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PARALLEL MAPS THAT PRESERVE GEOMETRIC OBJECTS 
OF HYPERSURFACES 

KRISHNA AMUR 

ABSTRACT. It is known that parallel maps of hypersurfaces inRn+l 

preserve principal directions, umbilics and the third fundamental 
form [4]. We study the conditions under which the parallel map 
ft* of a parallel IL, of a hypersurface £ into the parallel 2,preserves 
other geometric objects besides the three mentioned above and 
show, in particular, that when the determinant of the Jacobian 
matrix of ft* is 1 and n is even, £ is a certain non-trivial minimal 
hypersurface and / / preserves the element of area and all the even 
order elementary symmetric functions of principal curvatures. 

Introduction. Let 2* and £ - t denote parallel hypersurfaces of an im­
mersed hypersurface £ in Rn+l for a sufficiently small parameter t. The 
parallel maps of £ into £-*and £ , , which we can assume to be local 
diffeomorphisms, define a parallel map / / of £_ , into £*. As a parallel map 
ff preserves principal directions, umbilics, and the third fundamental 
form. In this paper we investigate the conditions under which other geo­
metric objects of the hypersurfaces besides the three mentioned above are 
preserved by / / and show that they occur in the form of restrictions on the 
non-singular Jacobian matrix of//. We illustrate the use of such conditions 
in the proof of our main results stated in Proposition 2.1. 

1. Parallel immersions. Let M be a connected, orientable smooth mani­
fold of dimension n. Let X: M -+ Rn+l be an immersion. For sufficiently 
small values of /, the mappings Xt, X_t: M -* Rn+1, defined by 

(1.1) Xt(p) = X(p) + / N(X(p% X_t(p) = X(p) - / N(X(p% 

where pe M and N is a unit normal vector field on X(M), are also im-
imersions. Let X(M) = 2 , Xt(M) = £< and X_t(M) = £_,. Define/ : 
E-L/and/_ , : £ -> £_, by 

(1.2) / o X(p) = Xt(p), f-t o X(P) = X-t(p), 

for all p e M. We assume/ and/_, are local diffeomorphisms. 
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Observing that quantitites for J^_t can be obtained from those for 
£ , by changing t to — /, we usually write results for £* and write those 
for 2 _ , only when necessary. 

We write the first equation of (1.1) as ft o X = X + t N o X, where 
TV is viewed as the Gauss map of 2] into the unit sphere Sn. The derivative 
map, when we identify X*Z with Z G TP(M), gives 

(1.3) frZ = Z+tL(Z), 

where L is the Weingarten map for J] . Since JVis normal to £* also, we 
have N o X = N o Xt which yields 

(1.4) L(Z) = Lt(f,Z), 

where Lt is the Weingarten map for £ , . From (1.4), we get the known 
result [4] that parallel maps preserve principal directions, umbilics and 
the third fundamental form. 

Choose an orthonormal frame e1? . . ., en at X(p) such that det (el9 . . ., 
en, N) = 1. Since the tangent planes at X(p) and Xt(p) are parallel, e{ 

can be chosen as an orthonormal frame at X(p) also. Let z* and zf denote 
1-forms dual to e{ at X(p) and Xt(p)9 respectively. Then dX = J^z' e{ and 
dXt=Z^i- But, from (1.1), we have dXt = dX + tdN. So 

(1.5) S/**TJ^= £(<?} + > t f } ) ^ , 

where we have set t/Af = 2 ajr'e,-. In (1.5) we need the pull back symbol 
because the z\ live in £ , . Clearly, (öj) is the symmetric matrix of the 
Weingarten map L for £ . From (1.5), we have 

(1.6) /,**} = £ 0 5 + to})*'-

Similarly, 

(1.7) / 5 * - , = L ( 3 } - t e ^ , 

Let 

(1.8) .4(0 = (<?} + te}) and A(-t) = (5) - te}). 

In matrix notation (1.6) and (1.7) take the form 

(1.9) f*Tt = A(t)z, f*tz-t = A(-t)z, 

where we regard z, zt and z~t as column vectors of 1-forms. Since ft* and 
/Jjare isomorphisms, their matrices A(t) and 4̂( — t) are non-singular. 
Solving the second equation of (1.9) for z and substituting in the first gives 

(1.10) f*zt = C(t)f*tz-t, 

where 

(1.11) ao-^o^-o-1. 
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We set 

(1.12) ft^ftof-t1 

and observe t h a t / / is locally a diffeomorphism of £-< into £*• If Zis a 
tangent vector to 2 _ „ then 

(1.13) (f?)*Z= T>C(t))Zieh 

where Z ' are components of Z with respect to e#-. 

LEMMA 1.1. /# preserves principal directions, umbilics, and the third 
fundamental form. 

PROOF. By our construction in (1.12),// is a parallel map and the result 
follows immediately. 

The following Lemma is due to Gardner [2]. 

LEMMA 1.2. Let dAt = f*(z] A . . . A T") anddA = z1 A . . . A zn. Then 

(1.14) dAt = s ( " W ^ = det A(t)dA, 

where a0 = 1 and the 07 are the elementary symmetric functions of principal 
curvatures of £ . Further, if 0® denote elementary symmetric functions of 
principal curvatures ofJ^t, then 

(1.15) (J)*/« dAt = Ç (/)(*)*,*>-'<£4, for O ^ i S » . 

PROOF. On using (1.6) in ÖL4, = ft*z] A . . . A /,**?, we get (1.14). 
If (a}/) denote the matrix of the Weingarten map Lt for £*, then since 

N = A ,̂ we have dN = rfW,, from which we obtain 

(1.16) 2 a)V = S *fr/,**/, ' ' = 1 , 2 , . . -, "• 

Use of (1.6) and (1.16) gives 

= (ffr1 + Lsa}J*v*) A • • • A <Jt*z» + Zsatâ) 

= (r1 + Lis + t)a\tk) A • • • A (r» + S ( J + /) afc*) 

- ,§(")*< ,<* + sYdA. 

Differentiating (1.17) with respect to s and equating the coefficients of 
powers of s we obtain (1.15). 

LEMMA 1.3. Let 0/9 for / = 1, 2, . . ., 2m, be elementary symmetric 
functions of real numbers kt, for i = 1 ,2 , . . . 2m. If 01 = 0 and, in con-
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sistency with this, kx + k2 = 0, k3 + k± = 0, . . ., k2m-i H- AJ2OT = 0 a/id 
&:. 9e 0, for all i, then 

Gt = 0, / = 3, 5, . . ., 2m — 1, 

a. # 0 , 1 = 2, 4, . . ., 2m. 

2m. 

PROOF. Let 

Pr = f j (*/K ', = ( 2 r ) <^ ' = 1 , 2 , . . . , 

The/v? and s'/$ are related by Newton's formulas 

(1.18) pr - J i /v - i - ••• - ( - l ) ^ r _ i / ? i + ( - l ) ' j r = 0, 

where 1 ^ A* ̂  2m. It is easy to see from (1.18) and the hypothesis that 

Sl = 0, s2 # 0. We prove the Lemma by induction. 

Suppose s3 = 0, s5 = 0 , . . ., s2j-z = 0 and j 4 # 0 , . . ., j2y-2 7e 0, 
y < m. We need to show that J 2 / - I = 0 and s2j # 0, 1 ^ j ^ m. 

By the induction hypothesis, (1.18), for r = 2j — 1, reduces to 

m 

(2/ - 1) 52,_1 = ^ . ^ = 2] (*t£i + ^ir1) 
m 

= L (**-l + *2,) (*3£ï - « • • + *£"*) = 0. 

Thus 52y-i = 0. 
It is known [3, p.51] that, for all real values of kh a2 è 0>-i tf>+i, 1 è 

/ ^ 2m — \, and the equality holds if and only if k^ = k2 = • • • = k2m. 
Suppose / = 2j — 1. Then tf"2/_i = 0, since j2y-i = 0. Since, by hypo­
thesis of the lemma, k{ cannot all be equal, and by the induction hypothesis 
s2j-2 ^ 0, the above inequality reduces to 0 > s2j-2s2j which implies 
s2j 7e 0. This completes the proof of the lemma. 

2. Geometric objects preserved by parallel maps. The matrix C(t) defined 
in (1.11) relates a coframe of £ , to that of £ _ , a n d (1.13) shows that it 
can be viewed as the Jacobian matrix of// . Clearly, C(t) is an element of 
GL(n, R); restriction on C(t) that it be an element of a particular sub­
group of GL(n, R) requires 2 to be a special surface and forces / / to 
preserve additional geometric objects besides those mentioned in Lemma 
1.1. The following Proposition illustrates this in two cases. 

PROPOSITION 2.1. Suppose 2 is a connected, orientable smooth n-manifold 
and Xu X-t\ M -> Rn+1, are parallel immersions of an immersion X: M -> 
Rn+l for all sufficiently small t. Let C(t) be the Jacobian matrix of the 
parallel map f* of2-t = X-t(M) into 2t = Xt(M). 

(a) If the principle curvature kt- of M are all non-zero, det C(t) = 1 for 
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all such t, that is, if C(t) e SL(n, R), and n = 2m, then 2 = X (M)is a non-
trivial immersed minimal hypersurface of jR2m+1 and jfpreserves : 

(i) the element of area; 
(ii) all even order elementary symmetric functions of principal curva­

tures; and 
(iii) the absolute value of each odd order elementary symmetric function 

of principal curvatures. 
(b) If C(t) = XI, for some X > 0, then 2 is an umbilical hypersurface or 

a hyper plane in Rn+l and fi is conformai. In particular, 
(i) ifX^i and2 is compact, then 2 is an Euclidean sphere; 

(ii) ifk — 1, then 2 is a hyperplane in Rn+1 and ff is an isometry. 

PROOF, (a). If det C(t) = 1, then, by the definition (1.11) of C(t), it 
follows that det A(t) = det A(-t). Hence 

(2.1) dAt = det A(t) dA = det A{-t) dA = dA-t. 

By using the formula (1.14) in (2.1) and writing n = 2m, we have 

f,">.+<f?h+ + '!"-'(2^.K-=°-
for all sufficiently small t, which implies 

(2.2) GX = 0, <73 = 0, . . ., Ö2m_! = 0. 

Thus, if det C(t) = 1, then L,and 2-thave the same element of area at 
corresponding points and the principal curvatures kÌ9 . . ., k2m satisfy 
(2.2). In view of Lemma 1.3 we may choose kx, . . ., k2m such that k\ + 
k2 = 0, . . ., k2m-i + k2m = 0 and k{ ^ 0, for all / = 1,2, . . ., 2m. With 
this choice, 2] is a non-trival minimal hypersurface in R2m+l and we may 
write (2.1) as 

(2.3) dAt = (l + (2
2
m)*2<72 + + t^G2^dA = dA_t. 

Now consider the formula in (1.15) for the elementary symmetric 
functions afi of principal curvatures of 2],. When / is even, the right hand 
member of (1.15) is a polynomial in even powers of /. This is so because 
odd powers of / multiply odd order elementary symmetric functions 
which vanish. Thus, using (1.15) and (2.3), we obtain 

(2.4) a® = at'\ / = 2, 4, ,2m. 

When i is odd, the right hand side of (1.15) is a polynomial in odd powers 
of t and so again in view of (2.3), we get 

(2.5) a¥> = -at*\ / = 1, 3, . . . . , 2m - 1. 

The formulas (2.3), (2.4), and (2.5) prove the statement in part (a). 
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(b). If C(t) = XI,X> 0, from (1.11), we have A(t) = XA(-t). Using 
(1.8), we get 

(2.6) a) = \\^\ö) 

which shows that the Weingarten map L of £ is a constant multiple of the 
identity map. Hence we conclude that £ is umbilical or flat, depending 
on X # 1 or X = 1. 

Let U, Vbc tangent vectors to 2 - , a t X-t(p). Then(l. 13), together with 
C(t) = XI, gives 

<ßu,ßv> = *2<u, vy, 
which shows tha t / / is conformai. 

(i) If X # 1, L is a non-zero constant multiple of the identity map 
and, further, compactness of 2 implies that it is an Euclidean sphere. 

(ii) If X = 1, then L = 0, and hence £ is a hyperplane. In this case, 
ff is clearly an isometry. 

When 2 is a surface in 3-dimensional Euclidean space R3, (1.14) and 
(1.15) give the well known formulais 

dA, = (1 + 2fflt + o2t*)dA, ap = °\ + y 
(2.7) 

„it) = <?2 
°2 1 + 2/ai + t*a2 ' 

If X! is minimal, we have a^/a^ = t = — a^/o^, which imply that 
the sum of the principal radii of curvature is constant on each of the 
parallel surfaces of the minimal surface £ . We prove the converse. 

PROPOSITION 2.2. If S is a surface in R3 with Gaussian curvature cr2 < 0 
and at each point of which the sum of the principal radii of curvature is 
constant, then S is a parallel of a minimal surface (which may be degenerate). 

PROOF. Let Ö"I/<72 = t = constant. Consider a parallel surface S-t of S 
defined by 

(2.8) X_t = X - tN 

Exterior differentiation gives dX-t = dX — tdN. Since TV = AL,, we have 

(2.9) dN_t x dX.t = dN x dX - tdN x dN. 

It is well known [1] that dN x dX = 2axdAN and dN x dN = 2o2dAN, 
so (2.9) reduces to 

2at{) dA-tN-t = 2axdAN - ( - ^ W 2 dAN = 0. 
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This implies a[~f) — 0, that is, S_, is a minimal surface. Now, we may 
write (2.8) as X = X-t + tN-t, which shows that S is a parallel of the 
minimal surface £_,. 
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