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ON THE QUARTIC CHARACTER OF CERTAIN QUADRATIC
UNITS AND THE REPRESENTATION OF PRIMES
BY BINARY QUADRATIC FORMS

FRANZ HALTER-KOCH

1. For a squarefree rational integer m > 1 let ¢, be the fundamental
unit of Q(4/m) normalized by ¢,, > 1. For a rational prime p = 1 mod
4 let (- /p) be the quadratic and (- /p), the quartic residue symbol modulo
p. It is the aim of this paper to prove the following conjecture of P. A.
Leonard and K. S. Williams ([8, Conjecture 3.6]):

THEOREM. Let q, q' be primes, q = 3 mod 8, ¢' = Tmod 8, (¢'/q) = 1,
and let s be the odd part of the class number of Q(+/qq’, 4/ =2). Let p be
a prime such that (—1/p) = (2/p) = (q/p) = (¢'/p) = 1, then

ps = x2 + gqq'yz = c2 + 8d?2
with x, y, ¢, d € Z and

(5 - b

REMARK 1. When proving the Theorem it will be shown that for the
primes p in question (e,,//p) = (e5,//p) = 1 and that the quartic symbols
are well defined.

REMARK 2. Perhaps the Theorem itself does not deserve an extra publi-
cation but the proof is an interesting journey through various branches
of algebraic number theory and is intimately connected with the so-called
explicit decomposition laws in algebraic number fields which are not yet
fully understood.

2. The fields involved. I keep all notations of the Theorem and begin
with the unit theory of the biquadratic field

K = Q(+v/qq', v2q),
using methods and results of [7].

On account of (¢', q¢’/p) = 1 for all primes p, there is an integral §
€ Q(+/gq") with

qq’
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, 02,
NQ(JW)/Q(aqq') =4q, Eqg' = ‘que—’
similarly, there are integral elements d,, € Q(+/2g) and ;s € Q(4/2q")

such that

™

2
2q
s

NQ(JZGS/Q(azq) =4q, €29 =

-

2
2q’

Nq(vagnq(02) = 2, E2gr =

[\S]

From [7], Satz 1, it follows that

’\/eqql€2q7 '\/eqqragqn ’\/ﬁzqszq/

is a system of fundamental units of K. For primes p with (¢/p) = (q'/p)
= (2/p) = 1 it follows from the above formulae that

()=~ () -

and if in addition (— 1/p) = 1, i.e., p = | mod 8, then the quartic symbols
P /4 P /4> P /4
are well defined.

In the following we consider the unit

5 /‘5 ’
€= eyt = q:/T—qz,"e K.

Then the second assertion of the Theorem is equivalent with

(5)-

i. e., it remains to show:
(1) p splits completely in K(+/°¢), if and only if y + d = 0 mod 2.

Instead of the field K(4/¢ )1 shall consider its normal closure, and
for this reason I first consider the extension K(+/ ¢ )/Q(+/qq"). As

5 r'(sz» 5 /'2
Ny (€) = iq/2q’q ' —5;:,¢W=_6qq”

the extension K(4/ ¢ )/Q(+/gq’) is not normal and its normal closure L
is a dihedral extension of Q(4/gq") with [L: Q(+/qq’)] = 8. The interme-
diate fields of L/Q(+/qq’), which are quadratic over Q(4/qq’), are K =

QWaq’, V29, AV qq’s v/ —¢,) = QW4qq", v/ —¢'),and Q= Q(v/qq’,
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v/ =2). L/Q is cyclic and L/Q(+/qq’) is also the normal closure of a quartic
extension Q(+/¢qq’, v —¢’, v @)/Q(+/qq’) for some a € Q(+/qq’, v =¢’)
(see [2, §1]).

o (v/aq", /=q", /a)

©(Vaq",/=q")

@ (Y2q")

The conjugates of ¢ (over Q) are the three numbers

5qq/ M 2

—_— . = £ -—2 .5_2,’
o 2g " TP
i = —2q' -2
5qq’52q"\/27 =¢ ( 2q) (5qq’52q’) )
and
q'52q’ - ,.5_2
644'\/2¢I’ &4 O

Therefore the normal closure of K(4/ ¢ ) (over Q) is the field
L=KWe, V=2, 4/q)=Lv=0),

and L/Q is an abelian extension of type (4, 2). L is also the normal closure
of L over Q, thus of the form

L=L-L,
where L’ is a field conjugate to L.

The primes p as in the Theorem split completely in Q(4/ =1, 4/ =2,
VG, v/¢)=2+/=q', ~/=1), and they split completely in K(4/ ¢ ) if and
only if they do so in L. Therefore it remains to show:
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If a prime p splits completely in X/ =q’, 4/ —1), then
) ps = x%+ 8qq'y? = ¢% + 8d? with x, y, ¢, de Z, and
y + d = 0mod 2 if and only if p splits completely in L.

3. Arithmetic characterization of L/Q. In this section I shall prove:

3) L is the maximal 2-extension which lies in the ray class field
modulo 2 of Q.

Q(vqq’s v/ —q")/Q(+/qq’) is obviously unramified outside infinity, and
thus Q(4/ —¢4’)/Q is also unramified (later on I will show that Q(4/ —¢")
is the Hilbert 2-classfield of Q). As L=Q(+/ —¢’, 4/ ¢ ), L/Q is unramified
outside 2. Let m be the prime divisor of 2 in (2 =~ m? and m has degree
2); then the conductor f of L/Q is a power of m, and as it is an ideal of
Q(+/qq") ([2, Satz 7]) it is a power of 2, say

f=2, sz0.

As L and L’ are conjugate over Q, the conductor of L'/Q is also 2° and
thus the extension L/Q has conductor 2° too.

To calculate f; I use the field Q(4/qq’, 4/ —¢q', v/ a) and [2, Satz 24] (see
also [3, (3.4)]), which implies

I* = Natgg, v=pmcsgpy (0) - -

where b, by, by are the relative discriminants of

Qg v=q'» ¥V a)IQ(Vqq's ¥ —q), Q+V4qq's ¥ —q)/Q(v/q9");
Q/Q(+vqq")-

2 splits in Q(4/gq’, 4/ —q’) into two prime factors 3;, 3, of degree 2 and
I suppose that exactly 3{1552 divides b. Then, by [3, Lemma 2],

S1§3, 52§3’

and exacty 297 divides N.(b). As Q(+/qq’. v/ —¢")/Q(+/qq’) is un-
ramified, 2 does not divide b; and, again by [3, Lemma 2], 23 exactly
divides by. Putting everthing together I obtain

s=dG+sn-3=s3,
SO
s=1lors=0.

And if O denotes the maximal 2-extension lying in the ray class field mod-
ulo 2 of Q, then, by the above,
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Lc
Then for the proof of (3) it suffices to show
[Q: 0] =8,

i.e., the ray class number modulo 2 of @ is not divisible by 16. Let A4, be
this ray class number; then 4, is a divisor of hgy-¢g(2), where @, is the
Euler phi function of 2, and thus ¢,(2) = 3-22.

It follows from [7] that the class number A, of Q is given by

1
hg = = hacszp) * hacv=zgn

(as hq(,=3 = 1 and the unit index Q equals 1 in this case). Now, hq (77 is
odd [4, ch. 29], and 4 h|q (=5 exactly [6, §11]; thus

hy = 2s
with s = 1 mod 2, and
hg-Po(2) = 23-3s,
which was to be proved.

4. Weak decomposition laws and end of proof. The ideal class of order
2 in £ contains an ideal which is ramified over Q(4/=2) [5] § 13], that
is, a prime divisor of g or ¢’. We have ¢’ inert in Q(4/=2), and the prime
divisor of ¢ in Q2 is already a prime of Q(+/¢q’) and thus a principal prime
(hq(.z77 is odd). Now, g splits in Q(4/=2) inthe form g = (u + v4/=2)
(u—vs/=2) = 1% + 2v2withu,ve Z,u = v = 1 mod 2, and

(u+ va/=2) = %3,

where 9, are prime ideals of Q which lie in the ideal class of order 2.

I have to investigate ray classes modulo 2 in §, and thus I will first
determine generators for the prime residue classes modulo 2. Let m =
(4/=2) be the prime divisor of 2 in 2 and w a primitive root modulo m;
I may assume that  is an integer of Q(4/gq") which implies »® = 1 mod
2. The association 1 + @4/ =2 +— «a defines an isomorphism of (1 +m)/
(1 + m?) and the residue class field modulo m (which is Fy), so that the
prime residue class group modulo 2 is of type (3, 2, 2) with generators

w, 1 + /=2 and 1 4w 4/ =2.

Asu+ vy/=2 =1+ 4/=2 mod 2, I obtain the following description
of the ray classes modulo 2 in Q:
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For every fractional ideal % of Q which is prime to 2 there
is a representation

WU =u - (1 +wv=2)° (),

@ with uniquely determined exponents A€ {0, 1,2, 3}, Be
{0, 1}, an (not necessarily uniguely determined) exponent
0¢€{0, 1,2} and an « € Q (integral with respect to m)
with

a = 1 mod 2.

If the fundamental unit 7 of Q(4/gq’) has half-integral coordinates, I
may take @ = yand assume Q = 0.
Let S be the group of fractional ideals prime to 2 of Q, and let

£:S - Gal(L/Q)
be the Artin map. As in (4), I write for anideal { € S
W= (1 + o /—-2)8 - (ePa),

and then #() = idzifand onlyif 4 = B = 0.

As Q(4/—q’, 4/ —1) is the maximal elementary abelian extension of
Q inside L, Gal(L/N+/ =q’, v/ =1)) = {0%o € Gal(L/Q)}, and thus, for
%A € S as above, x(A) € Gal (L/A(+/ =¢’, 4/ —1)) if and only if 4 € {0, 2}
and B = 0.

As (+/ — q')/Qis unramified and 4, = 2 mod 4, (4/ —¢’) is the Hilbert
2-class field and thus for % € S, as above, x(%) € Gal(L/Q(+/ =¢")) if and
only if 4 € {0, 2}, i.e., %s is a principal ideal.

For the proof of the Theorem I have to show (2). So let p be a rational
prime which splits completely in Q(4/—¢q’, 4/ —1); then p also splits
completely in 2 and in Q(+4/—¢’). Let p be a prime divisor of p in Q2; then
ps = () with I € Q, NoqUI) = p*, and £(p) € Gal(L/Av/ =", /= 1),
i e.

(D = (u + v/ =2)° (o)

with Ce {0, 1}, Q € Z and a = 1 mod 2. Furthermore, p splits completely
in L ifand only if (p) = idj, i.e., if and only if

(I = (o)

with @ = 1 mod 2. The units of Q are already in Q(+/gqq’) (see [7]), and
so they are congruent to some power of w modulo 2. Thus it remains to
show:
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Let [T € Q be integral and
IT=aw?-(+ 4/=2)°mod 2
with C € {0, 1} and Q € Z; then there is a representation
NoUD) = x% + 84q'y? = ¢% + 8d?
with x, y, ¢, d€ Z and

)

y+d=Cmod 2.
To see (5), set

0@l =1+ /=2)F + 28

with 8 € 0, §integral with respect to 2; from [9] it follows that
B =5+ b1/qq + bo/ =2 + bsn/=2gq),

with b; € Q, b, integral for 2 and by = b; mod 2, b, = b3 mod 2. Taking
norms I obtain

Noqv=zggnl) = x + 2y+/ =2qq’,
Noguv=(l) = ¢ + 2dv/ =2,
with x, y, ¢, de Z and
y +d= Cmod 2.

Taking further norms to Q gives the assertion.
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