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DERIVATIVE AND APPROXIMATION THEOREMS 
ON LOCAL FIELDS 

ZHENG WEI-XING 

ABSTRACT. The concept of a derivative of functions on local fields 
K plays a key role in approximation theory. In this note such a con
cept is given. The formula X?y(x) — \M%x{x) for characters Xx, 
À e K is obtained. With some modification it is applicable to more 
cases; e.g., to the #-adic group Qa. L e t / G Lr(K), 1 ^ r < oo, and 
consider the linear operator 

L(f x,X)=[ / ( / ) |A] w(X(x - t))dt, À e K, 
JK 

where the kernel w is generated by some we LX(K), w = co. Then, 
by means of the above derivative, we prove several lemmas including 
the Bernstein inequality and establish some inverse approximation 
theorems for the class !V[Lr, | * | a ] andLip r a . An application to the 
kernel Ga for the Bessel potential introduced by M. Taibleson is 
also included. 

1. We use the notation in M. Taibleson's book [4]. Let K be a local 
field. It is well-known that K is locally compact, nondiscrete, complete 
and totally disconnected, and that the /7-adic fields, /^-series fields (p: 
prine) as well as their finite algebraic extensions are the only examples of 
such fields. Denote by (9 the ring of integers, (9 = {x e K: \x\ ^ 1}. & = 
{xeK: \x\ < 1} is its prime ideal, then Q\&> is isomorphic with a finite 
field GF(q), where q = pc for some prime p and positive integer c. There 
is a prime element p of K such that 0> = (p) = p&. The spheres with center 
0 (the center is not unique) in K are &>~k = {x e K: \x\ ^ qk), their Haar 
measures are \@>~k\ = qk, k e Z. In the sequel we state the concepts and 
theorems in one-dimensional form, even though most of them remain 
valid in the «-dimensional case. 

Let %\(x) be any fixed nontrivial character of K+ which is trivial on 
(9. As usual, denote by / the Fourier transform of/, and by/*g the convolu
tion of/and g. 

C.W. Onneweer has given a formula for derivatives for/?-adic fields and 
p series fields [3], i.e., 

Copyright © 1984 Rocky Mountain Mathematics Consortium 

801 



802 Z. WEI-XING 

(1) Hm S' />(', N) L (/(*) - / ( * + Z^), 

where /?(/, JV) = p~N+1{p + l ) " 1 ^ 2 ^ 1 + />"2JV), and 2 (/, JV) denotes 
the summation over all ZqN e &>' ~ 0>/+1 such that the jth coordinates 
of ZqN are zero as j ^ TV. We will give another formula for a derivative 
which seems to be applicable to more cases; e.g., to the #-adic group Qa 

[2]. Our definition, as one will see, has the advantage that, for/(x) = Xy(x)> 
yeg>s~g>s+l, one can almost catch the differential coefficient \y\ = q~s 

by using only one term for the/7-adic fields case. Furthermore, the formula 

(2) [/(p*x)]a> = |p*|/a>(P**), keZ 

is easy to deduce. 
Let W [L\ eft] denote the class of functions / such that there exists 

g E Lr(K), (jjf = g, 1 ^ r ^ oo (where, for 2 < r ^ oo, / is defined by dis
tribution; see §3). Introducing the convolution integral 

(3) f f(t)pw(k(x - t))dt9 

where w is an integrable kernel, ||w||i = 1 and p = \À\ -* oo is a parameter, 
we will establish some theorems characterizing / E W[Lr, \x\a] or Lipschitz 
class according to the degree of approximation by the operators (3). As 
is expected, the higher the approximation degree one has, the better 
properties off one obtains. Some simple applications are also included. 

2. Let xi(x) b e a nontrivial character of K+. There is a k E Z, such that 
%i is trivial on 2?k but is nontrivial on ^k~l. Without loss of generality we 
may assume k = 0 (otherwise use %(x) = %i(p~kx)m place of Xi(x))- Note 
that any character xy(

x) c a n ^e expressed as %y(x) = %0>A:); this is due to 
the isomorphism Ê ^ K. 

Recall that ^ _ 1 / ^ ° ^s a finite field GF(pc). If we let q = pc, it is isomorphic 
with the set {e0p-\ eip"1, . . . , Sq-xP'1}, where e0 = 0, 1^1= • • • = |^_x| 
= 1. The set forms the entire set of representatives of ^ ° in ^ _ 1 , and as a 
subgroup it is isomorphic with the cyclic group Z(q). xi *s also a character 
when restricted to this set. In fact, we have 

Xi(x + y) = Xi(*)> x G fort*-1, • • • , Sq-iP'1}, y e ^ ° . 

Since Z(q) ^ Z(q), for every x E {^p-1, . . . , ó^-ip"1}, there is a fc E {1, 
2, . . . , q — 1}, depending only on /, such that 

(4) ZiteyP"1) = exp(2tf&0-i), 7 = 1, . . . , 4 - 1. 

It is clear that Xi^jP"1) ^ 1, for 7 E {1, . . . , q — 1}. In the following we 
always make the assumption on xi that it is nontrivial on ^ _ 1 but is trivial 
on ^ ° = (9. 
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The definition of a derivative is given as follows. Let/: K -+ C be given, 
NeN,teZ. Set 

N+t 9-1 QN-\ 
(5) ANf{x)= S ? - " ' i + 1 2 L e x p ( - 2 O T y r i ) / ( i + / r t . 

j=.-N-t v=l /=0 

If for any fixed t, lim^oo ^NAX) exists, denoted b y / a > 0 ) (not depending 
on t), we call it the derivative off(x) (in the pointwise case). Similarly, one 
may define the derivative in the Lr(K) sense, higher order derivatives, 
partial derivatives and weak derivatives in the usual way. 

We begin with two simple lemmas. 

LEMMA 1. Ifa bounded function f has derivative a at each x, then so does 
f(psx), moreover, 

(6) [/(p**)]a> = lpsl/a>(p5*), * e Z . 

PROOF. By definition (5), if s ^ 0 and t e Z, then 

N-s+t Q-l QN-l 

àNf{Vx)= 2 r " - - * + i 2 2 exp(-2j(V^-i)/(p>x + /p-») 
k=-N-s-t v=l /=0 

N+s-H Q-l QN~1 N+s+t 

The first sum in the right side tends to |/J5|/a>(/>sx) as N -+ oo, and the 
other sum tends to zero because there are only 2s terms of O(l). 

The case s < 0 can be treated similarly. The lemma is proved. 

We define 6% to be the function class on K, where/e <gs means/e Lr(K), 
for some r, 1 ̂  r g oo,/is constant on each coset of ^>S1~1, for some sx e Z, 
and s is the infimum of such Si (<os corresponds to the locally constant 
function class (9M(see [4, p. 123]) and, in a Walsh system, to the class WN 

[5]). Obviously / = const, implies s — -co. Otherwise s > — oo. The 
following lemma is a counterpart of S. Bernstein's inequality in approxi
mation theory. 

LEMMA 2. Let fee' 5. Then f<ky e £s, where f<k> is the kth derivative off 
defined by induction, i.e.,fiky = (/<*~1>)<1>, t e N . Moreover, 

(7) II/™«,-£ ?** Il/Hr, keN,seZ. 

PROOF. For y ^ —s + 1, we have p - J ' e ^ - 1 . Consequently, / p _ > e ^ » _ 1 

as / e N. It follows by definition (5) that 

â„Ax) = £ î - ^ - ^ S Ç e x p C - 2m/vq-l)f(x + /p-i). 
J=S+2 V=l /=0 

Therefore 
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(8) \\ANf\\r£ 2 q-N-j+l(q~\)qN\\f\\r^qs\\f\\r-
j=-s+2 

The estimate (8) also tells us {ANf) is a Cauchy sequence in Lr{K), so the 
limit of dNfas N -> oo exists in Lr(K). Letting TV -» oo in (8), we obtain 
(7), for k = 1. We then are done by induction (obviously f<k> e < 5̂). 

Let us examine the derivative of a character. We may find that, for both 
#-adic fields and ^-series fields {q prime) the derivative of %_Xs A e Sexists, 
but the numerical results are somewhat different. It depends on the topol
ogical structure of R. We will deal with them separately. 

LEMMA 3. Let xi satisfy the following assumptions. 

(i) xi is trivial on 0>°, but xi(x) ^ I if x =£ Oand is in 0>-J~0>°, ; G N ; 
(ii) For je N, |x| = 1, 

(27n)~V log Xi(*P~y) = 0 (mod 1). 

Then %x(x) = %i(/U) has a derivative for every }. e R {regarding R as the 
same of K). Moreover, 

(9) Hm ANXAX) = Wxxix). 

PROOF. We may assume t = 0. Then we have 
N 9 - 1 q N - l 

(10) JNXX(X)= 2 q-N-'+1E Z exp(-2OTy^-i)z,(/p-^)^(x). 
J=-N v=l /=0 

Since X = 0, (9) is obvious. So we assume ] ^ 0 , ^ e ^ s - ^ 5 + 1 and 
\X\ = q~s, and suppose s ^ 0. If y ^ s and Xp~J e ^ ° , by (i), we have 

(11) xxi'VTf) - 1 = Izi(Ap->)K - 1 = 0 , / = 0, 1,. . . , q» - 1. 

If7 = s + 1, the corresponding term in (10) is 

(12) r*-«2 ' s W ^ i / v ? - 1 ) xx (/p-5-1) zi (*)• 
v=l /=0 

Since %^/p-5-1) = [zi(A'p-1)]/ for some A', U'| = 1, there is a A e {1, . . . , 
# - 1} such that /I'p-1 e s/iP"1 + ^°» DV (4) there is a /^ G {1, . . . , q - 1} 
such that Zi(A'p-1) = Zi(eyip-1) = exp^/ fcr 1 ?) . 
Therefore 

(13) X^P" 5 - 1) = Qxp{27j:ik1/q-l)9 kx & 0, mod q. 

Clearly (12) is equal to (corresponding to the index v = kx, mod q) 

(14) q-N->9Z e* xx(x) = q~> Xx(x) = |A|Zi(x). 

If7 > 5 + 1, it follows by (i) that 
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(15) z,(p-'-) = ziWV-0 # l, M = l. 

Meanwhile we have, by (ii), 

(27ciYlq'-s log XX(P~J) = (2ni)-lq>-s log Xi(*'Ps~J) = 0 (mod 1). 

Therefore there is an m e Z, depending only on X,j such that 

^(P" ') = exp(27cimqs-J), s - j < - 1 . 

Thus 

(16) ^ 1 e x p ( - 2 7 T / / ^ - 1 ) ^ ( / p - 0 = *S l e x P( - 2 ^ , v ?" 1 (v - 'w^" y + 1 ) ) = 0. 
/=0 /=0 

This is true since mqs~i+x is not an integer, by (15) (consequently exp 
( — (2ni)lq(v — m/(qj — s — 1))) does not equal 1 for any v = 1, . . . , 
q - 1), and since N ^ j - s (j ^ N, s ^ 0). From (12), (14), and (16) we 
obtain (9) for such X, \X\ = qs,s ^ 0. 

Assume now Xt&s ~ 0>s+1, s < 0. Then, for y g s 4- 1, the argument 
above on the summation (11) applies and gives the same result. For j > 
s -h 1, one should note that all the corresponding terms in (11) for s 4- 1 
< j ^ N + s vanish. For TV 4- s -f 1 ^ j: <! TV, we have 

2 0-tf-y+i 2 'Ì]1exp(-27r//^-1)^(^p-y)%AW -JV-5+1 

which tends to zero for fixed s as TV -» oo. Therefore, the case of s < 0(9) 
is also valid. The proof is complete. 

To apply the above concept of derivative to the ^-series field Kq, we 
use a different but equivalent topology for the dual of Kq. That is, if 
X e ^(regarding it as the same as Kq\ A = (• • • 0, A5, Xs+i, • • •)> As # 0, 
we set || X || = L{<T5*: XSk # 0} and ||0|| = 0. It is easy to verify || • || and 
| • | are equivalent since 

\X\ g \\X\\ £q\X\, for any X e Kq. 

Furthermore, || • || satisfies the following properties : 
(i) \\X\\ ^ 0 for all l e Kq and ||A|| = 0 if and only if X = 0; 

(ii)llp^H = |p* | | |A| | ,A:eZ,Ae^;and 
(Hi) U + iA\ è n\\ + ||/i||, A , / i e ^ . 

LEMMA 4. L^f K = Kq be the q-series field, xi be a character of K which 
is nontrivial on &>~l and is trivial on ^ ° . Let {xx(x): XeK} be the dual of K 
with the "norm" \\X\\- Then the derivative ofxi exists and we have the follow
ing formula. 

(17) Hm JNXl(x) = UWxfc). 
N-+00 
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PROOF. In this case we have x*(P~J) = exp(27rf/ly_i^~1). Thus, from (5), 
forA = (••• 0, XSXS+1\ Às = 0, / e Z , 

j=-N-t v=l /=0 

- L {<TS*: ̂  # 0} Xl{x) = Mil &(*), TV - oo. 

For /I = 0, the result to be proved is obvious. 

We close this section with a few remarks. 

REMARK 1. In comparing with the definition of derivative of Onneweer, 
it is basic that both provide the formula (6). The coefficients f(0) and 
f(p~N) in question (assume x = 0) are 

N(2N + l)(p2 - 1)2 + p*™ _ (27V + 1)̂ 3 + 2Np , _ 3N+1 
pSN-l(p _ 1 ) 2 (p + 1) d n Q /> 

for Onneweer's, respectively, while in (5) they are (in the special case 
K= Qp) 

(p2N+i _ i)p-2//- i a nd -/?-2^+1. 

REMARK 2. Our definition (5) with a slight modification could be applied 
to define a derivative of functions on an #-adic group Qa([2, p. 106]). 
That is, use 

(18) JNf(x) = £ A_j £ 2 exp(-2m/Vaz))f(x + /e_j) 
j=-N v=l /=0 

in place of (5), where A_j = q-J(a_ja^j+l - • • tf^)"1, e_y = (• • -, (-j) 
0, 1, 0, • • •)• In this case, the assumption (ii) on xi m Lemma 3 with 
necessary modification is automatically satisfied. 

3. In this section we shall establish some approximation theorems. 
Let co (t) Le (K) such that the following conditions are satisfied: 

(i) co is radial; 
(ii) There exists w e L{K) such that w = co; 

(iii) limt_0(co(t) - \)/\t\a = C ̂  0 for some a > 0, whence co (0) = 1. 
Note that from (ii) and (iii) we obtain 

(iv) \co (0 - co (pOI ^ M |/|a, M is a const. 
Consider the approximation operator of convolution type 

(19) L(f9 x,p)=t f(t) p w(l{x - t))dt, 
J K 

where A e K, p = |/l| is a parameter, p -> oo, and the kernel w is generated 
by co. By (i) and co (0) = 1, L(/, •, p) provides a strong approximation 
process in Lr(K), 1 ^ r < oo. 
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The following functions are examples for co: 

exp(-|/ |«), (1 4- \t\«Y\ min(l + |f|«, \t\-ß)9 a, ß > 0. 

LEMMA 5. (see [3] For any k e Z, there is a, function Vk e L(K) such that 

(20) (Vky(t) = \t\-i {\ - 0 , ( / ) } , teK, 

where 0k is the characteristic function of 0>k. Moreover, 

(21) libili = 0fo*), * - - o o . 

The first part of the lemma follows easily from [4; p. 138 Lemma (5.2)]. 
For (21), see the remark after Lemma 8. 

LEMMA 6. If wa) exists in L(K), then,forfeLr(K), 1 g r <; oo, the 
operator (19) with X = p~* has a derivative in Lr(K). Moreover, 

(22) \\L«>{f, -, p)||r ^ pUUw^W, p = q*,keZ. 

PROOF. Suppose X = p~*. By Lemma 1, âNw(X{x -1)) -* pwa>(X(x - t)) 
in L(K) as N -+ oo, where t is regarded as a parameter. Thus we have 

UNW, - , p ) - i f(op2wa>a(x - /))dt\\r 
J K 

S WfWrWpàNHK- -t)) - p*W<»a(. - / » I l l 

= P ïïfïïrïï^N wM-))-pW(V W')\\l ^ 0 
as N -• oo. It follows that 

L«\f ->P) = P$K f(t)pwa> a(x - t))dt, X = p-*, 

and, consequently, the estimate (22) holds. 

LEMMA 7. Let co satisfy the conditions (i), (ii), and (iv), with a = ß 
co 6 L(K) if ß > 0 and co e J^(Ä') if ß = 0, vv/zére >î denotes the class of 
Fourier transforms of the class A. 

PROOF. That co is radial implies w is radial and vice versa. Moreover, 
any one of them is the Fourier transform of the other. Let co/ = co(x), 
where \x\ = q/, /e Z. It is not hard to prove that 

(23) Hv+i - w/ = q~'((o/+i - co-,), /eZ. 

(For Kn, one should replace the factor q~' in the right side by q~/n.) 
Obviously w is continuous, hence is locally integrable. Thus we need only 
to consider the asymptotic property of w/ as / -> oo. By (iv) we may 
write 

(24) |o>_,+1 - ÛJ-,1 S M ^ <-'+»/*, / > / 0. 

file:///t/-i
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It follows from (23) that 

(25) |HV+I - HVI ^ Mqßq-'V+ß. 

By induction we have 

k , + , - w , | ^ Mqßf£q-<'+kH1+P> S MqßCL-q-t-fy-iq-'b+fi. 

We see lims_,00w/+5 = 0 by the Riemann-Lebesgue Lemma. Accordingly, 

(26) Hv = O(0-/(1+0). 

If /3 > 0, then vt> is integrable in a neighbourhood of oo. And if ß = 0, w 
is square integrable in that domain. This completes the proof. 

LEMMA 8. Let (9{t) be defined by 

(27) 0(f) = min(|*|«, \t\~ß), teK, 

where a ^ 0, ß > 0. JAe«, /or a > 0 and ß > 0, we have 0 G L(AT), wA/fe, 
for a = 0 tf«â? /3 > 0, we have (9 G £%£). 

PROOF. The result follows from [4, Lemma (5.2)]. If we set (9(t) = (Px(t) 
+ 02(0» where ^ ( 0 = |/|a*ö(0 and G2 = 0 - 0i> w e c a n verify directly 
that the functions 

(28) <p(x) = {l
qß~

qS\ - l
qß-

 q~\ \x\ß~i}Ux) 

and 

(29) <p(x) = { S j ^ L i log |*| - ?-i} (PoW, 

being in L(K), satisfy ç — (92 since /3 ^ 1 and cjj = (92 since /3 = 1. 

REMARK. From (29) we can deduce Lemma 5. In fact, let /3 = 1. If we 
set l(t) = irl"1 {1 - 0k(x)}9 then q-kÀ(pku) = 02(ü), since $(u) = (92{u). 
Thus 4){pk-) (0 = qk02(p~kt) = ^(/). Moreover, 

||#p* Olli = q*W Olli = 0fo*), A - o o . 

For Lr(K), 1 ^ r g 2, the Fourier transform is defined in the usual 
way. For 2 < r < oo, we would like to define the Fourier transform on 
Lr(K) by the dual method. Thus, l e t /6 Lr(K), 2 < r < oo, and let r' be the 
conjugate index to r. If there is a continuous linear functional g on Lr(K) 
such that, for any <p e Lr'(É), 

(30) (g, 0) = (/, cpl 

we say that g is the Fourier transform of / and denote it by / . Since the 
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Fourier transform is a homeomorphism of 9 onto 6^([4], p. 37, 122]) 
and £f is dense in any Lr(K), 1 < r < oo or in C0, it is convenient to use 
y instead of Lr\K) in (30) to define the Fourier transform of/: 

(31) (*, £) = (/, 0 , p e ^ . 

The convolution of / G Lr(K) (1 ^ r ^ oo) and w e L 1 ^ ) satisfies the 
relation 

(32) (f*w,cp) = ( / , H > * 0 , p G ^ , 

where w is the reflection of w, and obviously H> * cp e Lr(K), for any r e 
[1, oo]. It follows easily that 

(33) ( ( /*H>r,p) = ( / w , 0 , p e ^ 

By virtue of (|/l|5; w)~ = ^-I(M>), applying (33) to / and \X\5x w, where 
fe U(K) (2 < r < oo), w e Ll{K), we obtain 

(34) ( ( / * U| 3, H>A <p) = (/3,-i(w), 0 , p G •S'. 

Let he K, keZ. One can verify that the inverse Fourier transform of 
WXh(y) 0-k (v) is 

,m r i x \qk{l+a)(\-q~x)(\-q-l-«Y\ if |v —Ä| ^ <T*, 
(35) 0o(v) = < 

Y [q-'^iì-q^iì-q-1-«)-1, if q/=\v-h\>q~k. 
From this we assert that, for any (p e <y((p is some finite linear combina
tion of %hQ-k\

 t n e r e is a ^ G U(K) (1 <; r ^ oo) such that 

(36) <T(v) = Ma <P(V)> a > °-

The class W[Lr, |x|«], for 1 ^ r ^ 2, is defined as usual; i .e . , /e *F[Lr, 
|jc|a] means that there is a function g e Lr(Ä^) such that |v|a/(v)=g(v)a.e. 
But, for 2 < r < oo, we mean that there is a g e Lr(K); its Fourier trans
form (in the distribution sense) g satisfies the relation 

(37) (M«/(v), <p(v)) = (g(v), p(v)), p G ^ . 

Now we may state and prove the following 

THEOREM 1. Let L(f •, p) be the operator (19) with a generating function 
co satisfying (i), (ii) and 

(38) (v) ^LZLL = fi(v), 

w/zen? a > 0, jueL(K), ||/z||x = 1, and feLr(K), \ <*r < co. If there 
is age Lr(K) such that, for X — p~k(p = #*) and A: G N, 

(39) ||p«[L(/, . ,p) - / ( • ) ] - g (.)| | r = 0(1), p - x x ) , 

file:///X/5x
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then f e W[Lr, \x\a]. 

PROOF. Suppose 1 ^ r g 2. Then we have 

{p«[L(f, -, p) - / ( • ) ] - g (•)}» = ̂ ffifc"1 M"AV> - #")• 

By the Hausdorff—Young inequality, 

°%-l]^1 Ivl«/(V)-I(v)|r £ || p«[£(/, -, p) "/(•)]-«(•) II r, 

where r' is the conjugate index to r. From (38) and ||̂ u|| i = 1 we see that 
limc_»o |v|_a((tt)(v) — 1) = 1. Hence, by Fatou's Lemma, we have a.e. v e K, 
M«/(v) = | (v). That i s , / e W[Lr, |v|«], 1 g i- ^ 2. 

Suppose now, that 2 < r < oo. From (39) it is easy to see that, for any 

(40) (p«[f* W 3x wT, <p) - ( / , <p) - (g, <p), p - oo. 

By (34), (38) the left hand side of (40) equals (|v|« / (v) fi (X~l v), <p{v)). 
By virtue of (36) it then equals (co is radial) 

(f(v)fia-h), ivi« ̂ v» = (/OO/K^V), 0v(v» 
= (/(v), /itf"1 v) <T(v)) = (/(v)), [ |%U0 * # • ) ] » ) 

= (/(v), mo^-wt •))«). 
Since \k\ß(Xx) is an approximate identity kernel, \X\fi(X-) * <£(•) tends to 
* cf,{ • ) in Z / ( / 0 as /I -^ oo. We have (/(v), |A| ( ^ • ) * </>( • )) (v)) -
(f(v), <J>(v)) as * -> oo ; by (36) it equals (/(v), |v|^(v)) = (|v|«/(v), p(v)). 
Comparing this result with (40), we get (37). 

THEOREM 2. Let feLr(K), 1 jS /• g 2. If co satisfies the conditions (i), 
(ii) and 

(vi) ^ î ? - 1 - = flv), 

w/zere a > 0, /i w a finite Borei measure with total variation WJJLWBVI
 and 

ß(x) = Jic X)üt)dfi(t), fi(o) = 1. TTzerc f/ze operator L(f, -, p) /w (19) w 
saturated in Lr(K) with the order 0(p~a). 

PROOF. By Theorem 1, the usual argument in approximation theory 
[1] will offer a proof of the theorem if we provide a nonzero function 
ÀQ e Lr{K) such that L(/l0, x, p) — k0(x) has the exact degree 0(p~a). 

To that end, we take the function Xo(x) = 0Q(X). Plainly, XQ = ko, 
and, by Lemma 8, there is a function H e L\K) such that H(t) = \t\ak0(t). 
It is easy to find that 
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p«[L(X„ x, p) - M*)} = L ^(M/p)« ' | v |< t / l° (v )* ( x v ) ^ v 

= f /2 (A"1 v) / / (v) x (xv) dv=[ H{x-t)d[i (Xt). 

Therefore, we have 

p«[L(k0, x, p) - Ao(x)] - H(x)= f [H(x - t ) - H(x)]dfiQt). 

Since d p, (X t) is an approximate identitity kernel, 

HLtfo, -, p) - Ao(-) - p-"H(.)\\r = o(p'a), p - oo, 

which completes the proof of the theorem. 

There is another type, the Bernstein type, of inverse approximation 
theorem. 

THEOREM 3. If the operator L(f x, p) with such a kernel w, w<1} e L(K), 
provides a degree of approximation tofe Lr(K), 1 ^ r ^ oo, 

(42) \\L(f -, p) - / ( . ) | | r = 0(p-*-*), for some s = e P, a > 0, p -> oo, 

where, for r = oo, o/ie should replace L°°(K) by C(K). Then f has an sth 

derivative. Moreover, f<s> e Lipra, where Lipra denotes the class Kipa 
with the Lr(K) norm. 

PROOF. We only prove the case s = 0. For the general case, it is done by 
induction. As usual, let us select the subsequence qk(X = p~k), k = 1, 
2, . . ., By (42), 

(43) \\L(f . , < 7 * ) - / ( . ) l | r ^ < T * a , 

where A is a constant, not depending on k (the same for A\, A2, below). 
Let 

Uk(x) = L(/, x, qk) - L(/, x, ?*-i) 

= L(^_! ,x , ^ ) - L ( F „ x , ^ - i ) , 

where FÄ = / — L(/, •, qk). From (44) we obtain the estimate 

(45) \\Uk\\rS l l ^ - iL + \\Fk\\r£Aiq-k*. 

Thus the series 

(46) f(x) = £/2(x) + C/3(*) + tf4(*) + • • • 

converges to/(x) in Lr(K). 
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Suppose he K, h ^ 0. There is an integer m > 0 such that q~m < 
\h\ S q~m+1. Consequently, by (45), 

OO CO 

E IWkïïpè 2 Aiq->* £ A2\h\«, 

whence 
m 

(47) \\f(x + h) -f(x)\\r ï S WA- + h) - Uk(-)l + As\h\«. 
k=2 

By the Fourier transform method, it is easy to verify the equality 

(48) Uk(x + h) - Uk(x) = f V_m(u){Uf>{x + h-u)- Uf\x-u)}du, 

where Vm is the function in Lemma 5. Hence, by that lemma, (44), and 
Lemma 6, 

\\Uk(- +h)~ Uk(-)\\r g \\V-mh ||£/?>(• + h) - Uk(-)\\r 

^ Atq-~ \\L^(Fk^, • +h, q*)-L«XFk, • +h, 9*"1) 

-L^iF^, • , ^ ) + L<1>(F„ -,?*-!)|| r 

^ / ^ - » V I I F ^ L H ^ I l ! g ^5 | | w<i>||l9-»+*<i-«'. 

Back to (47), we obtain 

m 

WA- + h)-f(-)L ^ 2 A5 ||wa>||x 9-»+*(i-„, + ^ |A|« g ^ |A|«. 

The theorem is proved. 

THEOREM 4. Let fe Lr(K), 1 g r < oo #«d co satisfies (i), (ii), <z/zd (vi). 
7fe/i I / / 6 W[Lr, c\vn we have | |L(/ -, p) - / ( - ) L = 0(p"«), p - ex). 
Conversely, for 1 < r < oo, ||L(/, -, p) — /(Olir = 0(p~a) implies f £ 
W[Lr, c|v|a], where the class W is the same as in the statement preceding 
(37) a/7âf c is a nonzero constant. 

PROOF. Suppose fe W[L\ c\v\a\ Then there exists g e Lr(K), 1 ^ 
r < co, such that c|v|a/(v) = g(v) a.e. for 1 ^ r ^ 2 and that 

(C|V|«/(V), <p(v)) = (g(v), ^ V » (9) G ^ ) 

for 2 < r < oo, respectively. Meanwhile 

(p*mf9 v, p) - / ( v ) ] , 0(v)) = (p«[wW-iv) - l ] / (v ) , p (v)) 

= (/2U"1 v)g(v), p(v)) = iq*dii{X.) (v), 0 (v)). 

Since ^ is dense in Lr'(K), we have a.e. pa[L(f, x, p) — /(*)] = (g * d ju 
(A-)) (*) so that 
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\\p«[L{f, ;p)-f(-)]\\r£ WgWrWphv 

Now suppose ||L(/, -, p) - / ( O l i r = Q(p~a)? \ < r < co. At first we 
consider the case 1 < r ^ 2. By the Hausdorff-Young inequality, there 
is a po s u c n t n a t P > i°o> 

I-a)(1"-g
)~1 /(•)[[ ^ llp"W/, •. P) -/(OIL ^ Af, 

Il r H*'' 

where Af is a constant. Therefore, according to (vi). 

\\ßa-i-)\-\«f{-)\\r>^M, \x\ > pò. 

Since /}(x) is continuous, ^(0) = 1, it follows from Fatou's lemma that 
|v|a/(v) G Lr'(K). Let us examine the linear functional on Lr\ 

s(<f>) = Wv|«/(v),p(v)), £ G ^ , 

where / is induced by / and the acting space is £f that is dense in Lr\ 
It's easy to see that \/{(p)\ g M \\<p\\r>. Thus, by the Riesz representation 
theorem, there is a function g G Lr(K) such that, for every (p G y , 

/ (^ ) = J g(u)<p(u) du = J gg(u)(p(u)du. 

By the uniqueness theorem, we obtain c|v|a/(v) = g(v) a.e.; that is / e 
W\L\ c|v|a], for 1 < r ^ 2. 

Assume now 2 < r < oo. As is mentioned, in this case the definitions 
of Fourier transform and convolution should be understood in the 
distribution sense. So, for every ç> G y, 

(p«[Lu: -, p) -A-T, <p) = (p«[L(f, -, p) - / ( • ) ] , f). 

Applying Holder's inequality we obtain the estimate 

\(ßa-l-)\'\af(-\<p)\ é A/II0IU vesr. 

Just as in the proof of Theorem 1, we have 

|(/(v), W|( /^-)*^(-))(v)) l ^ M \\ç>\\r,, <pey, 

as well as 

l (M a / (v ) ,p (v ) ) | g M | | p | U <pey. 

The idea of the first paragraph of the proof yields a function g G Lr(K) 
such that ( |v|a/(v), <p (v)) = (g, (p), <p^y. Obviously this means that g 
is the Fourier transform of |v|a/(v) in the distribution sense and, more
over, g(v) = |v | a / (v) . That is,/G W [L\ |v|a], 2 < r < oo. 

The proof is complete. 
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As an application we consider the kernel for the Bessel potential. 
Here we have the functions 

G a W = r\„\ d*la~w "" #a~w) 0o(*X for a / w , 1 n\oc) 

and 

G"(x) = (1 - q-n) log, (?/|*|) 0o(x% 

where Re a > 0, rn(a) = (1 - qa~n) (1 - q^Y1 (see [4, p. 136-142]). 
We know 

(49) G\t) = min(l , |f|-«) 

and O e Lipr ß, for Re a - /i/r' = ß > 0: 

(50) ||G«(- + A ) - G « ( - ) L ^ ^ a r W . 

The case r = oo is easy to verify. Let us show (50) for the case 1 ^ r < 
oo by the approximation theorems above (in «-dimensional fashion). 

From Lemma 8, the function min(l, |/|~a) is the Fourier transform 
of some function (in fact, Ga) in Ll{Kn). For ß = Rea — n/r' > 0, select 
co such that (i), (ii), (v) are satisfied and âa> e L (Kn) for such a ß (instead 
of a there). Now, since ß - a < 0 by Lemma 8, \t\PGa(t) = min (\t\ß, 
\t\ß~a) is the Fourier transform of some function g ^ Lx(Ln), and from 
(28), (29) we also see that g e L\K% 1 ^ r ^ oo. Therefore g (t) = 
\t\&Ga(t) in a certain sense. By Theorem 4 we have, for 1 g r < oo, 

||L(G«, -, p)-f(>)\\r = 0(p-ßl p^œ. 

From this we conclude that Ga e Lipr/3, 1 è r < oo, by Theorem 3. 
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