ON A THEOREM OF BERNSTEIN

M. A. MALIK

1. Let $P(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ be a polynomial of degree n and $P^{\prime}(z)$ denote its derivative. Concerning the estimate of $\left|P^{\prime}(z)\right|$ the following result is well known:

Theorem a. If $P(z)$ is a polynomial of degree n and $\max _{|z|=1}|P(z)|=1$ then for $|z| \leqq 1$

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \leqq n \tag{1}
\end{equation*}
$$

There is equality in (1) if and only if $P(z) \equiv \alpha z^{n},|\alpha|=1$.
Theorem A is known as Bernstein's Theorem. It can be deduced from a result (also known as Bernstein's Theorem) on the derivative of a trigonometric polynomial which can be proved following an interpolation formula obtained by M. Riesz [3]; from where it is also verified that equality in (1) holds only if $P(z) \equiv \alpha z^{n},|\alpha|=1$. In [1], S. Bernstein proved the following generalization of Theorem A by the use of GaussLucas Theorem; see also N. G. De Bruijn [2]:

Theorem B. Let $P(z)$ and $Q(z)$ be polynomials satisfying the conditions that $Q(z)$ has all its zeros in $|z| \leqq 1$ and the degree of $P(z)$ does not exceed that of $Q(z)$. If

$$
\begin{equation*}
|P(z)| \leqq|Q(z)| \quad \text { on } \quad|z|=1 \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \leqq\left|Q^{\prime}(z)\right| \quad \text { on } \quad|z|=1 \tag{3}
\end{equation*}
$$

2. In this paper, we study the case when there is equality in (3). In fact, we prove:

Theorem 1. Let the hypothesis of Theorem B be satisfied. If there is equality in (3) at any point μ on $|z|=1$ where $Q(\mu) \neq 0$ then $P(z) \equiv$ $\alpha Q(z),|\alpha|=1$.

[^0]Remark 1. If $P(z)$ has all its zeros in $|z| \geqq 1$ and $P(1)=0$, then $Q(z)=$ $z^{n} \overline{P(1 / \bar{z})}$ has all its zeros in $|z| \leqq 1$ and $Q(1)=0$. Further, $|P(z)|=$ $|Q(z)|$ on $|z|=1$ and $\left|P^{\prime}(1)\right|=\left|Q^{\prime}(1)\right|$ whereas $P(z) \not \equiv \alpha Q(z)$ for any $|\alpha|=1$. Hence, the condition that $Q(\mu) \neq 0$ cannot be dropped.

Proof of theorem 1. Let $P(z)$ and $Q(z)$ be polynomials of degree $\leqq n$ and of degree n respectively satisfying the hypothesis of Theorem 1; $n \geqq 1$. Let μ be a point on $|z|=1$ where $\left|P^{\prime}(\mu)\right|=\left|Q^{\prime}(\mu)\right|$ and choose a complex number α with absolute value one such that $P^{\prime}(\mu)-\alpha Q^{\prime}(\mu)=$ 0 . Since $Q(z)$ has no zeros in $|z|>1$ and (2) holds, it follows by the Maximum Modulus Theorem that $P(z)-\alpha Q(z)$ has all its zeros in $|z| \leqq$ 1. Further, from the Gauss-Lucas Theorem, $P^{\prime}(z)-\alpha Q^{\prime}(z)$ has all its zeros in the convex hull of the zeros of $P(z)-\alpha Q(z)$ which is entirely contained in the unit disc $|z| \leqq 1$. Since $\mu,|\mu|=1$, is a zero of $P^{\prime}(z)-\alpha Q^{\prime}(z)$ and the unit disc is strictly convex, μ must also be a zero of $P(z)-\alpha Q(z)$. This implies that $P(z)-\alpha Q(z)$ has a double zero at μ.

Let $z=e^{i \theta}$ and consider the real trigonometric polynomials $T(\theta)=$ $\operatorname{Re} P\left(e^{i \theta}\right), T^{*}(\theta)=\operatorname{Im} P\left(e^{i \theta}\right), S(\theta)=\operatorname{Re}\left\{\alpha Q\left(e^{i \theta}\right)\right\}$ and $S^{*}(\theta)=\operatorname{Im}\left\{\alpha Q\left(e^{i \theta}\right)\right\}$. We obviously have

$$
\begin{equation*}
P\left(e^{i \theta}\right)-\alpha Q\left(e^{i \theta}\right)=f(\theta)+i f^{*}(\theta) \tag{4}
\end{equation*}
$$

where $f(\theta)=T(\theta)-S(\theta)$ and $f^{*}(\theta)=T^{*}(\theta)-S^{*}(\theta)$, and both the trigonometric polynomials are of degree at most n and have a double zero at $\varphi=\arg \mu$.

Without any loss of generality, we can assume that $Q(z)$ has all its zeros in $|z|<1$. In fact, if $Q(z)$ has a zero of order m at $z=\lambda,|\lambda|=1$, then λ is also a zero of order at least m of $P(z)$ and these two polynomials can be written as $P(z)=(z-\lambda)^{m} \tilde{P}(z)$ and $Q(z)=(z-\lambda)^{m} \widetilde{Q}(z)$. Further, if there holds $\left|P^{\prime}(\mu)\right|=\left|Q^{\prime}(\mu)\right|, \mu \neq \lambda,|\mu|=1$, then for some $|\alpha|=$ 1, $P(z)-\alpha Q(z)=(z-\lambda)^{m}(\tilde{P}(z)-\alpha \widetilde{Q}(z))$ has a double zero at $\mu \neq \lambda$. Hence $\left|\tilde{P}^{\prime}(\mu)\right|=\left|\tilde{Q}^{\prime}(\mu)\right|$. Thus, to arrive at the conclusion, we can work with $\tilde{P}(z)$ and $\widetilde{Q}(z)$ where $\widetilde{Q}(z)$ has all its zeros in $|z|<1$.

Since $Q(z)$ has all its zeros in $|z|<1$, it follows from the principle of argument that the image curve $Q\left(e^{i \theta}\right)$ in the w-plane winds around the origin n times (without ever passing through the origin) as θ varies from 0 to 2π. Hence $S(\theta)$ as well as $S^{*}(\theta)$ have exactly $2 n$ simple zeros in [0 , $2 \pi)$. Let the zeros of $S(\theta)$ be $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{2 n}$ and the zeros of $S^{*}(\theta)$ be $\tau_{1}, \tau_{2}, \ldots, \tau_{2 n}$. It is easily seen that $\sigma_{1}<\tau_{1}<\sigma_{2}<\tau_{2}<\cdots<\sigma_{2 n}<$ $\tau_{2 n}<\sigma_{1}$ and at any two consecutive zeros τ_{k} and τ_{k+1} of $S^{*}(\theta), \operatorname{sgn} S\left(\tau_{k}\right)=$ $-\operatorname{sgn} S\left(\tau_{k+1}\right), k=1,2, \ldots, 2 n$ and $\tau_{2 n+1}=\tau_{1}$. If it were not so, $S^{*}(\theta)$ would have to have more than $2 n$ zeros in order that the image curve $Q\left(e^{i \theta}\right)$ wind around the origin n times implying $S^{*}(\theta) \equiv 0$ and so reducing $Q(z)$ to a constant; a contradiction. Similarly, at any two consecutive
zeros σ_{k} and σ_{k+1} of $S(\theta), \operatorname{sgn} S^{*}\left(\sigma_{k}\right)=-\operatorname{sgn} S^{*}\left(\sigma_{k+1}\right), k=1,2, \ldots, 2 n$; $\sigma_{2 n+1}=\sigma_{1}$. Moreover, from (2) one has

$$
\begin{equation*}
\left|T\left(\tau_{k}\right)\right| \leqq\left|T\left(\tau_{k}\right)+i T^{*}\left(\tau_{k}\right)\right| \leqq\left|S\left(\tau_{k}\right)\right| \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|T^{*}\left(\sigma_{k}\right)\right| \leqq\left|T\left(\sigma_{k}\right)+i T^{*}\left(\sigma_{k}\right)\right| \leqq\left|S^{*}\left(\sigma_{k}\right)\right| \tag{6}
\end{equation*}
$$

from which

$$
\begin{equation*}
\operatorname{sgn}\left\{T\left(\tau_{k}\right)-S\left(\tau_{k}\right)\right\}=-\operatorname{sgn}\left\{T\left(\tau_{k+1}\right)-S\left(\tau_{k+1}\right)\right\} \tag{7}
\end{equation*}
$$

provided $T\left(\tau_{j}\right) \neq S\left(\tau_{j}\right) ; j=k, k+1$ and

$$
\begin{equation*}
\operatorname{sgn}\left\{T^{*}\left(\sigma_{k}\right)-S^{*}(\sigma \mid)\right\}=-\operatorname{sgn}\left\{T^{*}\left(\sigma_{k}\right)-S^{*}\left(\sigma_{k+1}\right)\right\} \tag{8}
\end{equation*}
$$

provided $T^{*}\left(\sigma_{j}\right) \neq S^{*}\left(\sigma_{j}\right) ; j=k, k+1$ for $k=1,2, \ldots, 2 n$.
Now, we show that $f(\theta)$ has at least $2 n$ zeros, one in each of the $2 n$ intervals $\left[\tau_{k}, \tau_{k+1}\right], k=1,2, \ldots, 2 n$. The observation relies on geometrical consideration. If $f\left(\tau_{k}\right) \neq 0$, then from (7), $f(\theta)$ has a zero in $\left[\tau_{k-1}, \tau_{k}\right]$ and another zero in $\left[\tau_{k}, \tau_{k+1}\right]$. Next, when τ_{k} is a simple zero of $f(\theta)$, the graph of $T(\theta)$ meets the graph of $S(\theta)$ either from below or from above at $\theta=\tau_{k}$. In this case, if $S\left(\tau_{k}\right)>0$ and the graph of $T(\theta)$ meets the graph of $S(\theta)$ from below (above), then $f(\theta)$ must have a zero in $\left[\tau_{k-1}, \tau_{k}\right)<\left(\tau_{k}, \tau_{k+1}\right]>$ similarly, if $S\left(\tau_{k}\right)<0, f(\theta)$ must have a zero either in $\left[\tau_{k-1}, \tau_{k}\right)$ or $\left(\tau_{k}, \tau_{k+1}\right]$. In consequence, whenever τ_{k} is a simple zero of $f(\theta)$, we note that $f(\theta)$ has at least two zeros in $\left[\tau_{k-1}, \tau_{k+1}\right]$, one in $\left[\tau_{k-1}, \tau_{k}\right]$ and the other in [τ_{k}, τ_{k+1}]. If τ_{k} is a double (or multiple) zero of $f(\theta)$, out of these one may be regarded in $\left[\tau_{k-1}, \tau_{k}\right]$ and the other in $\left[\tau_{k}, \tau_{k+1}\right]$. We repeat the above argument for each k and establish the claim.

Similarly, we can show that $f^{*}(\theta)$ has at least $2 n$ zeros, one in each of the $2 n$ intervals $\left[\sigma_{k}, \sigma_{k+1}\right], k=1,2, \ldots, 2 n$.

Let us suppose that $\varphi \neq \tau_{k}$ for any k. Since $\varphi=\arg \mu$ is a double zero of $f(\theta)$, we conclude that $f(\theta)$ has at least $2 n+1$ zeros in $[0,2 \pi)$. Hence $f(\theta) \equiv 0$. This conclusion and (2) further implies that $\left|T^{*}(\theta)\right| \leqq\left|S^{*}(\theta)\right|$ for all θ in $[0,2 \pi)$. So the $2 n$ simple zeros of $S^{*}(\theta)$ are also the zeros of $f^{*}(\theta)$. Since φ is a double zero of $f^{*}(\theta)$ there are at least $2 n+1$ zeros of $f^{*}(\theta)$. Thus $f^{*}(\theta) \equiv 0$.

If $\varphi=\tau_{k}$ for some k, then $\varphi \neq \sigma_{k}$ for any k and we begin with $f^{*}(\theta)$ to arrive at the same conclusion $f^{*}(\theta) \equiv f(\theta) \equiv 0$.

Consequently, $P(z) \equiv \alpha Q(z)$.
As an immediate consequence of Theorem 1, we observe that equality in (1) holds only if $P(z) \equiv \alpha z^{n},|\alpha|=1$; and also have the following variation of Theorem A .

Theorem 2. Let $P(z)$ be a polynomial of degree n and $\max _{|z|=1}|P(z)|=1$.
if for some α with $|\alpha|=1, P(z)-\alpha z^{n}$ has a double zero on $|z|=1$, then $P(z) \equiv \alpha z^{n}$.

References

1. S. N. Bernstein, Sur la limitation des derivées des polynômes, C. R. Acad. S. Paris, 190 (1930), 338-340.
2. N. G. DeBruijn, Inequalities Concerning polynomials in complex domian, Indag. Math. 9 (1947), 591-598.
3. M. Riesz, Eine trigonometrische Interpolationsformel und einige Ungleichung für polynôme, Jahresbericht der Deutschen Mathematiker-Vereinigung, 23 (1914), 354-368.

[^0]: Research supported by NSERC, Canada.
 1980 subject classification 30A10; 30C10.
 Keywords: Polynomials, derivative, inequality, etc.
 Received by the editors on March 211984.

