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a-SEPARATION AXIOMS AND a-COMPACTNESS IN
FUZZY TOPOLOGICAL SPACES
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ABSTRACT. In [11] Rodabaugh introduced the concept of a-
Hausdorff fuzzy topological spaces which is compatible with a-
compactness [4] and fuzzy continuity. It is the purpose of this paper
to extend these concepts. We define and study « — T; (i = 0, 3, 4),
a—-Ti({i=0,1,2,3,4), a-almost compact and a-nearly compact
fuzzy topological spaces. Also, we define a-continuous mappings
as a generalization of F-continuous mappings. Finally, we define
aS-closed fuzzy spaces and study some of their properties.

1. Preliminaries. Let X be a set. If 4 = X, p(A) will denote the char-
acteristic function for 4 defined on X into the unit interval 7 = [0, 1].
A fuzzy topology 7 on X 'is a family of fuzzy sets (functions from X into
I) which is closed under arbitrary suprema and finite infima and which
contains 0 = p(¢) and 1 = w(X). A pair (X, 7), where < is a fuzzy topology
on X, is called a fuzzy topological space (abbreviated as fts). A fuzzy set
u of an fts (X, 7) is regular open (resp. regular closed) if = @9 (resp.
u = #Y), it is fuzzy semiopen if u < #°. For notion and results used but
not defined or shown we refer to [3, 5, 13, 16, 18].

DEerINITION 1.1 [11]. Let (X, 7) be an fts and 4 = X. A point x € X is
an a (resp. a*)-cluster point of A4 if for each u € ¢ with u(x) > « (resp.
u(x) Z a), u A u(X/A) # 0, where a < 1 (resp. & < 0). The family of
all ¢ (resp. a*)-cluster points of A will be denoted by A*(resp. A%"). The
a (resp. a*) closure of A is the union of 4 and its a (resp. a*) cluster points
and will be denoted by Cl,(A4) (resp. CL,.(4)). The subset A of X is
a (resp. a*)-closed if Cl (4) = A (resp. Cl,.(4) = A).

ProPOSITION 1.2 [11]. Let (X, 7) be an fts. Then
(i) a subset A of X is « (resp. a*)-closed if and only if for each point x €
X\A there is u € T such that u(x) > o (resp. u(x) = a) andu A p(A) = 0.
(ii) arbitrary intersection of a (resp. a*)-closed sets is a (resp. a*)-closed,
(iii) a finite union of « (resp. a*)-closed sets is a (resp. a*)-closed, and,
(iv) the inverse image of each a (resp. a*)-closed set under an F-continuous
mapping is « (resp. a*)-closed.
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DEFINITION 1.3. Let (X, 7) be an fts and let 4 = X. A4 is an « (resp. a*)-
open set if X/A4 is a (resp. a*)-closed. Equivalently, A is a (resp. a*)-open
if, for each point x € 4 there is u€ ¢ with u(x) > «a (resp. u(x) = a)
and u A p(X/A4) = 0.

REMARK 1.4. The following notions are found in [7, 8, 11, 13]. Let
a €l and (X, ) be a given fts. Put u, = {x € X: u(x) > a} and 7, = {u,:
u € t}. Clearly, 7, is a family of @-open sets in (X, 7). One may easily verify
that ¢, is a topology on X.

PROPOSITION 1.5. Let (X, 7) be an fts. The family of all a-open sets in X
is a topology on X coarser than .

PROOF. {a-open sets} = W, [7].
EXAMPLE 1.6. Let X = {a, b, ¢} and let u, v be fuzzy sets in X defined by

u(a) = 0.3, u(b) = 0.5, u(c) = 0.7
v(a) = 0.7, v(b) = 0.6, v(c) = 0.9.

Define the fuzzy topology 7 = {1, 0, , v} on X. Fora = 0.4, {b, ¢} is a
To-0pen set which is not a-open.

DEFINITION 1.7. Let (X, 7) be an fts and let 4 = X. A point x € X is an
a (resp. a*)-weak cluster point (aw (resp. a*w)-cluster point, for short)
of A if for every u €  with u(x) > a (resp. u(x) = a), # A u(4\{x}) # 0.
The set of all aw(resp. a*w)-cluster points of A is denoted by A*»(resp.
A*%). The aw(resp. a*w)-closure of A is the union of 4 and its aw(resp.
a*W)-cluster points. 4 is aw(a*w)-closed if A*v = A (resp. A** < A).

REMARK 1.8. If a point x € X'is an a (resp. a*)-cluster point of a subset 4
of an fts X then it is an aw(resp. a*w)-cluster point of 4. Consequently,
if 4 is aw(resp. a*w)-closed, then A is a (resp. a*)-closed. The following
example indicates that the converse is not true.

ExXAMPLE 1.9. Let X = {a, b, ¢} and let u, v be fuzzy sets in X defined by
u(a) = 0.5, u(b) = 0.6, u(c) =0
va) = 0.4, v(b) = 0, v(c) = 0.5.
Define the fuzzy topology 7 = {1,0,u, v,u V v,u A v} onX. Fora <0.5,

the point a is an aw-cluster point of the set {a, ¢}, but it is not an a-cluster
point. The set {c} is an a-closed set which is not aw-closed.

DEFINITION 1.10. Let (X, 7) be an fts and let 4 = X. A4 is an « (resp.
a*)-strongly open (as (resp. a*s)-open, for short) if X\A4 is aw(resp. a*w)-
closed. Equivalently, 4 is as (resp. a*s)-open if, for every point x € 4,
there is u € 7 such that u(x) > a (resp. u(x) = a) and # A p(X\4) = 0.
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REMARK 1.11. Let (X, 7) be an fts and let 4 — X. If 4 is an as (resp.
a*s)-open set, then it is a (resp. a*)-open. In Example 1.10, {a, b} is
an q-open set which is not as-open.

2. a-Separation axioms. We use the concepts of a-closed sets aw-closed
sets to define the following separation axioms.

DEerINITION 2.1. An fts (X, 7) is called:

1. An o — T, (resp. a — T) space if for each two distinct points x, y € X
there exists u € ¢ such that u(x) > a and u(y) = 0 (resp. u(y) = 0), or
u(y) > a and u(x) = 0 (resp. i(x) = 0).

2. An a — Ti(resp. a — T7) space if for each two distinct points x, y € X
there exist u, ve ¢ such that u(x) > a, v(y) > @ and u(y) = v(x) =0
(resp. a(y) = v(x) = 0).

3. An a — Ty(resp. a — T,) space if for each two distinct point x, y € X
there exist u, v €7 such that u(x) > a, v(y) > aand u A v = 0 (resp.
aAv=0).

4. An qa-regular (resp. a-weakly regular) space if for each a-closed
(resp. aw-closed) subset 4 of X and each point x € X\ 4 there exist u, ve ¢
such that u(x) > a, v(y) > aondandu A v =0.

An g-regular (resp. a-weakly regular) space which is also @ — T (resp.
a — Ty) is called an a — T3 (resp. a — T'3) space.

5. An a-normal (resp. a-weakly normal) space if for each two disjoint
a-closed (resp. aw-closed) subsets 4, B of X there exist u, v € ¢ such that
ux) >aon A, v(y) >aonBandu A v =0.

An a-normal (resp. a-weakly normal) space which is also ¢ — T (resp.
a — Ty)is called an a — T (resp. a — Ty) space.

The separation axioms o — T7 and a — T, have been defined in [11, 12]
and greatly generalized in [14]. The proof of the following theorem is
routine and it is omitted.

THEOREM 2.2. An fts (X, T)is a — Ty (resp. a« — T) if and only if every
one point subset {x} of X is a-closed (resp. aw-closed).

Definition 2.1 and Theorem 2.2 yield the following diagram

a—T4:>a——T3:>a—T2:>a—T1:>a—To

T 1

a-Ti—a-Tis=— a—-T,=—>a-T;,=—>a-T,
EXAMPLE 2.3. Let X = {a, b, ¢} and let u, v be fuzzy sets in X defined by

u(a) = 0.5, u(b) = 0, u(c) = 0.6
v(a) = 0, v(b) = 0.4, v(c) = 0.5.
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Define the fuzzy topology ¢ = {1, 0, u, v, u V v, u A v} on X. The fts

(X, 7)is @ — Tybutitisnot @ — Ty. Also (X, 7) is a-normal but it is not
a-regular.

REMARK 2.4. The above diagram and Corollary 7.2 of [11] imply that
the I-fuzzy unit interval I(I) [5] and the I-fuzzy real line R(I) [4] are not
a— T;norqg — T;fori=1,2,3,4.

3. a -Compactness.

DErFINITION 3.1 [4]. Let X be a nonempty set and « € I. A family # < IX
is an a-shading of X if, for each point x € X, there is u € % such that u(x) >
a. A subfamily ¥~ of an a-shading # of X, that is also an a-shading of X,
is called an a-subshading of . An a-shading # of an fts X is an open
(resp. closed, . . .) a-shading if each member of % is a fuzzy open (resp.
closed, . ..) set. An fts X is said to be a-compact if every open a-shading
of X has a finite a-subshading.

DEerINITION 3.2 [1]. An fts (X, 7) is a-almost (resp. a-nearly) compact
if for each open a-shading # of X there is a finite subfamily ¥~ of %, the
fuzzy closures (resp. fuzzy interiors of the fuzzy closures) of whose mem-
bers are a-shading of X.

One may notice that a-compactness = a-nearly compactness = a-
almost compactness. These implications do not reverse [1].

THEOREM 3.3. An fts (X, 1) is a-nearly compact if and only if each
regular open a-shading of X has a finite a-subshading.

PROOF. A simple combination of Definition 3.2 and the definition of a
regular open a-shading yields the result.

THEOREM 3.4. An aw-closed subset of an a-almost (resp. a-nearly) compact
fts is a-almost (resp. a-nearly) compact.

PROOF. Let 4 be an aw-closed subset of an z-almost compact fts (X,
7). Let % be an open a-shading of A4. Since A is aw-closed, then for each
point x € X\A4 there exists v, € 7 such that v,(x) > a« and 7, A w(4) = 0,
i.e, () =0 on 4. Then ¥ = {v,: x€ X\4} U % is an open a-shading
of X. Consequently there exists a finite subfamily {V,,..., V, } U {u,

., Uy} of ¥ such that {V,,...,V,, @, ..., i, is an a-shading of
X. Consequently {i, ..., @i,} is an a-shading of 4 and A4 is a-almost
compact. The a-nearly case has a similar proof.

A partial converse of Theorem 3.4 is the following theorem which has
a routine proof.
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THEOREM 3.5. Any a-almost compact (crisp) subset of an o — T, space
is aw-closed.

COROLLARY 3.6.
(i) Any a-nearly compact (crisp) subset of an a — T, space is aw-closed.
(ii) A (crisp) subset of an a-almost (resp. a-nearly) compact a — T, space
is a-almost (resp. a-nearly) compact if and only if it is aw-closed.
(iii) The intersection of any family of a-almost (resp. a-nearly) compact
crisp subsets of an a-almost (resp. a-nearly) compact o — Ty space is a-
almost (resp. a-nearly) compact.

THEOREM 3.7. Let (X, t) be an a — T, space and let A be an a-almost
(resp. a-nearly) compact crisp subset of X. For each point x € X\A there
exist u, ve€t such that u(x) > a, W(y) > a (resp. v(y) > a«) on A and
anv=0.

ProOF. We give a proof considering 4 as an a-almost compact crisp
subset of X; the other part has a similar proof. For each y € 4 there exist
uy, vy € 7 such that uy(x) > a, v/(y) > @ and @, A ¥, =0. Then # = {v,:
y € A} is an open a-shading of 4. Consequently, there is a finite subfamily
{Vy ... > vy} Of % such that {v,, ..., ¥,} is an a-shading of A. Set
u= A’y u,andv= vV, v, Thenu, ver, ux) > a, W(y) > aon 4
anda A v =0.

Using the same arguments one may prove the following result.
THEOREM 3.8. An a-nearly compact « — T, space is o — T}.
4. a-Continuous mappings.

DEerINITION 4.1. The following is found in [7, 8, 11, 13] etc. Leta e /
and (X, 7) be a given fts. Put u, = {x: u(x) > a}, 7, = {u,: uet}, J (X,
7) = (X, 7,) and J(f) = f, where f: X — Y.

PRrROPOSITION 4.2 [7, 8, 11]. J, is a functor from the category of I-fts to
TOP; hence f is F-continuous implies J ,(f) is continuous.

REMARK 4.3. J, is the a-level functor.

REMARK 4.4, The implication of Proposition 4.2 does not reverse (see
Theorem 4.8 (2, 3) below). Hence Proposition 4.2 yields a generalization
of Proposition 1.2 (iv) as follows: if J,(f)is continuous, then f~1(a-open)
is a-open and so f~!(a-closed) is a-closed.

THEOREM 4.5. Let (X, 7), (Y, 0) be fts and f: X — Y. If J(f): (X, 7,). —
(Y, o,) is continuous, then X is a-compact implies f(X) is a-compact.

ProoF. This is a corollary of two results of [11], namely Theorem 3.1
(2) and Proposition 3.1 (1).
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REMARK 4.6. Theorem 4.5 generalizes Theorem 2.9 of [4] because of
Proposition 4.2 and Theorem 4.8 (2, 3) below.

DEFINITION 4.7. A mapping f: (X, 7) — (Y, o) is a-continuous if, for
every point x € X and for every v € ¢ with f(x) € v,, there exists u € ¢ such
that x € u, and f(u) < v.

THEOREM 4.8. Let (X, 1), (Y, 0) be fts and f: X — Y. The following hold:
(1) f is F-continuous = f is a-continuous.

(i) The implication of (1) does not reverse.

(iii) f is a-continuous = J (f) is continuous.

(iv) The implication of (3) does not reverse.

PROOF.
(i). Straight-forward.
(ii). Let X = {a, b} and let u, v be fuzzy sets in X defined by

u(a) = 0.5, u(b) = 0.6,

v(a) = 0.7, v(b) = 0.8.
Define the fuzzy topologies 7 = {1, 0, u} and ¢ = {1, 0, v} on X. The
identity map iyx: (X, 7) — (Y, ¢) is not F-continuous, yet is a-continuous
for « < 0.5.

(iii). Let v € ¢ and f(x) € V,. From a-continuity there is u € ¢ such that
x € u, and f(u) < v. We show that f(u,) < v,. Let z € u, and observe

v(f(2)) 2 fw) (f(2) = Ufu(w): fiw) =f(2)} 2 u(z) > .

So f(z) € v,.
(iv). Let X = {a, b} and let u, v be fuzzy sets in X defined by
u(a) = 0.3, u(b) = 0.5
v(a) = 0.6 v(b) = 0.7

Define the fuzzy topologies = {1, 0, 4} and ¢ = {1, 0, v} on X. The
identity map iy : (X, 7) — (X, o) is not a-continuous but J(f): (X, z,) — (¥,
o,) is continuous for 0.5 < a ‘< 0.6.

COROLLARY 4.9. Each a-continuous map preserves a-compactness.
PRroOF. Theorems 4.5 and 4.8 (iii).

5. as-closed spaces. In 1976, T. Thompson [16] induced the concept
of S-closed spaces. The literature includes [2, 9, 10]. We now use the
concept of an a-shading to define aS-closed spaces in fuzzy topology.

DEFINITION 5.1. An fts (X, 7) is called aS-closed if for each semiopen
a-shading # of X there is a finite subfamily ¥~ of # such that the fuzzy
closures of its members are an a-shading of X.
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REMARK 5.2. It is clear that if (X, 7)is an a'S-closed fts it is also a-almost
compact.

THEOREM 5.3. An fis X is aS-closed if and only if every regular closed
a-shading has a finite a-subshading.

ProoF. Necessity follows from the fact that a fuzzy regular closed set
is semiopen and closed.

Sufficiency follows from the fact that if  is a fuzzy semiopen set, then
u is regular closed.

DEeFINITION 5.4. A fuzzy set u of an fts (X, 7) is called a fuzzy regular
semiopen set if there exists a fuzzy regular open set v of x such that v <
u=sv.

REMARK 5.5. If u is a fuzzy regular semiopen set, it is also a fuzzy semi-
open set but the converse is not true in general, as we can show from
Example 5.6, below. This example indicates also that a fuzzy open set
need not be a fuzzy regular semiopen set.

EXAMPLE 5.6. Let X' = {a, b} and let uy, uy, us be fuzzy sets in X defined
by

ui(a) = 0.4, u1(b) = 0.5, uy(a) = 0.5
uy(b) = 0.6, us(a) = 0.5, us(b) = 0.5

Define a fuzzy topology ¢ = {1, 0, uy, u;} on X. The fuzzy set us is a fuzzy
regular semiopen but it is not fuzzy open. The fuzzy set u, is a fuzzy open
set but it is not fuzzy regular semiopen.

THEOREM 5.7. An fts X is aS-closed if and only if for every regular
semiopen a-shading U of X, there is a finite subfamily v of U such that the
fuzzy closures of its members are an a-shading of X.

PRrROOF. If X is aS-closed, then the result follows directly from the above
definition. If X is not an aS-closed fts, then there exists a fuzzy semiopen
a-shading {u;: j€ J} which has no finite subfamily such that the fuzzy
closures of its members are an a-shading. Then the family {#} v u;:je J}
is a fuzzy regular semiopen a-shading of X which has no finite subfamily
such that the fuzzy closures of its members are an a-shading, since u; <
i) V u; < ;. This completes the proof.

Now we extend the concept of an extremely disconnected space [10] to
fuzzy topology.

DEeFINITION 5.8. An fts (X, 7) is called a fuzzy extremely disconnected
space (abbreviated as FED-space) if the fuzzy closure of every fuzzy open
set in X is fuzzy open.
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THEOREM 5.9. An FED-space X is aS-closed if and only if it is a-almost
compact.

ProoF. It follows from Theorem 5.7 and the fact that, in FED-space,
a fuzzy regular open set is fuzzy open as well as fuzzy closed.

DEFINITION 5.10 [6]. An fts (X, 7) is called a regular fuzzy space if every
fuzzy open set u of X can be written as the supremum of fuzzy open sets
u;’s of X such that #; £ u for each j.

THEOREM 5.11. Let (X, 7) be a regular fuzzy space. If X is aS-closed, then
it is a-compact.

PROOF. Let  be an open a-shading of X. For each point x € X there is
a fuzzy open set u, € % with u,(x) > . Thus the family {s,: x € X} is an
open a-shading of X. Since X is a regular fuzzy space, u, = v; u; with
u; € and #; < u, for each j. Since u,(x) > a, there is u;_ such that
u; (x) > a. Thus {u;: xe X} is an open a-shading of X. Hence there
exists a finite subfamily {u; , ..., u; } of {u;: xe X} such that {u;,

., #;_} is an a-shading of X. Therefore {u,,...,u,} is a finite a-
subshading of % and X is a-compact.

THEOREM 5.12. In a regular FED-space, the following are equivalent.
(i) X is a-compact.

(i1) X is a-nearly compact.

(iii) X is a-almost compact.

(iv) X is aS-closed.

PRroOOF. It is a direct consequence of Theorems 5.9 and 5.11.

THEOREM 5.13. Let an fts X have the property that for each a-shading
U of X, U0={u®: u€ U} is an a-shading of X. Then X is a-almost compact
if and only if X is aS-closed.

Proor. For sufficiency, see Remark 5.2. For necessity, let % be a semi-
open a-shading of X. Then #°= {u°: u € %} is an open a-shading of X
and there exists a finite subfamily {«, . . ., 43} of %9 such that {u¥~, ...,
u)~} is an a-shading of X. This means that {uy, ..., u,} is a finite sub-
family of % such that{@, . . ., i,} is an a-shading of X. Consequently X
is aS-closed.

THEOREM 5.14. An aw-closed subset of an aS-closed fts is aS-closed.
PROOF. It is obvious.

DEFINITION 5.15. A function f: X — Y is said to be F-almost open if
f~Y@) £ f~Yu) for every fuzzy open set u of Y.
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REMARK 5.16. If f: X — Y is an F-open mapping, in the sense of Wong
[18], then it is also F-almost open. But the converse is not true as one may
notice from the following example.

EXAMPLE 5.17. Let X = {a, b} and Y = {c, d}. Define u€ I* and ve I?
as follows

u(a) = 0.5, u(b) = 0.3, v(c) = 0.5, v(d) = 0.4.

Let z = {1, 0, u}, 0 = {1, 0, v} and f: (X, 7) > (Y, o), where f(a) = c,
f(b) = d. Then fis F-almost open but it is not F-open.

LemMma 5.18. If f+ X — Y is F-continuous and F-almost open, then f~1
(semiopen) is semiopen.

PRrOOF. If u is a fuzzy semiopen set of Y, then there is v fuzzy open such
thatv < u < 9. Hence f~1(v) £ f1(w) £ f~1(v), i.e.,, f~1(u) is semiopen.

THEOREM 5.19. Let f: X — Y be F-continuous and F-almost open. If X
is S-closed, so is f(X).

PRrROOF. A combination of Definition 5.1 and Lemma 5.18 yields the proof.
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