > \alpha$ (resp. $u(x) \ge \alpha$), $\overline{u} \land \mu(A \setminus \{x\}) \neq 0$. The set of all αw (resp. $\alpha^* w$)-cluster points of A is denoted by $A^{\alpha w}$ (resp. $A^{\alpha^* w}$). The αw (resp. $\alpha^* w$)-closure of A is the union of A and its αw (resp. $\alpha^* w$)-closed if $A^{\alpha w} \subset A$ (resp. $A^{\alpha^* w} \subset A$).

REMARK 1.8. If a point $x \in X$ is an α (resp. α^*)-cluster point of a subset A of an fts X, then it is an αw (resp. $\alpha^* w$)-cluster point of A. Consequently, if A is αw (resp. $\alpha^* w$)-closed, then A is α (resp. α^*)-closed. The following example indicates that the converse is not true.

EXAMPLE 1.9. Let $X = \{a, b, c\}$ and let u, v be fuzzy sets in X defined by

$$u(a) = 0.5,$$
 $u(b) = 0.6,$ $u(c) = 0$
 $v(a) = 0.4,$ $v(b) = 0,$ $v(c) = 0.5.$

Define the fuzzy topology $\tau = \{1, 0, u, v, u \lor v, u \land v\}$ on X. For $\alpha < 0.5$, the point a is an αw -cluster point of the set $\{a, c\}$, but it is not an α -cluster point. The set $\{c\}$ is an α -closed set which is not αw -closed.

DEFINITION 1.10. Let (X, τ) be an fts and let $A \subset X$. A is an α (resp. α^*)-strongly open (αs (resp. $\alpha^* s$)-open, for short) if $X \setminus A$ is αw (resp. $\alpha^* w$)closed. Equivalently, A is αs (resp. $\alpha^* s$)-open if, for every point $x \in A$, there is $u \in \tau$ such that $u(x) > \alpha$ (resp. $u(x) \ge \alpha$) and $\bar{u} \land \mu(X \setminus A) = 0$. **REMARK** 1.11. Let (X, τ) be an fts and let $A \subset X$. If A is an αs (resp. α^*s)-open set, then it is α (resp. α^*)-open. In Example 1.10, $\{a, b\}$ is an α -open set which is not αs -open.

2. α -Separation axioms. We use the concepts of α -closed sets αw -closed sets to define the following separation axioms.

DEFINITION 2.1. An fts (X, τ) is called:

1. An $\alpha - T_0$ (resp. $\alpha - T_0$) space if for each two distinct points $x, y \in X$ there exists $u \in \tau$ such that $u(x) > \alpha$ and u(y) = 0 (resp. $\overline{u}(y) = 0$), or $u(y) > \alpha$ and u(x) = 0 (resp. $\overline{u}(x) = 0$).

2. An $\alpha - T_1(\text{resp. } \alpha - T'_1)$ space if for each two distinct points $x, y \in X$ there exist $u, v \in \tau$ such that $u(x) > \alpha$, $v(y) > \alpha$ and u(y) = v(x) = 0 (resp. $\bar{u}(y) = \bar{v}(x) = 0$).

3. An $\alpha - T_2(\text{resp. } \alpha - T'_2)$ space if for each two distinct point $x, y \in X$ there exist $u, v \in \tau$ such that $u(x) > \alpha, v(y) > \alpha$ and $u \wedge v = 0$ (resp. $\bar{u} \wedge \bar{v} = 0$).

4. An α -regular (resp. α -weakly regular) space if for each α -closed (resp. αw -closed) subset A of X and each point $x \in X \setminus A$ there exist $u, v \in \tau$ such that $u(x) > \alpha$, $v(y) > \alpha$ on A and $u \wedge v = 0$.

An α -regular (resp. α -weakly regular) space which is also $\alpha - T_1$ (resp. $\alpha - T_1$) is called an $\alpha - T_3$ (resp. $\alpha - T_3$) space.

5. An α -normal (resp. α -weakly normal) space if for each two disjoint α -closed (resp. αw -closed) subsets A, B of X there exist $u, v \in \tau$ such that $u(x) > \alpha$ on A, $v(y) > \alpha$ on B and $u \wedge v = 0$.

An α -normal (resp. α -weakly normal) space which is also $\alpha - T_1$ (resp. $\alpha - T'_1$) is called an $\alpha - T_4$ (resp. $\alpha - T'_4$) space.

The separation axioms $\alpha - T_1$ and $\alpha - T_2$ have been defined in [11, 12] and greatly generalized in [14]. The proof of the following theorem is routine and it is omitted.

THEOREM 2.2. An fts (X, T) is $\alpha - T_1$ (resp. $\alpha - T'_1$) if and only if every one point subset $\{x\}$ of X is α -closed (resp. α w-closed).

Definition 2.1 and Theorem 2.2 yield the following diagram

EXAMPLE 2.3. Let $X = \{a, b, c\}$ and let u, v be fuzzy sets in X defined by

$$u(a) = 0.5,$$
 $u(b) = 0,$ $u(c) = 0.6$
 $v(a) = 0,$ $v(b) = 0.4,$ $v(c) = 0.5.$

594 A. S. MASHHOUR, M. H. GHANIM, M. A. FATH ALLA

Define the fuzzy topology $\tau = \{1, 0, u, v, u \lor v, u \land v\}$ on X. The fts (X, τ) is $\alpha - T_0$ but it is not $\alpha - T_1$. Also (X, τ) is α -normal but it is not α -regular.

REMARK 2.4. The above diagram and Corollary 7.2 of [11] imply that the *I*-fuzzy unit interval I(I) [5] and the I-fuzzy real line $\mathbf{R}(\mathbf{I})$ [4] are not $\alpha - T_i$ nor $\alpha - T'_i$ for i = 1, 2, 3, 4.

3. a -Compactness.

DEFINITION 3.1 [4]. Let X be a nonempty set and $\alpha \in I$. A family $\mathcal{U} \subset I^X$ is an α -shading of X if, for each point $x \in X$, there is $u \in \mathcal{U}$ such that $u(x) > \alpha$. A subfamily \mathscr{V} of an α -shading \mathscr{U} of X, that is also an α -shading of X, is called an α -subshading of \mathscr{U} . An α -shading \mathscr{U} of an fts X is an open (resp. closed, ...) α -shading if each member of \mathscr{U} is a fuzzy open (resp. closed, ...) set. An fts X is said to be α -compact if every open α -shading of X has a finite α -subshading.

DEFINITION 3.2 [1]. An fts (X, τ) is α -almost (resp. α -nearly) compact if for each open α -shading \mathscr{U} of X there is a finite subfamily \mathscr{V} of \mathscr{U} , the fuzzy closures (resp. fuzzy interiors of the fuzzy closures) of whose members are α -shading of X.

One may notice that α -compactness $\Rightarrow \alpha$ -nearly compactness $\Rightarrow \alpha$ -almost compactness. These implications do not reverse [1].

THEOREM 3.3. An fts (X, τ) is α -nearly compact if and only if each regular open α -shading of X has a finite α -subshading.

PROOF. A simple combination of Definition 3.2 and the definition of a regular open α -shading yields the result.

THEOREM 3.4. An αw -closed subset of an α -almost (resp. α -nearly) compact fts is α -almost (resp. α -nearly) compact.

PROOF. Let A be an αw -closed subset of an τ -almost compact fts (X, τ) . Let \mathscr{U} be an open α -shading of A. Since A is αw -closed, then for each point $x \in X \setminus A$ there exists $v_x \in \tau$ such that $v_x(x) > \alpha$ and $\bar{v}_x \wedge \mu(A) = 0$, i.e., $\bar{v}_x(y) = 0$ on A. Then $\mathscr{V} = \{v_x : x \in X \setminus A\} \cup \mathscr{U}$ is an open α -shading of X. Consequently there exists a finite subfamily $\{V_{x_1}, \ldots, V_{x_n}\} \cup \{u_1, \ldots, u_m\}$ of \mathscr{V} such that $\{V_{x_1}, \ldots, V_{x_n}, \bar{u}_1, \ldots, \bar{u}_m\}$ is an α -shading of X. Consequently $\{\bar{u}_1, \ldots, \bar{u}_m\}$ is an α -shading of A and A is α -almost compact. The α -nearly case has a similar proof.

A partial converse of Theorem 3.4 is the following theorem which has a routine proof.

THEOREM 3.5. Any α -almost compact (crisp) subset of an $\alpha - T'_2$ space is α w-closed.

COROLLARY 3.6.

(i) Any α -nearly compact (crisp) subset of an $\alpha - T'_2$ space is α w-closed. (ii) A (crisp) subset of an α -almost (resp. α -nearly) compact $\alpha - T'_2$ space is α -almost (resp. α -nearly) compact if and only if it is α w-closed.

(iii) The intersection of any family of α -almost (resp. α -nearly) compact crisp subsets of an α -almost (resp. α -nearly) compact $\alpha - T'_2$ space is α -almost (resp. α -nearly) compact.

THEOREM 3.7. Let (X, τ) be an $\alpha - T'_2$ space and let A be an α -almost (resp. α -nearly) compact crisp subset of X. For each point $x \in X \setminus A$ there exist $u, v \in \tau$ such that $u(x) > \alpha$, $\bar{v}(y) > \alpha$ (resp. $v(y) > \alpha$) on A and $\bar{u} \wedge \bar{v} = 0$.

PROOF. We give a proof considering A as an α -almost compact crisp subset of X; the other part has a similar proof. For each $y \in A$ there exist $u_y, v_y \in \tau$ such that $u_y(x) > \alpha$, $v_y(y) > \alpha$ and $\bar{u}_y \wedge \bar{v}_y = 0$. Then $\mathcal{U} = \{v_y: y \in A\}$ is an open α -shading of A. Consequently, there is a finite subfamily $\{v_{y_1}, \ldots, v_{y_n}\}$ of \mathcal{U} such that $\{\bar{v}_{y_1}, \ldots, \bar{v}_{y_n}\}$ is an α -shading of A. Set $u = \wedge_{i=1}^n u_{y_i}$ and $v = \bigvee_{i=1}^n v_{y_i}$. Then $u, v \in \tau$, $u(x) > \alpha$, $\bar{v}(y) > \alpha$ on A and $\bar{u} \wedge \bar{v} = 0$.

Using the same arguments one may prove the following result.

THEOREM 3.8. An α -nearly compact $\alpha - T'_2$ space is $\alpha - T'_4$.

4. α-Continuous mappings.

DEFINITION 4.1. The following is found in [7, 8, 11, 13] etc. Let $\alpha \in I$ and (X, τ) be a given fts. Put $u_{\alpha} = \{x : u(x) > \alpha\}, \tau_{\alpha} = \{u_{\alpha} : u \in \tau\}, J_{\alpha}(X, \tau) = (X, \tau_{\alpha})$ and $J_{\alpha}(f) = f$, where $f : X \to Y$.

PROPOSITION 4.2 [7, 8, 11]. J_{α} is a functor from the category of *I*-fts to TOP; hence f is F-continuous implies $J_{\alpha}(f)$ is continuous.

REMARK 4.3. J_{α} is the α -level functor.

REMARK 4.4. The implication of Proposition 4.2 does not reverse (see Theorem 4.8 (2, 3) below). Hence Proposition 4.2 yields a generalization of Proposition 1.2 (iv) as follows: if $J_{\alpha}(f)$ is continuous, then $f^{-1}(\alpha$ -open) is α -open and so $f^{-1}(\alpha$ -closed) is α -closed.

THEOREM 4.5. Let (X, τ) , (Y, σ) be fts and $f: X \to Y$. If $J_{\alpha}(f): (X, \tau_{\alpha}) \to (Y, \sigma_{\alpha})$ is continuous, then X is α -compact implies f(X) is α -compact.

PROOF. This is a corollary of two results of [11], namely Theorem 3.1 (2) and Proposition 3.1 (1).

REMARK 4.6. Theorem 4.5 generalizes Theorem 2.9 of [4] because of Proposition 4.2 and Theorem 4.8 (2, 3) below.

DEFINITION 4.7. A mapping $f: (X, \tau) \to (Y, \sigma)$ is α -continuous if, for every point $x \in X$ and for every $\nu \in \sigma$ with $f(x) \in \nu_{\alpha}$, there exists $u \in \tau$ such that $x \in u_{\alpha}$ and $f(u) \leq \nu$.

THEOREM 4.8. Let (X, τ) , (Y, σ) be fts and f: $X \to Y$. The following hold: (i) f is F-continuous \Rightarrow f is α -continuous.

(ii) The implication of (1) does not reverse.

(ii) The implication of (1) does not reverse. (iii) f is α -continuous $\Rightarrow J_{\alpha}(f)$ is continuous.

 $(iii) f is a - continuous \Rightarrow f_{\alpha}(f) is continuous.$

(iv) The implication of (3) does not reverse.

PROOF.

596

(i). Straight-forward.

(ii). Let $X = \{a, b\}$ and let u, v be fuzzy sets in X defined by

$$u(a) = 0.5,$$
 $u(b) = 0.6,$
 $v(a) = 0.7,$ $v(b) = 0.8.$

Define the fuzzy topologies $\tau = \{1, 0, u\}$ and $\sigma = \{1, 0, v\}$ on X. The identity map $i_X: (X, \tau) \to (Y, \sigma)$ is not F-continuous, yet is α -continuous for $\alpha < 0.5$.

(iii). Let $v \in \sigma$ and $f(x) \in V_{\alpha}$. From α -continuity there is $u \in \tau$ such that $x \in u_{\alpha}$ and $f(u) \leq v$. We show that $f(u_{\alpha}) \subset v_{\alpha}$. Let $z \in u_{\alpha}$ and observe

$$v(f(z)) \ge f(u) \ (f(z)) = U\{u(w): \ f(w) = f(z)\} \ge u(z) > \alpha.$$

So $f(z) \in v_{\alpha}$.

(iv). Let $X = \{a, b\}$ and let u, v be fuzzy sets in X defined by

u(a)=0.3,	u(b) = 0.5
v(a) = 0.6	v(b) = 0.7

Define the fuzzy topologies $\tau = \{1, 0, u\}$ and $\sigma = \{1, 0, v\}$ on X. The identity map $i_X: (X, \tau) \to (X, \sigma)$ is not α -continuous but $J(f): (X, \tau_{\alpha}) \to (Y, \sigma_{\alpha})$ is continuous for $0.5 \leq \alpha < 0.6$.

COROLLARY 4.9. Each α -continuous map preserves α -compactness.

PROOF. Theorems 4.5 and 4.8 (iii).

5. as-closed spaces. In 1976, T. Thompson [16] induced the concept of S-closed spaces. The literature includes [2, 9, 10]. We now use the concept of an α -shading to define α S-closed spaces in fuzzy topology.

DEFINITION 5.1. An fts (X, τ) is called α S-closed if for each semiopen α -shading \mathscr{U} of X there is a finite subfamily \mathscr{V} of \mathscr{U} such that the fuzzy closures of its members are an α -shading of X.

REMARK 5.2. It is clear that if (X, τ) is an α S-closed fts it is also α -almost compact.

THEOREM 5.3. An fts X is α S-closed if and only if every regular closed α -shading has a finite α -subshading.

PROOF. Necessity follows from the fact that a fuzzy regular closed set is semiopen and closed.

Sufficiency follows from the fact that if u is a fuzzy semiopen set, then \bar{u} is regular closed.

DEFINITION 5.4. A fuzzy set u of an fts (X, τ) is called a fuzzy regular semiopen set if there exists a fuzzy regular open set v of x such that $v \leq u \leq \bar{v}$.

REMARK 5.5. If u is a fuzzy regular semiopen set, it is also a fuzzy semiopen set but the converse is not true in general, as we can show from Example 5.6, below. This example indicates also that a fuzzy open set need not be a fuzzy regular semiopen set.

EXAMPLE 5.6. Let $X = \{a, b\}$ and let u_1, u_2, u_3 be fuzzy sets in X defined by

$u_1(a)=0.4,$	$u_1(b)=0.5,$	$u_2(a)=0.5$
$u_2(b) = 0.6,$	$u_3(a) = 0.5,$	$u_3(b) = 0.5$

Define a fuzzy topology $\tau = \{1, 0, u_1, u_2\}$ on X. The fuzzy set u_3 is a fuzzy regular semiopen but it is not fuzzy open. The fuzzy set u_2 is a fuzzy open set but it is not fuzzy regular semiopen.

THEOREM 5.7. An fts X is α S-closed if and only if for every regular semiopen α -shading \mathcal{U} of X, there is a finite subfamily \mathscr{V} of \mathcal{U} such that the fuzzy closures of its members are an α -shading of X.

PROOF. If X is αS -closed, then the result follows directly from the above definition. If X is not an αS -closed fts, then there exists a fuzzy semiopen α -shading $\{u_j: j \in J\}$ which has no finite subfamily such that the fuzzy closures of its members are an α -shading. Then the family $\{\bar{u}_j^0 \lor u_j: j \in J\}$ is a fuzzy regular semiopen α -shading of X which has no finite subfamily such that the fuzzy closures of its members are an α -shading of x which has no finite subfamily such that the fuzzy closures of its members are an α -shading, since $u_j \leq \bar{u}_j^0 \lor u_j \leq \bar{u}_j$. This completes the proof.

Now we extend the concept of an extremely disconnected space [10] to fuzzy topology.

DEFINITION 5.8. An fts (X, τ) is called a fuzzy extremely disconnected space (abbreviated as FED-space) if the fuzzy closure of every fuzzy open set in X is fuzzy open.

THEOREM 5.9. An FED-space X is α S-closed if and only if it is α -almost compact.

PROOF. It follows from Theorem 5.7 and the fact that, in FED-space, a fuzzy regular open set is fuzzy open as well as fuzzy closed.

DEFINITION 5.10 [6]. An fts (X, τ) is called a regular fuzzy space if every fuzzy open set u of X can be written as the supremum of fuzzy open sets u_i 's of X such that $\bar{u}_i \leq u$ for each j.

THEOREM 5.11. Let (X, τ) be a regular fuzzy space. If X is α S-closed, then it is α -compact.

PROOF. Let \mathscr{U} be an open α -shading of X. For each point $x \in X$ there is a fuzzy open set $u_x \in \mathscr{U}$ with $u_x(x) > \alpha$. Thus the family $\{u_x : x \in X\}$ is an open α -shading of X. Since X is a regular fuzzy space, $u_x = v_{j_x} u_{j_x}$ with $u_{j_x} \in \tau$ and $\bar{u}_{j_x} \leq u_x$ for each j. Since $u_x(x) > \alpha$, there is u_{j_x} such that $u_{j_x}(x) > \alpha$. Thus $\{u_{j_x} : x \in X\}$ is an open α -shading of X. Hence there exists a finite subfamily $\{u_{j_{x1}}, \ldots, u_{j_{xn}}\}$ of $\{u_{j_x} : x \in X\}$ such that $\{\bar{u}_{j_{x1}}, \ldots, \bar{u}_{j_{xn}}\}$ is an α -shading of X. Therefore $\{u_{x_1}, \ldots, u_{x_n}\}$ is a finite α subshading of \mathscr{U} and X is α -compact.

THEOREM 5.12. In a regular FED-space, the following are equivalent. (i) X is α -compact.

- (ii) X is α -nearly compact.
- (iii) X is α -almost compact.
- (iv) X is α S-closed.

598

PROOF. It is a direct consequence of Theorems 5.9 and 5.11.

THEOREM 5.13. Let an fts X have the property that for each α -shading \mathcal{U} of X, $\mathcal{U}^0 = \{u^0 : u \in \mathcal{U}\}$ is an α -shading of X. Then X is α -almost compact if and only if X is α S-closed.

PROOF. For sufficiency, see Remark 5.2. For necessity, let \mathscr{U} be a semiopen α -shading of X. Then $\mathscr{U}^0 = \{u^0: u \in \mathscr{U}\}$ is an open α -shading of X and there exists a finite subfamily $\{u_1^0, \ldots, u_n^0\}$ of \mathscr{U}^0 such that $\{u_1^{0-}, \ldots, u_n^{0-}\}$ is an α -shading of X. This means that $\{u_1, \ldots, u_n\}$ is a finite subfamily of \mathscr{U} such that $\{\bar{u}_1, \ldots, \bar{u}_n\}$ is an α -shading of X. Consequently X is α S-closed.

THEOREM 5.14. An α w-closed subset of an α S-closed fts is α S-closed.

PROOF. It is obvious.

DEFINITION 5.15. A function $f: X \to Y$ is said to be *F*-almost open if $f^{-1}(\bar{u}) \leq \overline{f^{-1}(u)}$ for every fuzzy open set *u* of *Y*.

REMARK 5.16. If $f: X \to Y$ is an *F*-open mapping, in the sense of Wong [18], then it is also *F*-almost open. But the converse is not true as one may notice from the following example.

EXAMPLE 5.17. Let $X = \{a, b\}$ and $Y = \{c, d\}$. Define $u \in I^x$ and $v \in I^y$ as follows

u(a) = 0.5, u(b) = 0.3, v(c) = 0.5, v(d) = 0.4.

Let $\tau = \{1, 0, u\}, \sigma = \{1, 0, v\}$ and $f: (X, \tau) \to (Y, \sigma)$, where f(a) = c, f(b) = d. Then f is F-almost open but it is not F-open.

LEMMA 5.18. If $f: X \rightarrow Y$ is F-continuous and F-almost open, then f^{-1} (semiopen) is semiopen.

PROOF. If u is a fuzzy semiopen set of Y, then there is v fuzzy open such that $v \leq u \leq \overline{v}$. Hence $f^{-1}(v) \leq f^{-1}(u) \leq \overline{f^{-1}(v)}$, i.e., $f^{-1}(u)$ is semiopen.

THEOREM 5.19. Let $f: X \to Y$ be F-continuous and F-almost open. If X is S-closed, so is f(X).

PROOF. A combination of Definition 5.1 and Lemma 5.18 yields the proof.

References

1. M. E. Abd Elmonsef, M. H. Ghanim, Almost compact fuzzy topological spaces, Delta J. Science 5 (1981), 19-29.

2. D. E. Cameron, *Properties of S-closed spaces*, Proc. Amer. Math. Soc. 72 (1978), 581-586.

3. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.

4. T. E. Ganter, R. C. Steinlage, R. H. Warren, *Compactness in fuzzy topological*, J. Math. Anal. 62 (1978) 547-562.

5. B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl. 50 (1975), 74-79.

6. — , I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems 3 (1980), 93-104.

7. J. Klein, α -Closure in fuzzy topology, Rocky Mount. J. Math. 11 (1981), 553–560. 8. R. Lowen, A comparison of different notions of compactness in fuzzy topological spaces, J. Math. Anal. Appl. 64 (1978), 446–454.

9. A. S. Mashhour, I. A. Hasanein, On S-closed spaces and almost (nearly) strongly paracompactness, Ann. Soc. Sci. Bruxelless 95 (1) (1981), 35-44.

10. T. Noiri, A note on extremally disconnected spaces, Proc. Amer. Math. Soc. 79 (2) (1968), 327-330.

11. S. E. Rodabaugh, *The Hausdorff separation axioms for fuzzy topological spaces*, Topology and Its Applications **11** (1980), 319–334.

12. ——, The L-fuzzy real line and its subspaces, Fuzzy Sets and Possibility Theory: Recent Developments, R. R. Yager, ed., Pergamon Press, Oxford, 1982, 402–418.

13. ——, A categorical accommodation of various notions of fuzzy topology, Fuzzy Sets and Systems 9 (1983), 241–265.

14. S. E. Rodabaugh, Separation axioms and fuzzy real lines, Fuzzy Sets and Systems 11 (1983), 163–183.

15. E. S. Santos, Topology versus fuzzy topology, Preprint (1977).

16. T. Thompson, S-Closed spaces, Proc. Amer. Math. Soc. 60 (1976), 335-338.

17. R. H. Warren, Neighbourhoods, bases and continuity in fuzzy topology, Rocky Mount. J. Math. 8 (1978), 459–470.

18. C. K. Wong, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46 (1974), 316-328.

19. L. A. Zadeh, Fuzzy sets, Inform Contr. 8 (1965), 338-353.

DEPT. MATH. FAC. SCIENCE, ASSIUT UNIV., ASSIUT - EGYPT.

DEPT. MATH. FAC. SCIENCE, ZAGAZIG UNIV., ZAGAZIG - EGYPT.

DEPT. MATH. SOHAG FAC. SCIENCE, ASSIUT UNIV., SOHAG - EGYPT.