ON THE DIVISIBILITY OF THE CLASS NUMBER OF Q($\sqrt{-\mathrm{pq}})$ BY 16

PHILIP A. LEONARD
AND
KENNETH S. WILLIAMS

Abstract

Let h denote the class number of the imaginary quadratic field of discriminant $d=-p q$, where p and q are primes of the form $4 s+1,4 t-1$, respectively. According to P. Kaplan (J. Math. Soc. Japan 25 (1973), 596-608), h is divisible by 8 precisely when $-q$ is a biquadratic residue modulo p. Assuming that 8 divides h, the authors give a necessary and sufficient condition for the divisibility of h by 16 , in terms of quadratic and biquadratic residuacity symbols related to Legendre's equation $p x^{2}+q y^{2}-z^{2}=0$. If x, y, z are coprime positive integers satisfying this equation, with x odd, y even and $z=4 n+1$, they show that h is divisible by 16 if, and only if, $(z / p)_{4}=(2 x / z)$. Conditional results on this problem, e.g., when one can take $x=1$ above, were obtained by E. Brown (Houston J. Math. 7 (1981), 497-505). The corresponding problem for the discriminants $d=-p$ and $d=-2 p$ was also treated by the authors (Canad. Math. Bull. 25 (1982), 200-206).

[^0]
[^0]: Recieved by the editors May 24, 1983.
 Publication: This paper appears in the Proceedings of the Edinburgh Mathematical Society, 26 (1983), 221-231.

 Key words for classification: Imaginary quadratic field, class number, binary quadratic forms, Legendre's equation.

