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ON THE QUARTIC CHARACTER OF CERTAIN QUADRATIC 
UNITS AND THE REPRESENTATION OF PRIMES 

BY BINARY QUADRATIC FORMS 

FRANZ HALTER-KOCH 

1. For a squarefree rational integer m > 1 let em be the fundamental 
unit of Q(*s/7n) normalized by em > 1. For a rational prime p = 1 mod 
4 let ( • Ip) be the quadratic and ( • //?)4 the quartic residue symbol modulo 
p. It is the aim of this paper to prove the following conjecture of P. A. 
Leonard and K. S. Williams ([8, Conjecture 3.6]): 

THEOREM. Let q, q' be primes, q = 3 mod 8, q' = 7 mod 8, (q'jq) = 1, 
and let s be the odd part of the class number of Q(\/qc['> V^-2)- Let p be 
aprirne such that (—l/p) = (2/p) — (q/p) = (q'/p) = 1 ; then 

ps = X2 + %qq'y2 = C2 + 8a>2 

with x, y9 e, d e Z and 

REMARK 1. When proving the Theorem it will be shown that for the 
primes p in question (eqq,/p) — (e2gr/p) = 1 and that the quartic symbols 
are well defined. 

REMARK 2. Perhaps the Theorem itself does not deserve an extra publi­
cation but the proof is an interesting journey through various branches 
of algebraic number theory and is intimately connected with the so-called 
explicit decomposition laws in algebraic number fields which are not yet 
fully understood. 

2. The fields involved. 1 keep all notations of the Theorem and begin 
with the unit theory of the biquadratic field 

* = Q(Vqq\ VW), 

using methods and results of [7]. 

On account of (q\ qq'/p) = 1 for all primes p, there is an integral dqql 

zQ(\/qq~') with 
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§2 f 

NQ(Jqq~')/Q(àgq') = # ' £qq' = ~3~ \ 
q 

similarly, there are integral elements Ö2q^Q(\/2q) and 52q' £ Q(\/2qf) 
such that 

§2 
^Q(V2q)/Q(S2q) = 4, £2q = -J2", 

NQ(J2T')/Q(Ö2q>) = 2, Z>2q> = ~ y ^ • 

From [7], Satz 1, it follows that 

veqq,e2q, \eqq,e2qn v £2q£2q> 

is a system of fundamental units of K. For primes p with (q/p) = (q'/p) 
= (Ifp) = 1 it follows from the above formulae that 

(THtMTH-
and if in addition ( — l/p) = 1, i.e., p = 1 mod 8, then the quartic symbols 

( £w' ) (HA (ew\ 
\ P A> V P A> V /? A 

are well defined. 
In the following we consider the unit 

e=V7^=^eK. 

Then the second assertion of the Theorem is equivalent with 

i. e., it remains to show: 

(1) p splits completely in K(^/ls~), if and only if y + d = 0 mod 2. 

Instead of the field K( ̂ /T) I shall consider its normal closure, and 
for this reason I first consider the extension K( V~ë~)IQ(V~qq~')- As 

JV*/QUWO U) - ^ 5 ^ -5 2 g ,VV~ *«" 

the extension K( y /T)/Q( v7^7) *s n o t normal and its normal closure L 
is a dihedral extension of Q(Vqq1) with [L: Q(\/qq7)] = 8. The interme­
diate fields of L/Q(^/qq7), which are quadratic over Q(^/qq7)y are K = 
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y/ _ 2). L/Q is cyclic and L/Q( ^qq') is also the normal closure of a quartic 
extension QCV^7» A / 3 ? 7 » A/ÖO/Q( V W ) f o r 

some a G Q(^\/qq', V — qf) 
(see [2, §1]). 

ßfv 'qq^/^q 1 ") 

<H{/W) 

® ( /qq1" , /^cf , /^) 

The conjugates of e (over Q) are the three numbers 

~2q' 

, = fi-(-2).^, 

and 
àqqrò2q^2q r =e'(-2qf)'(8^ö2qd~2, 

öqq,^2q = = e q -t qqf-

Therefore the normal closure of K{ ̂  e ) (over Q) is the field 

L = KWT, V^2, Vq7) = L(V~\l 

and L/Ö is an abelian extension of type (4, 2). L is also the normal closure 
of L over Q, thus of the form 

L = L-U, 

where Z/ is a field conjugate to L. 

The primes JP as in the Theorem split completely in Q( \ / -T^ A/—~2> 

A/1T> A / ? ) = Q( V -q'> A/--T), anc* they split completely in #( ^/T) if and 
only if they do so in £. Therefore it remains to show: 
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If a prime p splits completely in Q(^/ — q\ V—~ï)» tnen 

(2) ps = x2 + %qq'y2 = c2 + Sd2 with x, y, c, d e Z, and 
y + d = 0 mod 2 if and only if p splits completely in L. 

3. Arithmetic characterization of LjQ. In this section I shall prove : 

.-. L is the maximal 2-extension which lies in the ray class field 
modulo 2 of Q. 

Qi^/qcf, V — qOIQiVqq7) *s obviously unramified outside infinity, and 
thus Q{^ — q')IQ is also unramified (later on I will show that Q( ̂  — q') 
is the Hilbert 2-classfield of Q). As L = Q(X/ — q', ^/~ë~), L/Û is unramified 
outside 2. Let m be the prime divisor of 2 in Q (2 £ m2 and m has degree 
2) ; then the conductor / of LjQ is a power of m, and as it is an ideal of 
QiVqq7) ([2, Satz 7]) it is a power of 2, say 

/ = 2s, s ^ 0. 

As L and U are conjugate over Q, the conductor of L'/Q is also 2s and 
thus the extension LjQ has conductor 2s too. 

To calculate/, I use the field Q( ̂ ^q7, \J — q\ \/lx) and [2, Satz 24] (see 
also [3, (3.4)]), which implies 

f2 = NQ(^r, v^/QU^?) (b) • ~-, 

where b, bi, bo are the relative discriminants of 

QWqq'> V ^ ? , V^)/Q(vW> V^q7), Q(\/qq~', V^'VQWqq')* 

Ü / Q ( V ^ ) . 

2 splits in Q( A/<7<P> V — q') m t o two prime factors 5ls $2 of degree 2 and 
I suppose that exactly $•$• divides 6. Then, by [3, Lemma 2], 

S\ ^ 3 , s2 ^ 3, 

and exacty 251^52 divides JVv*(b). As Q(\/qc[', V-q'i/QiVqq7) is un­
ramified, 2 does not divide bi and, again by [3, Lemma 2], 23 exactly 
divides bo- Putting everthing together I obtain 

s = i-C?! + s2 - 3 ) ^ ^ - , 

so 

s = 1 or s = 0. 

And if 0 denotes the maximal 2-extension lying in the ray class field mod­
ulo 2 of Q, then, by the above, 
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L c Q. 

Then for the proof of (3) it suffices to show 

[Q: Q] è 8, 

i.e., the ray class number modulo 2 of Q is not divisible by 16. Let A2 be 
this ray class number ; then A2 is a divisor of Aö-^ö(2), where <j>Q is the 
Euler phi function of Q, and thus <f>0(2) = 3 • 22 . 

It follows from [7] that the class number hQ of Q is given by 

(as AQ( v=2) = 1 and the unit index Q equals 1 in this case). Now, A Q ( v ^ ) is 
odd [4, ch. 29], and 4 A|QU=2^o exactly [6, §11]; thus 

hQ = 2s 

with s = 1 mod 2, and 

Afl.0û(2) = 23-3^, 

which was to be proved. 

4. Weak decomposition laws and end of proof. The ideal class of order 
2 in Û contains an ideal which is ramified over Q(y /ZT2) [5] § 13], that 
is, a prime divisor of q or q'. We have q' inert in Q( V—"2)» a n d the prime 
divisor of q' in Q is already a prime of Q( A/qcf') and thus a principal prime 
(AQ(V—0 is odd). Now, # splits in Q(V

/TT2) in the form q = (u + v^/~^2) 
(u — v \/^2) = w2 + 2v2 with u, v e Z, u = v = 1 mod 2, and 

(w ± vv^I) = SO-, 

where St± are prime ideals of Q which lie in the ideal class of order 2. 
I have to investigate ray classes modulo 2 in Û, and thus I will first 

determine generators for the prime residue classes modulo 2. Let m = 
(^/"Z2) be the prime divisor of 2 in Û and co a primitive root modulo m; 
I may assume that w is an integer of Q( ̂ /qq7) which implies cos = 1 mod 
2. The association 1 + a«J~^2 •-» a defines an isomorphism of (1 +m)/ 
(1 + m2) and the residue class field modulo m (which is F4), so that the 
prime residue class group modulo 2 is of type (3, 2, 2) with generators 

co, 1 + \/~^2 and 1 +<o V - 2 . 

As u ± \><J~^2 = 1 4- V--2 mod 2, I obtain the following description 
of the ray classes modulo 2 in 0: 
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For every fractional ideal tyofQ which is prime to 2 there 
is a representation 

8P = Ä£ . (1 + Û> \/~=2)B • dafia), 

(4) with uniquely determined exponents A G {0, 1, 2, 3}, B G 
{0, 1}, an {not necessarily uniquely determined) exponent 
ß e { 0 , 1,2} and an a G Q {integral with respect to m) 
with 

a = 1 mod 2. 

If the fundamental unit rj of Q{Vqq7) has half-integral coordinates, I 
may take œ = 7] and assume Q = 0. 

Let »S be the group of fractional ideals prime to 2 of Û, and let 

K:S-> Gal(L/A) 

be the Artin map. As in (4), I write for an ideal « G S 

«« = « $ • ( 1 + 0 ) y ^ 2 ) ß - ( ^ a ) , 

and then /c(«) = ztìfc if and only if A = B = 0. 
As Q{*J — q\ V ^ D is the maximal elementary abelian extension of 

Q inside L, G a ^ L / ^ y ^ ' , y ^ ï ) ) = {<72k G Gal(L/fl)}, and thus, for 
« G S as above, *(«) G Gal ( 1 / 0 ( ^ ^ 7 ' , V ^ D ) i f and only if A e {0, 2} 
and £ = 0. 

As Q{ *J — q')jQ is unramified and h0 = 2 mod 4, ö( A/ — #') is the Hilbert 
2-class field and thus for « G S, as above, *(«) G Gal(L/fl( y/^q')) if and 
only if A G {0, 2}, i.e., « s is a principal ideal. 

For the proof of the Theorem I have to show (2). So let/? be a rational 
prime which splits completely in Ö(V — q', V^-l)l then p also splits 
completely in Q and in Q{*/ — q'). Let p be a prime divisor ofp in 0; then 
p* = (77) with 77 G Q, N0/Q{II) = ps, and *(p) G Gal(L/fl(A /^?, V ^ D X 
i. e. 

(77) = (w + v ^ ^ M û / t e ) 

with C G {0,1}, g G Z and a = 1 mod 2. Furthermore, p splits completely 
in L if and only if /r(p) = /rf̂ , i.e., if and only if 

(77) = (ûftr) 

with a = 1 mod 2. The units of Q are already in QWqq') (see [7]), and 
so they are congruent to some power of œ modulo 2. Thus it remains to 
show: 
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Let II eu be integral and 

n s oP • (1 + V~=2)c mod 2 

WJYÄ C e {0, 1} #«*/ ß e Z ; /Ae« fAere IJ a representation 

N0/Q(II) = x2 + 8 ^ y = C 2 + W 2 

with x, y, c, deZ and 

y + d = C mod 2. 

To see (5), set 

ÛT<?# = (1 + ^/~2)c + 2/3 

with ßeQ, ß integral with respect to 2; from [9] it follows that 

ß = y (*o + &ivW + W ^ + h^^îffî), 

with &f e Q, 6, integral for 2 and ô0
 s *i m ° d 2, Z>2 = &3 mod 2. Taking 

norms I obtain 

^ / Q U ^ O ( # ) = * + 2yj-2qq'9 

^W^)(/D = c + 2</V^2, 

with jc, j , c, of e Z and 

>> 4- d = C mod 2. 

Taking further norms to Q gives the assertion. 
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