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REFLECTION GROUPS AND MULTIPLICATIVE INVARIANTS 

DANIEL R. FARKAS* 

Introduction. Given a lattice M (i.e., a finitely generated torsion free 
abelian group), one can form the group algebra C[M]. The operation for 
M, usually thought of as addition, must then be regarded as multiplica­
tion. An automorphism of M extends to an algebra automorphism of 
C[M] in a unique way. We refer to GL(M) as inducing a "multiplicative 
action" on C[M]. 

The semi-expository paper [2] is devoted to such actions. One of the 
theorems proved there was a multiplicative analogue of the Shephard-
Todd-Chevalley Theorem. 

THEOREM. Assume M is a lattice and G is a finite subgroup of GL(M). 
Then the fixed ring C[M]G is a polynomial ring over C if and only if G is a 
reflection group and, for some choice of root system, M is isomorphic as a 
module to a weight lattice over its Weyl group G. 

Subsequently, I was led to a paper of Steinberg [6] in which a related 
theorem appears. Indeed, it is fair to say that the theorem above is im­
plicit in Steinberg's work. Apparently, it has been valuable, for general 
ring theorists, to bring the invariant theoretic statement into relief. My 
arguments are naive in the sense that they use no algebraic geometry and 
employ only the rudiments of root systems. 

This note is an elaboration of the second half of [2]. The theorem stated 
above says that, even for reflection groups, it is rare that the fixed ring of 
the group algebra is a polynomial ring. This distinction among G-module 
structures for M disappears once we pass to the rational function field of 
fractions C(M). 

THEOREM 10. Assume M is a lattice and G c GL(M) is a finite reflection 
group. Then C(M)G is always a rational function field. 

The same techniques prove a generalization of the invariant theorem. 

COROLLARY 13. Assume M is a lattice and G c GL{M) is a finite re-
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flection group. Then C[M]G is a polynomial ring over C[MG] if and only if 
for some choice of root system, MjMG can be realized as its weight lattice 
and the group induced by G as its Weyl group. 

Once again, the last result should be credited to Steinberg. In conjunc­
tion with §3 of [2], one obtains the final word on the subject. 

COROLLARY. Assume M is a lattice and G is a finite subgroup ofGL(M). 
Then C[M]G is the tensor product of a group algebra and a polynomial 
algebra (over C) if and only if G is a reflection group and, for some root 
system, M\MG is isomorphic (as a module over the group induced by G) 
to a weight lattice (over the Weyl group). 

The reader will find that §1 of this note is a review of expected and/or 
well known facts about an action of a reflection group which may not be 
effective. §2 is, I hope, a clarification of the paragraph about exponential 
invariants in Bourbaki [1]. The last section contains the main theorems as 
applications. 

I am indebted to L. Solomon and R. Steinberg for patiently guiding 
this neophyte through the literature. 

1. Root systems. In this section we collect folklore and trivia about 
finite reflection groups. For the most part, we will adopt Humphreys' 
notation [4] for root systems. 

DEFINITION. Assume M is a lattice and G c= GL(M) is a finite group 
generated by reflections. Let V = R ®z M. A rooting section for M is 
an ordered pair (%, 0) such that 

RS 1. TZ: V -+ V is an idempotent R[G]-module map; 
RS 2. KerTT = VG; 
RS 3. 0 is a root system for 7Ü(V); 

RS 4. The restriction of G to iz( V) is the Weyl group of 0; and 
RS 5. 0 a M a %~l(A) where A is the weight lattice for 0. 

For the rest of this paper M denotes a lattice and G a GL(M) is a 
finite reflection group. We first prove that rooting sections always exist 
by constructing a "maximal" one for M. 

Average an arbitrary inner product on V = R ® M over the group G 
to obtain a G-invariant one. Each member of G then becomes an orthogo­
nal transformation. We shall denote this inner product (•, •). Define % 
to be the orthogonal projection on (VG)L. It is easy to check that % 
satisfies RS 1 and RS 2. 

Suppose that a is a reflection in G. The eigenspace in V corresponding 
to the eigenvalue — 1 is one-dimensional and must meet M. Thus M(a) 
= {me M\a(m) = — m} is a cyclic subgroup of M. Call its two possible 
generators a and — a and rename the reflection a = aa. 
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Notice that a and —a are the nonzero vectors of smallest length in 
M(aa). Let 0 be the collection of all ±a as aa ranges over all reflections 
in G. 

LEMMA 1. 0 spans n(V). 

PROOF. Let Wbt the span of 0 in V. Then 

WL = {v e K|(v, a) = 0, for all a e 0}. 

The basic formula for reflections states that if x e K, then 

_ 2(x, a) „ 
va(x) (a, a) 

Thus WL = {ve V\aa{y) = v, for all a e 0). Since G is generated by 
{aa\ae0}, we have flK1 = ye. Therefore, W = (K^)1. 

We will use the shorthand <v, a> = 2(v, a)/(a, a) for a e 0. 

LEMMA 2. 0 w a root system for TC{V). 

PROOF. We already know 0 spans ic(V). We next argue that each oa 

stabilizes 0. If a, ß e 0, then a calculation shows that 

Because ö*a preserves length, it sends a vector of minimal length in M{a^) 
to one of minimal length in M(aaOßO~^). Hence, aa(ß) e 0. 

A similar minimal length argument shows that the only multiples of 
a e 0 which lie in 0 are ± a. 

Finally, suppose x e M and a £ 0. Then ö"a(x) e M, i.e., x — <x, 
a > a 6 M . Thus <x, <x> a e M. Since M(aa) is generated by <x, we find 
that <x, a> is an integer. In particular, </3, a> e Z for a, ße0. 

It is obvious that G restricted to %(V) is the Weyl group for 0. We 
finish the verification that {%, 0) is a rooting section by checking RS 5. 
By construction, 0 cz M. Recall that A = ( j e %(V) | <>>, a> 6 Z, for all 
a 6 0 } . We require 

LEMMA 3. ic(M) cz A. 

PROOF. If x e M and a e 0, then the last paragraph of Lemma 2 tells 
us that <x, a> is an integer of the form 

<x, a> « 2 ^ 4 = 2Wa) _ <n(x) a> 
(a, a) (a, a) 

2. Invariants. For the next two sections, we assume that a rooting section 
Or, 0) for M is given. 

Specify a base J for the root system. The base gives rise to a very versa-
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tile partial order on the real span of %M. Say that x ^ y if y — x is a non-
negative linear combination of the simple roots in zl. There is a second 
candidate for a partial order which does not coincide with the first. To 
avoid confusion, we shall only describe its positive cone. Set A+ = {CÜ e yl | 
(a), a) ^ 0, for all a G A). We quote the crucial properties. 

THEOREM 4. (i) ([4, p. 70] or [1, p. 187]) The partial order g , when re­
stricted to A+, satisfies the minimum condition. 

(ii) (4, p. 68]) IfxeA+ and g lies in the Weyl group, then g(x) ^ x. 

We shall say that a finite subset F of M (or of its span V) is peaked if 
there is a member y G F such that %{y) > n(z), for all other z e F. In this 
case we call y the peak of F. 

THEOREM 5. The orbit under G of each vector in M is peaked and its peak 
lies in K-1(A+). 

PROOF. It is known ([4, p. 68]) that the orbit of a weight under the Weyl 
group contains exactly one dominant weight. Moreover, this dominant 
weight is a maximum element of the orbit, by Theorem 4 (ii). These results 
can be pulled back once we show that %{y) = 7c(gy), for g G G and y G M, 
implies y = gy. 

Choose £ e MG such that g(y) = y 4- £. By induction, gk(y) = y + &£, 
for all positive integers k. In particular, if k is the order of g, then y = 
y + &£. It follows that £ = 0, i.e., g(y) = y. 

We are finally ready to study the group algebra C[M]. Since the opera­
tion of addition in M becomes multiplication in C[M], we will write X* for 
the canonical image of X e M inside the group algebra C[M]. For example, 
(A — //)* = A*(/i*)_1. If a = 2^akX*, then the support of a is the finite set 
{AG M\ax 7e 0). We say that a G C[M] is peaked if its support is peaked 
and its peak has coefficient 1. Let "a denote its peak. It is easy to check 
that if ax and a2 in C[M] are peaked, then so is axa2. In that case, "(fliß2) 
= ^ i n ­

certain peaked elements merit special attention. If X G M, then the 
support of Tig^dg • A)* is the orbit of À under G and each member of the 
support has the same coefficient. Multiply the sum by the reciprocal of 
that number to obtain X(X) G C[M]G. Then Theorem 5 implies that X(X) 
is peaked. In fact, {X(X) \1ZTÜ-1{A+) fi M) is a basis for C[M]G with 
~X(X) = X. Notice that if £ G MG, then Jir(£) = £*. 

LEMMA 6. Let E be a set of peaked elements in C[M]G such that 

TTCE) = TTM f] A+. 

Then C[M]G is generated by E as a C[MG]-module. 
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PROOF. Let S be the C[AfG]-submodule of C[M]G spanned by E. Ac­
cording to the remarks above, we need only prove that X(X) e S, for all 
X G *r\A+) fi M. 

Suppose not. Using the minimum condition (Theorem 4(i)), we can find 
À e iz~l(A+) H M such that n(X) is minimal subject to XQ) e S. Choose 
y e E with nCy) = %(X). That is, "> = À — £, for some £ e MG. Then the 
support of XQ) — £*y consists of elements p, with %(p) < n(X), whence 
X(X) - %*yzS. But then X(X) e S. 

The next theorem is a broadening of the main result in [1, VI. 3.4]. 
Having found it dangerous to credit the proposition to any one individual, 
real or contrived, I will only say that its essence goes back to E. Cartan. 

THEOREM 7. Suppose Yl7 . . . , Yn are peaked elements of C[M]G. If the 
function from the set of formally distinct monomials in F1? . . . , Yn to 
TZM fi A+, which sends Y to %CY), is a surjection, then 

C[M]o = C[MO] [Yl9 . . . , y j . 

Furthermore, if this function is a bijection, then Yi,. . . , Yn are algebraically 
independent over C[MG]. 

PROOF. Let £be the monoid of monomials in Yl9. . . , Yn. By the lemma, 
C[M]G is spanned by E as a module over C[MG]. This proves the first half 
of the theorem. We use the additional hypothesis to show that C[M]G is 
a free C[MG]-module with basis E. 

Suppose 2finite rYY = 0, where Ye E and r reC[MG] . Assuming not 
all coefficients are zero, choose a monomial Z with % (~Z) maximal among 
those Y with rY ¥" 0. If b lies in the support of rz, then b("Z) must appear 
a second time as some ex, where c and x lie in the supports of rT and the 
monomial T respectively. Thus, KCZ) = %{x) ̂  %CT). By maximality 
and the bijection hypothesis, Z = T\ by peakedness, x = "Z. We have 
found that b{~Z) arises in only one way, a contradiction. 

3. Applications. Given the base J , let coi, . . . , com be fundamental 
dominant weights. We have called [2, 3] a submodule of A which contains 
0 a stretched weight lattice if it has a Z-basis of the form &icoi, . . . , kmœm, 
for some positive integers ki,. . . , km. The next statement is an immediate 
consequence of Theorem 7. 

COROLLARY 8. Suppose that %M is a stretched weight lattice with basis 
kicoi, . . . , kmœm. For each j = 1, . . . , m, choose a peaked element Yj e 
C[M]G such that 7r(" Yj) = kjcoj. (For instance, if 7c(Àj) = kjcoj one might 
pick Yj = XQj).) Then 

C[M\G = C[MG] [Yl9. . . , YJ 
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and y-!, . . . , Ym are algebraically independent over C[MG]. 

In order to further apply Theorem 7, we need to generate interesting 
collections of peaked elements in C[M]G. 

LEMMA 9. Suppose X\, . . . , Xk e M + A are such that X\ + . . . + XkeM. 
Then X(X1)X(X2) • • • X(Xh) e C[M]G. (Are , we r^flrJ JTtfy) e C[M + ifl.) 

PROOF. Details can be found in Lemmas 14 and 15 of [2]. A typical 
element in the support of X{X\). . . X(Xk) has the form gi(X\) + . . . + 
gk(h) f° r some choice of g1?. . . , gk e G. To show that this sum lies in 
M, it suffices to check that 

0a(Aj) - Xj-eM, forj=\,...,k and a e 0. 

But oa(Xj) — Xj = — <Xj,a > a lies in the root lattice. The result follows 
from RS 5. 

Let C(M) denote the field of fractions of C[Af ]. It is not difficult to prove 
[5, Lemma 2.5.12] that the field of fractions of C[M]G coincides with the 
fixed field C(M)G. 

THEOREM 10. C(M)G is always a rational function field. 

PROOF. First, imbed M in N = M + A. According to Corollary 8, 
C[N]G = C[NG] [X(o>i),. . . , *(û>J], where X(o>i)9. . . , X(a>J are al­
gebraically independent over the group algebra C[NG]. It follows that the 
multiplicative subgroup of C(N) generated by NG and X(ct)i)9.. . , X(com) 
is a free abelian group A of finite rank whose members are linearly inde­
pendent over C. 

Each X e %-l{A+) fi M can be written in the form 

m 

* = € + 2 CJWJ, 

where Ç e NG and each cj is a non-negative integer. Set 

m 

Yi = * ( « Il *(*>>)"• 
y=i 

According to Lemma 9, F^ e C[M]G. It is peaked; indeed ~Yk = X. Since 
MG c TT1(A+) fi A ,̂ Theorem 7 yields 

C[M)G = C [ r j , 

where A runs over 7r-104+) D A/. Moreover, each Yx lies in A. If 5 denotes 
the subgroup of A generated by {Yx\X^7u~1(/l+) f! M) then obviously B 
must be a free abelian group of finite rank as well. What is more, C[M]G 

localized at B is isomorphic to the group algebra C[B]. 
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It follows that the field of fractions of C[M]G is isomorphic to the ra­
tional function field C(B). 

LEMMA 11. M 4- A/M is finite. 

PROOF. M + A/M ~ A/A f] M and A {] M lies between the root 
lattice and A. But the root lattice has finite index in the weight lattice. 

THEOREM 12. If C[M]G is a unique factorization domain, then %M is a 
stretched weight lattice. 

PROOF. We closely follow the proof of Theorem 16 in [2]. Set N = 
M + A. Then C[N]G is the polynomial ring C[NG] [X{wi\ . . . , X(o)m)]; 
we will think of C[M]G as a subring. 

Call a nonzero element of %M f| A+ indecomposable if it cannot be 
written as a sum of two nonzero elements of %M f| A+. Suppose X e M 
is such that TU(X) is indecomposable. We may write 

A = £ + fa û>x + . . . + amo)m) 

where £ e NG and each aj is a non-negative integer. As a consequence of 
Lemma 9, 

lies in C[M]G. Any factoring of Y in C[M]G is also a factoring of Y in the 
UFD C[N]G. As observed in [2], the indecomposabihty of 7c(X) forces Y 
to be irreducible in C[M]G. 

Lemma 11 implies that there is a positive integer d such that d-N a M. 
Lemma 9 again tells us that X(Ç)d and all of the X{o)j)d are in C[M]G. Now, 

Yd = XiWlXfaYY« . . . [X(comy]^. 

Since 0 cannot be indecomposable, at least one of the a{ is nonzero; this 
precludes Y from being a unit. Hence, under the assumption that C[M]G 

is a UFD, Y divides X(o)j)d, for some j . Now, unique factorization in 
C[NG] [ÀXÛ)I), . . . , X(Û)J] implies that Y = *(£)*(<«,•)*>. In other words, 

As proved in [2], rcM is a stretched weight lattice if and only if its in­
décomposables have the form ajcoj, for positive integers aj. 

COROLLARY 13. Assume M is a lattice and G ci GL(M) is a finite re-
flection group. Then the following statements are equivalent. 

(a) There is a root system which realizes M/MG as its weight lattice and 
whose Weyl group is the group induced by G. 

(b) C[M]G is a polynomial ring over the group algebra C[MG]. 
(c)C[M]Gisa\JFD. 

PROOF, (a) -» (b). Let V be the real span of M. By Maschke's Theorem, 
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there is a G-submodule U such that V = VG ® U. We can identify MjMG 

with the projection of M into U. The root system contained in M/MG 

thereby becomes a root system for U. We have produced a rooting section 
for M. Since the image of M in U is a weight lattice, (b) follows from 
Corollary 8. 

(b) -• (c). This is classical. 
(c) -• (a). Let (TT, 0) be the maximal rooting section for M constructed 

in §1. Theorem 12 asserts that nM is a stretched weight lattice for the 
Weyl group G induced by G. As Z[G]-modules, MjMG and TCM are iso­
morphic. We observed in [3] (note added in proof) that every stretched 
weight lattice is isomorphic as a G-module to some ordinary weight lat­
tice, at the possible expense of replacing the original root system by an­
other one with the same Weyl group. 
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