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HEIGHT ONE SEPARABILITY AND GALOIS THEORY 
IN SEMI-KRULL DOMAINS* 

LAWRENCE NAYLOR 

ABSTRACT. An /^-algebra S is said to be height 1 separable over 
R if Sp is /^-separable for each height 1 prime ideal p in R. In this 
paper we look at a class of domains called semi-Krull domains, and 
show that a semi-Krull domain has a unique height 1 separable 
closure. We then show that there is a Galois correspondence be­
tween certain subextensions of the base ring in its height 1 separable 
closure and certain subgroups of the automorphism group. 

Introduction. This paper extends some of the results of Janusz dealing 
with separable algebras over connected commutative rings [3]. Janusz 
defines a separable closure for such a ring, and proves that separable 
closures do exist and are unique. He proves some basic properties of 
separable closures, and then describes how one could develop an infinite 
Galois theory for a connected commutative ring R inside its separable 
closure S by taking the full automorphism group of S over R, Aut^S), 
as the Galois group and exhibiting a one-to-one correspondence between 
closed subgroups of Aut^CS) and certain i?-subalgebras of S. 

In this paper we continue with the idea of height 1 separability in­
troduced in [6], i.e., an /^-algebra S is said to be height 1 separable over 
R (where R is commutative with 1) if Sp is /^-separable for each prime 
ideal p in the set X\R) of prime ideals of height ^ 1. Some general pro­
perties of height 1 separable algebras are also found there. We make a 
slight modification in the meaning of X'(R). Throughout this paper, X'(R) 
will denote the set of all prime ideals in R of height 1. When R is a domain 
which is not a field and Sp is /^-separable for a height 1 prime ideal p in 
R, then it follows (by a further localization) that S(Q) is 7? (0)-separable. 
Krull domains provide a good setting in which to study height 1 separa-
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bility, and a question arises: Is there a corresponding Galois theory? 
That is, is there a unique extension of a Krull domain which could be 
called a "height 1 separable closure" such that there is a correspondence 
between subextensions of the base ring inside the height 1 closure and 
subgroups of the automorphism group? It turns out that in this setting 
it is not really necessary to require that the domain be precisely the in­
tersection of its height 1 localizations, and so we are led to consider a 
class of domains called semi-Krull domains (§1). We then show (§2) that 
a semi-Krull domain R does have a unique extension S which acts as a 
"height 1 separable closure", and we are able to show that there is a 
Galois correspondence between closed subgroups of finite index of 
Aut^S) and integrally closed subextensions T of R in S such that, for 
each p in X'{R), Tp is a separable i^-algebra and a finitely generated 
projective /^-module (§3). 

Many of the facts concerning separability that are used or referred to 
here can be found in [1]. Throughout this paper all rings are commutative 
with 1, and any unadorned tensors are taken over R. 

1. Semi-Krull domains. For a given ring R, let X'(R) denote the set of 
all prime ideals in R of height 1. We make the following definition. 

DEFINITION 1.1. A domain R is a semi-Krull domain if: 
(i) R is integrally closed; 
(ii) Rp is a discrete valuation ring (DVR) for each p in X'(R); and 

(iii) each non-zero element of R is contained in at most a finite number 
of primes in X'(R). 

While a Krull domain is clearly semi-Krull, the converse is not true, as 
the next example shows. 

EXAMPLE 1.2. (A semi-Krull domain R which is not a Krull domain). 
Let k be a field, let R' be the subring of k[x, y] of all polynomials having 
no term in a power of x alone, and let M be the prime ideal in R' consist­
ing of all polynomials with constant term zero. Then M is minimal over 
(y) and height (M) ^ 2 (see [6, example 2.5]). Let R = RM. Then the 
element y is not contained in any height 1 prime ideal in R. It is shown 
in [6] that the domain R is integrally closed. We show next that if p is in 
X'(R), then Rp is a DVR. This will follow if R'p is a DVR whenever p is 
in X'(R') with p contained in M. Note that x ( = xy/y) is in Rp. Thus 
k [JC, y] Ç Rp. If P0 = pR'p H k[x, y], it is straightforward to check that 
k[x* y]po = R'P- Then Rp is a local PID (distinct from its quotient field) 
and is thus a DVR. 

We show now that a non-zero element in R cannot lie in infinitely many 
height 1 prime ideals of R\ again it suffices to show that a non-zero ele­
ment of R' cannot lie in infinitely many height 1 primes of Rf contained 
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in M. Suppose / ^ 0 is in Rf and fep, for p in X'(R') with p £ M. As 
above, let P0 = pR'p fl &[*, >>]. We have k[x, y]Po = R\ and so î o is a 

height 1 prime of k[x, y] with / e i°0. A straightforward argument shows 
that if P and Q are in X'(R') with P ^ Q, then the corresponding P0 and 
ßo (as defined above) are distinct. Since k[x, y] is Krull, we see that / 
cannot lie in infinitely many height 1 primes of R . We have shown that 
R is semi-Krull. Finally, we note that R is not Krull since the element x 
is in Rp for each p in (X'R) but x is not in R. 

We present some terminology now. An 7?-algebra S is strongly separable 
over R if S is separable as an /^-algebra and finitely generated and projec­
tive as an /?-module. An /^-algebra S is height 1 strongly separable over 
R if Sp is strongly separable over Rp for each p in X'{R). An ^-algebra S 
is a finite extension of R if S is finitely generated as an /^-module. An 
Ä-algebra S is a locally height 1 separable extension of R if S is a direct 
limit of height 1 separable subextensions; i.e., if every finite subset of S 
is contained in some subalgebra of S which is height 1 separable over R. 
Likewise, an i?-algebra S is a locally height 1 strongly separable extension 
of R if S is a direct limit of height 1 strongly separable subextensions, and 
S is a locally finite height 1 strongly separable extension if it is a direct 
limit of finite height 1 strongly separable subextensions. 

The following is a general result that we will need on several occasions. 

PROPOSITION 1.3. If T and S are domains with the same quotient field such 
that T is contained in S and S is a finitely generated projective T-module, 
then S = T. 

PROOF. Let L be the common quotient field of T and S. T is a T-direct 
summand of S (e.g., [1; cor. 4.2, p. 56]), and so as a T-module, S = 
T ® M, where M is a projective T-module. Tensoring S with L, we get 
L = L ®T(T 0 M) = L®(L®TM). Thus, L ®T M = 0, and so 
M = 0, completing the proof. 

PROPOSITION 1.4. Let R be semi-Krull and let S, a domain, be a finite 
extension of R such that the quotient field of S is a finite separable field 
extension of the quotient field of R. Then Sp is a separable Rp-algebra for 
all but possibly a finite number of primes p in X'(R). 

PROOF. Let L, K be the quotient fields of 5, R, respectively. Since L is 
a finite separable extension of K, L — K(u), for some primitive element 
u in S. Let/(jc) be the minimal polynomial of u. Then/(x) is in R[x]. Let 
r be the resultant off and / ' , r = Res ( / , / ' ) . If b is the leading coefficient 
of/', then, since r and b are in R, there are at most a finite number of 
primes in X'(R) containing r or b. 

Supposep is in A"(jR)and neither r nor b is in/?. Let Tp = Rp[x]/(f). We 
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show that Tp is a strongly separable /^-algebra. Clearly Tp is a finitely 
generated projective /^-module. Let k be the field Rp/pRp. Then Tp/(pRp) Tp 

= (Rp[x]l(f))/(pRp)Tp = k[x]/(f). Since Res (fi / ' ) is not inp(and b is not 
in /?), Res( / , / ' ) # 0 in /:. Hence,/is a separable polynomial. It follows 
that F^ is a separable /^-algebra. 

Next we show that Sp = 7^. Note that the quotient field of Tp is L. 
Since Sp is /^-torsion free and a finite ^-module, where ^ is a PID, 5^ 
is Rp-free. Now, since Tp is separable over Rp and ^ is projective over 
Rp, Sp is projective over Tp. Hence, by (1.3), Sp = Tp and the proof is 
complete. 

PROPOSITION 1.5. IfR is a PID and S is a domain which is strongly separa­
ble over R, then S is integrally closed. 

PROOF. Let x be an element in the integral closure of S in its quotient 
field. Then S[x] is a torsion-free finite jR-module, and thus projective over 
R [2; 2, p. 287]. Furthermore, S[x] is projective as an ^-module. Thus, 
by (1.3), we see that S — S[x], and S is integrally closed. 

We close this section with some results on semi-Krull domains. Before 
stating the next lemma, we recall the connection between a "separable 
algebra extension" and "separable field extension" for an extension of 
fields. If a field S is an extension of a field R then S is separable as an 
R — algebra if and only if S is a separable field extension of R of finite 
dimension over /?(e.g., see [1, ch. 2]). 

LEMMA 1.6. Suppose S and T are domains with quotient fields K and L, 
respectively. If T is a height 1 separable extension of S, then L is a finite 
separable (algebraic) field extension of K. 

PROOF. Let p be in X'(S). Then, since Tp is ^-separable, we see that 
(S — 0)_1 Tp = (S — 0 ) - 1 r is a separable AT-algebra. The field L is just 
a further localization of (S — 0 ) - 1 rand so by transitivity L is a separable 
^f-algebra. Since A'is a field, then L must be a finite separable (and hence, 
algebraic) field extension of K. 

COROLLARY 1.7. If S and T are domains such that T is a locally height 
1 separable extension of S, then the quotient field of T is a separable alge­
braic field extension of the quotient field of S. 

PROOF. Let L and K be the quotient fields of T and S, respectively. Any 
finitely generated sub-A^-algebra of L is contained in the quotient field of 
some height 1 separable extension of S. This quotient field is a separable 
algebraic extension of K by (1.6). Thus L itself is a separable algebraic 
field extension of K. 

PROPOSITION 1.8. Let T be an integrally closed domain extension of the 
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semi-Krull domain R. If T is either a finite extension of R or an integral 
height 1 strongly separable extension ofR, then Tis semi-Krull. 

PROOF. First suppose that T is finitely generated as an ^-module. Let 
p be in X'(T). Then Q = p Ç] R is in X\R). The localization RQ is Noe-
therian, and so TQ and also Tp are Noetherian. Thus, Tp is a DVR. 

Next, let t be a nonzero element of T, and suppose t belongs to infinitely 
many primes in X'(T). Since / is integral over R, there are elements a, 
in R with tn + axt

n~l + • • • + an = 0. Thus, 

(1) an= -t* - atf"-1 - . . . - a^t. 

The element a„, then, belongs to infinitely many primes in X'{T). Each 
prime in X\T) contracts to a prime in X'(R), and, further, there are only 
a finite number of primes in X'(T) lying over any prime in X'(R), since 
Tis a finite R-module. Thus, an belongs to infinitely many primes in X\R), 
and so an = 0. From (1) we then obtain an-i = — tn~l — aitn~2 — • • • 
— a„-2t. The above argument shows that an^ — 0. Repeating this argu­
ment, we eventually see that all a{ = 0, a contradiction since t ^ 0. Hence, 
t lies in at most finitely many primes in X'(T). Since Tis integrally closed 
by hypothesis, Tis semi-Krull. 

Now, assume that Tis an integral extension of R and height 1 strongly 
separable over R. Let p be in X\T). As above, Tp is a DVR. The rest of 
the proof follows as above, except that the reason that there are only a 
finite number of primes in T lying over any prime in R follows from the 
fact that Tis a height 1 separable extension of R. For then, the quotient 
field of Tis a finite separable extension of the quotient field of R by (1.6). 

2. Height 1 separable closures. In this section we define a height 1 
separable closure for a semi-Krull domain, and show that such a closure 
exists and is unique (up to isomorphism). 

DEFINITION 2.1. Let R be a semi-Krull domain. A height 1 separable 
closure of R is a domain extension S which satisfies the following: 

(i) 5 is a locally finite height 1 strongly separable extension of R; and 
(ii) Whenever Tis a domain which is a finite height 1 strongly separable 

extension of S, then T = S ; i.e., S is height 1 separably closed. 

We will show that such a height 1 separable closure of a semi-Krull 
domain exists and is unique up to isomorphism. For reference, we note 
the following characterization of strong separability found in [1]. 

S is a strongly separable extension of R if and only if there is an element 
t in Hom#(S, R) and elements x1? . . . , xn, yx, . . . , yn in S such that 
J^Xjyj = 1 and J^xjt(yjx) = x for all x in S. 

THEOREM 2.2. If R is a semi-Krull domain, then a height 1 separable 
closure of R exists. 
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PROOF. Suppose S is a domain which is a locally finite height 1 strongly 
separable extension of R. If p is any prime in X'(R), then Sp is a locally 
strongly separable extension of Rp, and so the cardinality of Sp is bounded 
by some cardinal number depending only on Rp [1; 3.3, p. 103]. Since 
S c Sp, we see that the cardinality of S is also bounded by a cardinal 
number depending only on R. 

Now let T be a domain containing S which is a finite height 1 strongly 
separable extension of S. We will show that J is a locally finite height 1 
strongly separable extension of R. 

Let xi, . . . , xn generate T as an S-module. Let xt-xj = E0»/***» for 
aijk in S. Pick a finite subset F of T Each element / of F is of the form 
/ = EsjXj, Sj in S. If S = dir lim S,-, where each St is a finite height 1 
strongly separable i?-subalgebra of S, then there is an index /, say i — 0, 
such that SQ contains all the elements aijk and s{ described above. Let 
TQ = TISQX{. Then T0 is an ^-algebra, finitely generated as an S0-module. 

Without loss of generality we may assume that the quotient field of 
TQ is a finite separable field extension of the quotient field of R. (See the 
remark following this proof.) Thus, by (1.4), T0 is height 1 separable over 
R at all but possibly a finite number of prime ideals in X'(R). 

Suppose that p is in X'(R) and (TQ)P is not inseparable. We will show 
that we can replace S0 by some Sf-, i ^ 0, so that the "new" (T0)p is in­
separable, and that raising S0 like this will not affect the separability of 
TQ at primes in X'(R) where it was already separable. We show this last 
point first. 

If S0 £ Si9 tet T{ = EStxt. Suppose that (T0)Q is inseparable for Q 
in X'(R). By the construction of Ti9 we see that the map S, ®R TQ -> T{ 

is onto, and, hence, the map (S{)Q ®RQ (T0)Q -> (T;)Q is onto. Since (Sj)Q 

and (TQ)Q are each /^-separable, it follows that (S;)Q ® (T0)Q is insep­
arable, and therefore (T^Q is separable over RQ. Clearly, {Tt)Q is a torsion-
free i?Q-module, and, since {T{)Q is finitely generated as a i?e-module, we 
have (Tj)Q is projective over RQ. Thus we see that ( r , ) 0 is strongly sepa­
rable over RQ. We have shown that if we replace SQ by a larger S, and 
therefore T0 by Tz, T{ is strongly separable at any prime in X'(R), where 
TQ is strongly separable. (Notice that if p is in X'(R) and (TQ)P is insepa­
rable, then (TQ)P is automatically strongly separable over Rp just as in the 
argument above for (T{)Q.) 

We now return to the first part of the claim. Suppose that/? is in X'(R) 
and TQ is not separable over Rp. It is easily shown that Tp is height 1 
separable over Sp, and, since it is finitely generated over Sp, Tp is 5^-sepa-
rable. Further, we show that Tp is ^-projective. If M is a maximal ideal 
in Sp, then M f] Rp = pRp. Since ht(M) ^ ht (M fi Rp) = 1, it follows 
that M is actually in X'(SP). If Q is in X'(SP), then Q = Q f| S is in JT (S), 
and so TQ, is strongly separable over SQ,. Therefore, (TQ,)p = T0, ® i?^ 
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is a strongly separable extension of (SQ,)P. Since (TP)Q = (TQ,)P and (SP)Q 

= (SQ,)P, we see that each localization of Tp at a maximal ideal of Sp yields 
a finitely generated flat module. Thus, Tp is a flat S^-module, and so Tp 

is projective over 5^. Hence, Tp is strongly separable over Sp. 
To simplify the notation we will drop the subscript p for the moment. 

We have the following situation. T is a strongly separable extension of 
S, S is a locally strongly separable extension of R, S0 £ s is a strongly 
separable extension of /?, and r 0 — ^ is an 50~algebra, finitely generated 
as a module. There are elements z,-, yt• i = 1, . . . , n, in Tand / in Homs 

(T, S) such that £ z#\)V = 1 and £ zy (̂JVx) = *> f° r e a c r i * in ^ Let z{ 

= S ûï7JCy and j , - = 2 %*y> f° r û*v a^d Z?l7 in S. If necessary, replace S0 

by a larger S, so that S0 contains all aih btJ, and t(xt). Then f (£ s{xt) 
= 2 VC**) is in So, an<3 so /|To is in Hom5o(r0» S0). Also, TQ contains the 
elements z,-, yt-. Hence, T0 is strongly separable over S0, and, thus, strongly 
separable over R. In our original notation, we have shown that T0 is 
strongly separable over Rp. 

We may repeat this process finitely many times, if necessary, in order 
to obtain T0 £ T such that T0 is a finite height 1 strongly separable 
extension of R. Since we can find such a T0 containing any finite subset 
of r , we have shown that T is a locally finite height 1 strongly separable 
extension of R. 

A cardinality argument as in [3, 1.4] or [1, ch. Ill] shows that a height 
1 separable closure of R must exist. 

REMARK. In the proof of Theorem 2.2 it was noted that the quotient 
field of T0 = 2 S0X; could be assumed to be a finite separable field exten­
sion of the quotient field of R. This can be assured by picking a large 
enough S0, as we show now. Let L, K, L0, K0 be the quotient fields of 
T, S, r0 , So, respectively. We know that L is a finite separable field exten­
sion of K by (1.6). Hence, L is strongly separable as a ^-algebra. Let 
L = K(u), for a primitive element u in S. Each element xt in T ^ L (recall 
that #!, . . . , xn generate T over S) can be expressed as a polynomial in 
w, say /,(w), with coefficients in K. Now, if necessary, raise S0 so that S0 

contains the element u and AT0 contains all the coefficients of the/i(w). Then 
L0 = Äb(ii). 

Since L is strongly separable over K, there are elements z,, yt-, i = 1, 
. . . , m, in L and / in HomA(L, K) with £ *̂>V = 1 and U^CX/*) = *> 
for each x in L. If necessary, raise S0 again so that all the zh y{ are in L0 

and t(u) is in Â 0. Then, t^ is in Hom^0(L0» ^o)> a n d it follows that Z,0 

is a strongly separable extension of K0. K0 is a finite separable extension 
of the quotient field of R by (1.6), and so L0 is also a finite separable field 
extension of the quotient field of R. 

LEMMA 2.3. If R is semi-Krull and S = dir lim St-, where each St is a 
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domain extension of R, finitely generated as an R-module, then whenever 
Q is in X'(S), Q f] Ris in X'(R). (In this case, S is said to satisfy NBU 
over R, i.e., No Blowing Up.) 

PROOF. Let g be X'(S) and let p = g f] R. Suppose there is a prime 
p' in Spec (R) with (o) £ P' £ p. Note that S is a domain, and S is integral 
over R. Then, since R is integrally closed, there is a prime Q in Spec(S) 
withg ' ç g and g ' fi ^ = P' , a contradiction. Thus/? is in ^ ( ^ ) -

THEOREM 2.4. T/*e height 1 separable closure of a semi-Krull domain R 
is unique, up to isomorphism. 

PROOF. If S is a height 1 separable closure of R, then the quotient field 
of S is a separable algebraic extension of the quotient field of R by (1.7). 
Hence, S is contained in a separable closure of the quotient field of R. 
We will show that, inside this separable closure, S is unique. Since any 
two separable closures are isomorphic, the result will follow. 

Suppose that both S and T are height 1 separable closures of R con­
tained in the same separable closure of the quotient field of R. Let T = dir 
lim Ti, where each Tt is a finite height 1 strongly separable extension of 
R. We claim that ST, is a finite height 1 strongly separable extension of 
S, for each i. Since R is integrally closed and S is integral over R, if g 
is in X'(S), then g f] & is in X'(R). Hence, by [6,1.4], S ® T, is height 1 
separable over S. Since S ® T{ maps onto STt-, ST{ is also height 1 sepa­
rable over S by [6, 1.7]. Hence, we need only show that (STt)Q is projective 
over SQ, for each g in X'(S). Let/? = Q Ç] R\ then/? is in X'(R). To sim­
plify the notation, we replace Rp, Sp, and Tip with R, S, and T, respectively. 
We have the following situation. R is a DVR, S is a locally strongly sep­
arable extension of R, and T is a strongly separable extension of R. Let 
S = dir lim Si9 where each S, is a strongly separable extension of R. 

Since each S, ® T is a strongly separable /^-algebra, S{ ® r is a finite 
product of domains [3; 4.2, p. 473]. Since S1 ® Tis finitely generated and 
projective over S, S ® T contains only a finite number of idempotents, 
ex, . . ., en, and S ® T = (S ® 7>x x • • • x (S ® 7>w. It is straightfor­
ward to check that each (S ® T)et- is a domain, and so S ® T is also a 
finite product of domains. 

Write S ® T = Di x • • • x Dn, a product of domains. Since each Z),-
is strongly separable over S (because S ® Tis), we have S Ç D,-. Consider 
the surjection Dx x • • • x Z)n -> ST, which is the multiplication map S ® 
r -• ST. Since S ç S ® T and 5 Ç ST, the kernel of this map intersects 
S'in(O). This kernel is a prime ideal of the form B = Dx x ••• x p{ x ••• 
x Dn, for some prime /?, in one of the ZVS- Then B f) S = (0) implies that 

Pi: fi S = (0), and so /?z = (0), since £>f- is an integral extension of S. 
Thus, D, is isomorphic to ST as an S-module, and SJ i s a projective S ® 
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r-module and therefore a projective S-module. In our original notation 
we have shown that SpTip = (STt)p is a projective Symodule, for p = 
Q H R, Q in X'{S). Localizing at p in Spec(/?) and then localizing again at 
Q in Spec(S) is just the same as localizing at Q to begin with, since R £ S 
and p Ç Q. Hence, (ST,-) is a projective ^-module. Clearly, (ST,-)0 is 
finitely generated over SQ. We have shown that STt is a finite height 1 
strongly separable extension of S. Since S is height 1 separably closed, 
S = STi9 for each /. Thus, S = dir lim ST,- = ST. The symmetry of the 
argument shows that T = ST, and so S = T, as desired. This completes 
the proof. 

PROPOSITION 2.5. If R is semi-Krull with height 1 separable closure S, 
then S is integrally closed. 

PROOF. We show first that Sp is integrally closed if/? is in X\S). For such 
a p, let Q = p H Ä. Then £ is in X'(iO, by (2.3). Since SQ is locally 
strongly separable over RQ, we see that SQ is a direct limit of strongly 
separable extensions of RQ, each of which is integrally closed by (1.5). 
Hence, SQ is integrally closed. It follows that Sp is integrally closed also. 
Now suppose that x is an element of the quotient field of S and x is in­
tegral over S. Then x is in the quotient field of Sp, for any p in X'(S), and 
x is integral over Sp. Thus, x is in Ŝ >. Consider now the finitely generated 
S-algebra S[x], Note that S[x] is actually finitely generated as an S-module. 
If p is in X'(S), we have shown above that S[x]p = Sp. Hence, S[x] is a 
finite height 1 strongly separable extension of S. Since S is height 1 se­
parably closed, S[x] = S, Thus, S is integrally closed. 

PROPOSITION 2.6. Let R be semi-Krull with height 1 separable closure S. 
If T is an integrally closed domain contained in S which is a finite height 1 
strongly separable extension of R, then S is a height 1 separable closure of 
T also. 

PROOF. By (1.8), Tis semi-Krull. If S = dir lim Si9 where each S, is a 
finite height 1 strongly separable extension of R, there is an index /, say 
i = 0, such that T Ç S,-. Thus, S = dir lim Si9 where the limit is taken 
over i ^ 0. We show that each 5f- in this direct limit is also height 1 
strongly separable over T If p is in X'(T), let Q = p f] R. Then Q is in 
X'(R). Since SiQ is a strongly separable extension of RQ and TQ is a strongly 
separable ^-extension contained in SiQ9 SiQ is a strongly separable ex­
tension of TQ. Then, since R Ç T and Q ^ p, Sip and 7^ are just further 
localizations of SiQ and TQ. Hence, SiQ is a strongly separable extension of 
Tp. This finishes the proof. 

We now present a few simple results on morphisms into height 1 
separable closures. 
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PROPOSITION 2.7. With R, T, and S as in (2.6), any R-algebra morphism 
f:T->S is induced by an automorphism of S. 

PROOF. Let 5" denote S considered as a T-algebra by the action of 
/ ; i.e., t -s = f(t)s, for t in T and s in S. S is a height 1 separable closure 
of T, and hence, so is S'. Thus, there is an isomorphism g: S -> S'. For 
all s in S and t in T we have g(ts) = t • g(s) = f(t)g(s). If s = 1, we get 
g(/) = /(*), for all / in T. 

PROPOSITION 2.8. Let R and S be as above, and let T be a locally finite 
height 1 strongly separable domain extension of R. Then there is an R-
algebra injection T -* S. 

PROOF. Clear, since T is contained in a height 1 separable closure of 
R which is isomorphic to S. 

PROPOSITION 2.9. Let R and S be as above, and let Tbe a height 1 strongly 
separable domain extension of R. Then there are only finitely many mor-
phisms in AXgR{T, S). 

PROOF. Let p be in X'(R). Since Tp is a finitely generated separable Rp-
algebra and Sp is connected, there are only finitely many ^-homomor-
phisms from Tp to Sp. \îf: T -+ S and g:T -+ S are /^-algebra maps with 
/ # g, then the induced /^-algebra mapsfp: Tp-+ Sp and gp: Tp-+ Sp are 
not equal. Hence there cannot be infinitely many i?-algebra maps from 
r t o S . 

PROPOSITION 2.10. Let R and S be as above, and suppose that S is con­
tained in W, a separable closure of K, the quotient field of R. Iff is a K-
automorphism of W, thenf(S) = S. 

PROOF. Clear, since f(S) is also a height 1 separable closure of R con­
tained in W. 

We will show in (2.12) that if / i s any i?-endomorphism of S, t h e n / 
is actually an automorphism. First, a lemma. 

LEMMA 2.11. Let T' be a height 1 strongly separable domain extension of 
R and let T be a height 1 separable domain extension of R. Iff is an R-
algebra homomorphi sm from T to T\ then fis an injection. 

PROOF. Iff(x) = 0, t hen / /* ) = 0, for each p in X'(R), where fp is the 
induced map from Tp to Tp. But the kernel of fp is (0)by [1; 2.6, p. 96]. 
Thus, tx = 0, for some tin R — p, and so x = 0. 

PROPOSITION 2.12. Let R be semi-Krull with height 1 separable closure S. 
If fis any R-algebra homomorphism from S to S, then fis an automorphism 
ofS. 
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PROOF. Suppose f(x) = 0, for some x in S. Let T be a finite height 1 
strongly separable extension of R contained in S such that x is in T. 
If ti, . . ., tn generate T'as an jR-module, let T' be a finite height 1 strongly 
separable extension of R in S containing/(/,), / = 1, . . ., n. By (2.11), 
the restriction of/ to T, mapping T to T\ is an injection. Hence, x = 0, 
a n d / i s an injection. 

We show now tha t / i s onto. Let ^ be in 5 and let T be a finite height 1 
strongly separable extension of R in S containing y. There are only finitely 
many embeddings of T into S (2.9), say gl9 . . ., g„. Let gi be the inclusion 
map, gi(x) = x for A- in T. Since / | r : r -» S is an injection, {/<> gl9 . . ., 
/ ° gn) = {gi, . • ., gn}- Thus, gx = / o g., for some /. Then y = g^j;) = 
f(gi(y)\ showing/is onto. 

3. Galois theory. Our objective in the rest of this paper is to examine the 
Galois theory connected with the height 1 separable closure of a semi-
Krull domain. This means we will be interested in the groups Aut r(5) and 
AutT (Sp), for certain subextensions T of R in S and p in X'(R). We begin 
to look at these groups in the next proposition. 

PROPOSITION 3.1. Let R be semi-Krull with height 1 separable closure S. 
Let T be any extension of R contained in S, and let L, F be the quotient 
fields of 5, T, respectively. Then, for any prime p in X'(R), the groups 
AutF(L), AutT(5'), and AutTp(Sp) are isomorphic. 

PROOF. We show first that Aut r(5) and Aut^S^) are isomorphic. Let 
/ be in Autr(S). Then fp: Sp -> Sp, given by fp(s/r) = f(s)/r, for s in 5, r 
in R — p, is in Autr^(*S^). 

Suppose t ha t / i s in AutTp(Sp). We will show t h a t / = / | 5 is in Aut r(5). 
The map / extends to a map g: L -> L given by g(s/t) = f(s)/f(t), for 
s, t in S and t ^ 0. It is straightforward to check that g is in AutF(L). 
Now, by (1.7), L is a separable algebraic field extension of K, the quotient 
field of R. Hence, L is contained in a separable closure W of K. Since W 
is unique (inside a fixed algebraic closure of AT), g extends to an auto­
morphism g of W. As remarked earlier, g\s is in Autr(5). By the construc­
tion of g, we see that g|s = / | s = / It is straightforward to check that these 
maps describe the desired isomorphism. 

The proof that AutF(L) and Aut r(5) are isomorphic is similar. As we 
noted above, i f / is in Autr(S), then/ : L -> L, given by f(a/b) = f(a)lf(b), 
for a, b # 0 in S, is in AutF(L). If we start with some / in AutF(JL), / 
extends to an automorphism g of the separable closure of the quotient 
field of R, a n d / = g \s is in AutT(S). 

The next proposition shows that integrally closed extensions of the 
base ring in the height 1 separable closure play an important part in the 
Galois correspondence we will establish. 
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PROPOSITION 3.2. Let R be semi-Krull with height 1 separable closure S, 
and let H be a subgroup of AutR(S). Then SH is integrally closed, where 
SH is the set of elements of S invariant under H. 

PROOF. If x is in the quotient field of SH and integral over SH, then x 
is in S since S is integrally closed. It follows that x is in SH. 

We now state the Galois correspondence theorem for semi-Krull 
domains. 

THEOREM 3.3. Let Rbea semi-Krull domain with height 1 separable closure 
S, and let G = Aut^S). Then there exists a one-to-one correspondence 
between integrally closed height 1 strongly separable extensions T of R 
contained in S and closed subgroups H of finite index in G, given by T -> 
Autr(S), H -> S*. 

We will prove this theorem after Proposition 3.5. 

PROPOSITION 3.4. Let R be semi-Krull with height 1 separable closure 
S. Let T be an integrally closed height 1 strongly separable extension of R 
contained in S. If H = AutT(S) then T = SH. 

PROOF. Let x be an element of S — T. Let F be the quotient field of 
Tand AT be the quotient field of R. Then Fis a finite separable extension of 
K (1.6). Suppose that IF is a separable closure of K containing both S 
and F. Since S is a direct limit of finitely generated A-modules, S is in­
tegral over R, and thus integral over T. Since T is integrally closed, x 
is in W — F. Thus, by standard Galois theory, there is a g in &utF{W) 
withg(x) T̂  x. Hence, / = g\s is in Autr(S) with/(jt) ^ x, and so SH = 
T. 

We note in particular that (3.4) implies that SG = R, where G = 
Autfl(S). If H is any subgroup of G, then H is almost finite, as defined in 
[4], since there are only finitely many restrictions of H to any finitely 
generated subalgebra of S. Hence, by [4, 1.13], (SH)P = (SP)H, where we 
have identified Hp with H. If H = G, then Rp = Sf, and we see that 
Sp is an infinite Galois extension of Rp. Further, we show that LG = K, 
where L and K are the quotient fields of S and R, respectively, and G 
acts on L by f(s/t) = f(s)/f(t), for s, tin S and/ in G. Let IF be a separable 
closure of AT containing L. If x is any element of L — AT, then JC is in W — 
K. Hence, there is an fin A\xiK{W) such that/(x) ^ x. Let g = f\s and 
suppose x = a/b, for a, 6 in S. We see that g is in Aut^(5) and g extends 
to g in Aut^(L) as described above. Thus, g(a/b) = g(a)/g(b) = f(a)j 
f(b) = f(a/b) ^ a/b. Therefore, K = LP, and L is an infinite Galois ex­
tension of K. 

We consider now the groups Aut^(L) and AutÄ(S) (where, as above, 
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R is a semi-Krull domain with height 1 separable closure S, and K and 
L are the respective quotient fields). The group AutK(L) has the usual 
Krull topology, in which a subgroup H is open if and only if H = AutF 

(L), where E is a finite extension of K contained in L, and a subgroup is 
closed if and only if it is an intersection of open subgroups. By (3.1), 
A\itK(L) is isomorphic to Aut^S), and we show that we can characterize 
the open subgroups of Aut/?(5) as follows. A subgroup H of Aut^S) is 
open if and only if H = Autr(S), where T is a height 1 strongly separable 
extension of R contained in S. For such an extension 7", the quotient 
field of T, say F, is a finite separable field extension of K, so AutF(L) is an 
open subgroup of Aut#(L). By (3.1), Autr(S) is isomorphic to AutF(L). 
On the other hand, if H = AutE(L) is an open subgroup of AutK(L), 
for some finite extension E of K, we claim that H = AutT(S), for some 
height 1 strongly separable extension T of R in S. Letting T = SH will 
produce the desired extension. Then the quotient field of Tis £ (actually, 
any element of E is of the form t/r, for some tin T and r in R). We need 
to show that T is height 1 strongly separable over R. Let p be in X'(R). 
Since Tp is the integral closure of Rp in E, and Rp is Noetherian and in­
tegrally closed, Tp is a finite /^-module. Then, since Rp is a PID and Tp 

is torsion-free, we see that Tp is a projective ^-module. Since Sp is locally 
strongly separable over Rp there exists a strongly separable extension of 
Rp which contains Tp; call this extension S0. S0 is separable over Tp, and 
Tp is Noetherian (since Rp is) and integrally closed; thus, 50 is a projec­
tive Tymodule, and therefore Tp is separable over Rp. Hence, T is a 
height 1 strongly separable extension of R, and we have H = Aut^L) = 
AutT(S)by(3.1). 

We note also that, since Sp is an infinite Galois extension of Rp for 
p in X'(R), AutRp(Sp) has the usual Krull topology (in which a subgroup 
is open if and only if it is of the form Aut^S^), for some strongly se­
parable extension T' of Rp), and this topology coincides with that of 
Aut^(L). We have seen that if F is a finite extension of K, then T' = 
(SH)p, where H = AutF(L), is a strongly separable extension of Rp and 
Aut jv^) = AutF(L). If T is a strongly separable extension of Rp then 
F, the quotient field of 7", is a finite extension of K and AutT,(Sp) = 
AutF(L). 

PROPOSITION 3.5. Let R be semi-Krull with height 1 separable closure S, 
and let H be a closed subgroup of finite index in G = Aut#(S). Then T = 
SH is an integrally closed height 1 strongly separable extension of R and 
Autr(S) = H. 

PROOF. SH is integrally closed by (3.2). If/? is in X\R), then Sp is locally 
strongly separable over Rp. Since i / is a subgroup of Aut^S) = Aut^S^,) 
of finite index, Tp = (SH)p = S% is a finitely generated separable exten-
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sion of Rp, by standard Galois theory (See [5]). Tp is /^-projective, since 
it is contained in some strongly separable extension of Rp. Thus J is a 
height 1 strongly separable extension of R. 

To finish the proof, we need to show that Autr(5) = H. Since Hp(= H) 
is a closed subgroup of Gp (= G), Rp = SG

pp, and Tp = S$P, we have 
Autr,(S,) = 7/^i.e.,Aut r(S) = H. 

PROOF OF THEOREM 3.3. If T is an integrally closed height 1 strongly 
separable extension of R and H = AutT(S), then T = SH, by (3.4). We 
show now that H is closed and has finite index in G = AutR(S). If p is 
in X'(R), we have G = AutRp(Sp) and H = AutT(Sp). Also, 5^ is an 
infinite Galois extension of Rp and Tp is a strongly separable extension of 
Rp. Thus, 7/ has finite index in G and is a closed subgroup of G. The rest 
of the proof of the theorem follows by (3.5). 

PROPOSITION 3.6. Let R be semi-Krull with height 1 separable closure S, 
and let T be a height 1 strongly separable extension of R contained in S. 
Then the integral closure of Tis also height 1 strongly separable over R. 

PROOF. Let H = Autr(S). Then, if L and F are the quotient fields of 
S and T, respectively, we have AutT(»S) = AutF(L), and F is a finite 
(separable) extension of the quotient field of R. SH is integrally closed by 
(3.2), and, as in the discussion preceding (3.5), SH is a height 1 strongly 
separable extension of R, with quotient field F. Since T is contained in 
SH we see that SH must be the integral closure of T 

If R is Noetherian and semi-Krull, then an integrally closed height 1 
strongly separable extension T is the integral closure of R in a finite 
separable extension of the quotient field of R, and so T is finitely generated 
as an /^-module. The next example shows that Tneed not be finitely gen­
erated if R is not Noetherian. The example also shows that a finite height 
1 strongly separable extension need not be integrally closed. 

EXAMPLE 3.7. (A height 1 strongly separable extension T which is not 
integrally closed, and whose integral closure is not a finite /^-module.) 
We return once more to the semi-Krull ring R in Example 1.2. Let S = 
^[f ]/('2 _ y) = RW~y\ Then, since y is not a unit in R but y is a unit in 
Rp, for each/7 in X'{R), 5 is a finite height 1 strongly separable extension of 
R. We will show that (1) the integral closure of S, say T, is not finitely 
generated as an /^-module, and (2) Tis height 1 strongly separable over R. 

Proof of (\). Let T be the integral closure of R'[ VT] , where R' is as in 
(1.2). An element of T' is of the form a + 6 <y/7, where a and b are in the 
quotient field of R'. Now, for each / ^ 0, the element t; = x'V7~ *s m 

7", because x* = x'y/y is in the quotient field of R' and x ' V 7 is integral 
over /?'. Let N' be the ^'-module generated by the elements 1, /,• for i ^ 0. 
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We claim that N' = T'. By the above, we see that TV' c j ' , Now suppose 
that a 4- b<s/T is in T', for elements a, b in the quotient field of R'. Since 
a + b^Tis integral over R'l^T], it is integral over R. If AT is the quotient 
field of R\ then a 4- b^JT belongs to the finite extension of K with basis 
{1, \Z~Y} and the characteristic polynomial of a 4- b^/~V is (t — (a + 
bVT)) (t-(a- b^JT)) = /2 - lat + (a2 - ò2}')- The coefficients of this 
polynomial are in R' since a 4- b^/y is integral over/?'. Thus, a is in /£' 
(since 1/2 is in /?') and so b2y is in R'. Let Z> = //g, where / and g are in 
Rf Ç fc[x, j ] , and, as elements of/c[x, j ] , / and g are relatively prime. Then 
f2y/g2 is in /?', which implies that g2 must divide y. Thus, g is actually a 
constant, and we see that the element b lies in k[x, y\. Write 6 = 2 Q*1' + 
/*(x, y), where c{ is in k, and the polynomial /*(*, y) has no terms in a 
power of x alone. Then a + b ^/~Y = a 4- /i(x, j/) v^T" + E Q'% a n element 
of N'. Therefore, 7" £ TV', and we have equality. We have shown that, as 
an ^'-algebra, T' = /?'[f0, *i, . . .]. Now, since T' is integrally closed, so 
is TM and we have TM = (/?'[/0, *i, • • -DM = /*MI/O, h, • • •] = *[*o> ^ 
. . .]. Thus, R[t0, th . . .] is integrally closed. Since S e JR[f0, / b . . .] £ T, 
the integral closure of 5", we have T = R[t0, t\, . . .]. Further, we have 
actually shown above that T is generated as an /^-module by the elements 
1, ti, Î2, . • . . 

We show that T cannot be finitely generated as A-module by showing 
that /„ cannot be written as an /^-linear combination of 1, ^, . . ., tn_i, 
for « è l . Suppose that xn ^/T = r0 4- rxx<J~7 + • • • 4- rn^xn-l^T, 
where each r{ is in R. Then, r0 = 0, and xn = r\X 4- • • • 4- rw_1x

w~1. Let 
rt- = /-/g,-, where/;-, g,- are in R' (and so have no terms in a power of x 
alone), and g is in R' — M (and so gf- has a constant term). Clearing 
denominators, we obtain (gig2 • • • gn-i)x

n = (g2#3 • • • g»-i)/i* + • • • 4-
(gi#2 * * ' gn-2)fn-\xn~~l- Setting >> = 0 in the above equation, we see that the 
left hand side is a nonzero polynomial in x of degree n, while the right 
hand side is a polynomial in x of degree at most n — 1, a contradiction. 
Thus T cannot be finitely generated as an /^-module. 

Proof of {2). This follows easily now. We know that T is generated as an 
/^-module by the elements 1, y^T", x \/~T, x2^T, If p is any prime in 
X'(R), x{ = x*y/y is in Rp, since y is in R — p. Hence, Tp is generated 
over Rp by the elements 1, -v/X, and we have Tp = Sp, which is strongly 
separable over Rp. 

While an integrally closed height 1 strongly separable extension T of 
R may not be finitely generated, it is true that Tis the integral closure of a 
finitely generated height 1 strongly separable extension, as in the above 
example. We prove this next. 

PROPOSITION 3.8. If T is an integrally closed height 1 strongly separable 
extension of R, with T integral over R, then there is an R-subalgebra F Ç 
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T, finitely generated and height 1 strongly separable over R, such that the 
integral closure of F is T. Furthermore, Fp = Tpfor each p in X'(R). 

PROOF. Let L and K be the quotient fields of T and R, respectively. 
Then L is a finite separable extension of A'. Let a^b^ i = 1,. . ., n, generate 
L over K, where a{ and bt-, b{ # 0, are in T. Let B be the i?-subalgebra of 
T generated by the elements ah b{. Since B is integral over R, we see that 
B is actually finitely generated as a module over R. It is straightforward 
to check that the quotient field of B is L. By (1.4), B is height 1 separable 
at all but possibly a finite number of primes ir X'(R). 

We show next that if Bp is /^-separable for p in X'(R), then Bp = Tp. 
Since Rp e Bp ç 7^ and 7^ is strongly separable over Rp we see that 7^ 
is strongly separable over Bp. Since Tp is finitely generated and projective 
over Bp,Bp= Tp by (1.3). 

Suppose now that/? is in X'(R) and Bp is not separable over Rp. By the 
strong separability of Tp over Rp there are elements zt-, yi9 i = 1, . . ., /r, 
in 7^ and / in H o m ^ r ^ , Rp) with 2 ^JV = 1 and 2 Zjt(yjx) = x, for each 
jc in Tp. Let 7" be an Ä-subalgebra of T, finitely generated as an i?-module, 
with B ^ T' ^ r , and such that 7^ contains the elements z,-, >v- Then 
/ | r ' is in Horn/? (J^, 7? )̂, and, since the z, generate 7^ as an ^-module, 
T'p = Tp. Hence, Tf

p is strongly separable over Rp. Since there are only 
finitely many primes p in X'(R) at which Bp is not separable over Rp, by 
(1.4), a finite number of iterations of this construction yields a finitely 
generated height 1 strongly separable Ä-algebra F with B ç F ^ T and 
such that Fp = 7^ for each p in A"(#); hence the quotient field of Fis L, 
the quotient field of T. Since T is integrally closed and integral over R, 
Tmust be the integral closure of F. This finishes the proof. 

We finish with the following Galois correspondence for integrally 
closed extensions which are direct limits of height 1 strongly separable 
extensions. 

PROPOSITION 3.9. Let R be semi-Krull with height 1 separable closure S, 
and let G = Aut#(S). Then there exists a one-to-one correspondence between 
integrally closed locally height 1 strongly separable extensions T of R 
contained in S and closed subgroups H of G, given by T -> AutT(-S), H -> 
S". 

PROOF. Suppose T is integrally closed and T = dir lim Tt, where each 
Tt is height 1 strongly separable over R and Tt ç T. Then we have H = 
Autj^S) = AutUr.(S) = fi Autr,(S), and so H is closed in G. Since the 
quotient field of T is a separable algebraic extension of the quotient field 
of R, T = SH just as in the proof of (3.4). 

Conversely, suppose H is closed in G. Then H = f| Autr.(S) for some 
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set of height 1 strongly separable extensions T{ of R. Let {Tiv . . ., Ttn} 
be any finite subset of the TVs, and let 

J = AutTnmTn Ttn(S) = Autr„(S) fi • • • H Aut r JS) . 

Then J is a closed subgroup of finite index in G, so SJ = Th • Ti2 • • • 
Tin is an integrally closed height 1 separable /^-algebra by (3.5). Let T' 
be the union of all the finite products Th • Ti2 Tin. Then V is an 
integrally closed, locally height 1 strongly separable extension of R. 
Thus, SH = SAutT'(s) = T by the first part of the proof, and so SH is 
integrally closed and height 1 locally strongly separable over R. To com­
plete the proof, we need to show that Auts#(S) ç H, since it is always 
true that H £ Auts#(S). Let H{ = Aut^S) . Noting that SH = S^ 3 
U SH< and SH<- = r,., by (3.3), we have 

AutsH(S) c Autus^(S) £ fi Auts^.(5) = fi Autr.(S) = H. 

This completes the proof. 
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