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The essence of this talk is fundamentally philosophical. That is, what 
I would like to do is describe for you in some general terms why spectral 
theory should have anything to do with number theory. I am direct­
ing this primarily to those number theorists who would like some gen­
eral picture of how some of these various theories fit together; this is 
to provide a philosophical basis for a beginning study of these subjects. 
The point I will try to make is that there is a need and desire when solving 
problems to appeal to the larger contexts in which these problems may 
exist, those that go beyond the language in which the problems are stated. 
Analogously, one should keep in mind the power of complex variables 
in the theory of primes. 

I would like to emphasize that the philosophy contained herein is strictly 
my own and reflects only my limited mathematical perceptions and experi­
ence. There surely are aspects of the general picture which should be 
included and are not; these omissions should only indicate my general 
ignorance and not a prejudice or judgment against their value or position. 

In the first part of this talk, I will present graphically some basic inter­
relationships between various subjects in number theory. In the second 
part 1 will sketch briefly some of the major theorems of recent years which 
are indicative of the power of appealing to these relationships. These 
results will be primarily due to others. I should indicate that the references 
given are examples and should not be taken as an exhaustive bibliography 
of these subjects. 

With these preliminary remarks and apologies out of the way, let me 
proceed. The diagram on the next page indicates some relative connec­
tions between various subjects. Let me explain briefly what this diagram 
means. (The words in boxes indicate the general mathematical field in­
volved.) 

We begin on the left with a group T7 contained in PSL (2, Z) = 7X1), 
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the modular group. (We could, more generally, consider a Fuchsian group 
of the first kind (with parabolic elements) contained in PSL(2, R).) Here 
some of the basic questions one might ask involve the general structure 
of the group. In particular, a description of the conjugacy classes, especi­
ally the elliptic and parabolic classes might be desirable. This should also 
include a study of the quotient groups and their arithmetic. See Rankin 
[25, Ch. 1]. 
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Associated to that horizontally in the diagram is the theory of (mero-
morphic) modular forms and functions for the group T7, especially cusp 
forms of a fixed weight k. These are functions F which are meromorphic 
on the upper half-plane H and which transform according to the rule 

F{Mz) = F(^±^) = (cz + dfF(z) 

for all A/ = (Ja) in / \ For example we have Ramanujan's J-function 
given by 

J(z) = qf\(i - r ) 2 4 

oo 

= S T(n) #*> ? = exp(27T/z) 
»=i 

which has weight 12 and /(z), the elliptic modular invariant of weight 
zero, both of whom live on JT(1). See Apostol [1]. The classical theta func­
tions are also included here. In this part of the theory we study the coef­
ficients of the so-called Fourier series or ^-expansions and their associated 
Dirichlet series. It is here that we meet the Hecke correspondence de­
scribed in Ogg [23]. The Hilbert space of cusp forms of fixed weight k and 
the theory of holomorphic Poincaré series also arises in this context. Of 
course we should not ignore the theory of the Hecke operators which 
give one of the natural connections between the group theory on the left 
and the arithmetical functions in the middle. Furthermore, the group T 
on which these forms live reflects itself in the multiplicative behavior of 
the coefficients. 

Next we move down simultaneously from these two positions to the 
area marked geometry. Here we consider r acting on the upper-half plane 
H by linear fractional transformations and we form the orbit space r\H 
(or a fundamental region with the appropriate sides identified). This 
space can be made into a Riemann surface with choices of local parame­
ters which reflect the structure of the group. For example, at a cusp there 
is infinite ramification and at elliptic points the ramification equals the 
order of the elliptic point. (This is ramification when passing from H as 
a covering suface to the quotient r\H.) As is described very thoroughly 
in Lehner [22, Ch. VI], there is also a connection between differentials 
and meromorphic functions on the surface and the above Hilbert space 
of cusp forms. Via the Riemann-Roch Theorem, this can be exploited 
to give the dimension of these spaces. 

Next we move to the right into the much more purely analytical topics 
of the Hilbert space of square integrable functions (automorphic func­
tions) on r\H. The beauty of this subject is that on the one hand it carries 
implicitly a large portion of the information of the previous two topics 
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(with all weights treated uniformly) but also allows an appeal to the gen­
eral theory of harmonic analysis. It is here that we finally discover spectral 
theory for the Laplace-Beltrami operator 

D = y\dl + 32) 

and its various deep questions about the existence and exhibition of non-
holomorphic (real-analytic) modular eigenforms (/"-invariant eigenfunc-
tions of D). This is really the spectral resolution of D which we seek 
explicitly. Of course, the Hecke operator theory also plays a role here 
and so questions about the (classical) Fourier coefficients of these forms 
come into play. 

Providing a solid foundation for this part of the diagram is one of the 
most beautiful and fundamental theorems of the last thirty years. Of 
course I am referring to the Selberg Trace Formula [29]. It exhibits an 
explicit connection between the harmonic analysis (spectral questions) 
of D on L2 (r\H) and the group structure which we began with. Symboli­
cally, the trace formula takes the form 

Tr K = 2 A(eigenvalues) 

= 2 g(conjugacy classes), 

where K is a certain type of integral operator on the L2 space and g and 
h are functions derived from the kernel of K. See also Kubota [19] or 
Hejhal [13]. 

Note that there is also an arrow connecting the trace formula to the 
Riemann surface with the word geodesies. That is, lengths of geodesies 
on the surface are reflected in the norms of conjugacy classes exhibited 
in the trace formula. See Example 5 below for more on this connection. 

We have yet to connect these theories to classical number theory; so 
far we have only dealt with that part of number theory involved with 
modular forms. The connection with classical number theory is via Klo-
osterman sums as indicated in the upper portion of the diagram. Klo-
osterman sums arise naturally in a number of contexts. The first, from 
our point of view, is in the theory of holomorphic Poincaré series men­
tioned above. This was a fundamental discovery of Petersson (see Rankin 
[25, Ch. 5]) and is intimately connected to the theory of modular forms. 
They also arise naturally in the theory of non-holomorphic Poincaré 
series as well. These sums can therefore be studied in the context of the 
Hilbert space L2(r\H). This was pointed out by Selberg [30]. For example, 
he showed that the Dirichlet series 

oo 

(1) J] S(m, n, c) c~s 

c=\ 

has singularities related to the spectrum of the operator D. So here we 
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find another clear connection between spectral theory, group theory and 
modular forms. 

One famous theorem which I could mention here is due to Selberg 
[30]. He uses Weil's famous estimate [33] for Kloosterman sums to deduce 
the A(l) ^ 3/16 inequality. More precisely, if T is a congruence group, 
then the smallest non-zero eigenvalue of D is no smaller than 3/16. The 
conjecture of Selberg is that X(\) ^ 1/4, whereas general theory only 
yields that A(l) is positive. See also Randol [24]. This has consequences 
to the analytic continuation of the Dirichlet series in (1). 

These Kloosterman sums arise also in a whole range of classical number 
theoretic problems. The most naive way to see why this should be so is 
to recognize that Kloosterman sums are quite general exponential sums, 
or alternately they can be viewed as finite Fourier series. Thus, for ex­
ample, any problem which involves Dirichlet characters might be treat­
able via Kloosterman sums. I'll list a few of the more important problems 
which can be so viewed. 

—the greatest prime factor of n2 + 1 

—the number of divisors of n2 4- 1 

(2) —power mean values of £(1/2 + it) 

—the Brun-Titchmarsh theorem 

—the greatest prime factor of p + a. 

Their connections to Kloosterman sums in many cases are due to Hooley 
and others. See the bibliography of Iwaniec [18] for some references. 

Finally, I should put a roof over this diagram. Encompassing many 
of these interrelationships is the general representation theory. In the 
context of local theory for algebraic number theory (or algebraic varie­
ties), the local and global L-series are, via the Weil correspondence, as­
sociated to holomorphic and non-holomorphic modular forms. An 
analysis of these L-series produces information about their coefficients 
which leads to a better understanding of the forms themselves. This part 
of the theory has been formulated and formalized by Jacquet, Langlands, 
Serre, and many others. I should mention the reference to Gel'fand, 
Graev and Piatetskii-Shapiro [4]. 

Let's not forget the work of Deligne and Grothendick in algebraic 
geometry which lead to a proof of the Ramanujan-Petersson conjecture 

\z(n)\ ^ d(n) n™2. 

Let me now take the liberty to mention in rough detail some specific 
results which illustrate the connections described in the diagram. 

EXAMPLE 1. We should first mention some further results and ideas of 
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Seiberg. [30]. In this paper, Selberg indicates a proof of the eigenvalue 
inequality mentioned above. He also outlines some general methods for 
dealing with sums of the type 

(3) 2 z{n) z(n + k) or £ d(rfl + 1). 
n n 

By generalizing the Rankin-Selberg convolution (replace the Eisenstein 
series by an appropriate non-holomorphic Poincaré series) one can show 
that the Dirichlet series associated to these sums have singularities at 
points related to the eigenvalues of D and that the residues can be cal­
culated. This is similar to the situation in (1). This provides a powerful 
and computational tool for analyzing these sums. 

EXAMPLE 2. Good ([5] — [9]) has made remarkable use of these ideas. 
In [5] and [7] he uses some rather complicated expansions and some very 
deep estimates from the spectral theory to obtain a very good asymptotic 
expression for 

j. T LT(6 + it)\*dt 
o ' 

where 

(4) Lt(s) = g tin) n-
n=l 

This leads to non-trivial estimates for LT(6 + it), a problem analogous 
to estimating £(1/2 4- it). In [6] he deduces quite remarkable estimates 
for the Fourier coefficients of holomorphic modular forms for an arbitrary 
Fuchsian group of the first kind. These are similar to, though (as should 
be expected) not as effective as, Rankin's early results [26] for z. 

EXAMPLE 3. In a remarkable paper [31], Thompson connects group 
theory and the function theory of the Riemann surfaces r\H to prove 
that certain finite simple groups are Galois groups of algebraic number 
fields over the rationals (or at worst over a subfield of an explicit cyclo-
tomic field). In his proof, he does a delicate balancing act between three 
(Fuchsian) groups J Ç y l ç f and the fields of meromorphic functions 
on the associated Riemann surfaces. He views the quotient groups as 
Galois groups for the function field extensions. These quotient groups 
have the property that they are direct products of copies of the finite 
simple group in question. By passing back and forth between the analytic 
and the algebraic ideas he can exploit the inherent structure of each to 
derive information about the other. Then, by what I consider brute force, 
he brings this down from function fields to algebraic number fields. As 
a special case he shows that the "friendly giant" Fischer-Greiss group 
is a Galois group over the rationals. 
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EXAMPLE 4. Here I only want to mention briefly the work of Iwaniec, 
Deshoullier, Fouvry and others (see [18]). In these papers, a significant 
amount of progress has been made in many of the classical problems 
mentioned above in (2). They proceed first by considering a reduction of 
the problem to sums of Kloosterman sums. The basic idea is to exploit 
the inherent cancellation present in such sums. Using ideas from the 
Kuznetsov-Bruggerman Trace Formula ([2] and [20]) which ties these 
sums directly to spectral theory, they can deduce estimates which are 
much stronger than those which are obtained by using the Weil estimate 
term-by-term. Of course, this method requires explicit use of the spectra 
and estimates on the distribution of eigenvalues and the coefficients of 
the eigenforms. 

As a specific example let me give the following result from [15]. For 
T > 2, H = TV\ and e > 0, 

r + " ICO/2 + it)\idt < HT*. 

This improves the exponent from 7/8 to 2/3. 

EXAMPLES 5. Sarnak [27] exploits the connection between the norms 
of conjugacy classes and lengths of geodesies to attack the class number 
problem for real quadratic fields. He recognizes that the norms of primi­
tive hyperbolic conjugacy classes of .T(l) are exactly e2

d where d is a dis­
criminant number and that these appear with multiplicity h(d). In other 
words, the lengths of closed geodesies on r\H are the numbers 21og ed. 
Then using the spectral theory to examine the distribution of closed 
geodesies, he deduces the following result. 

2 h(d) = Li(x2) + 6>(x3/2(log x)2), x -> oo. 

One should compare this with Gauss' theorem [3]. 

EXAMPLE 6. In [11] and [12], I showed that the Dirichlet series (4) has 
the property that a positive proportion of its zeros lie on its critical line. 
The basic proofs follow along the lines of either Titchmarch [32] or Sel-
berg [28], with one major problem which needs to be treated in the context 
of the ideas described above. In either method, sums of the type 

£ z(n) z((bn + k)ld) 
n 

had to be estimated non-trivially and uniformly in the parameters a, b 
and k. This is like the problem (3) above with the additional difficulty of 
uniformity. I dealt with this question in [10] by studying the convolution 
of cusp forms on different groups. This required spectral estimates ex­
hibiting the dependence on the group. 
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It should be mentioned that this theorem on the critical zeros holds 
for any cusp form on any congruence group which is also an eigenfunction 
of the appropirate Hecke operators. (In these papers, this result was only 
stated for r(l).) It may even apply to those with multiplier system, as 
well. 

In conclusion, I hope you are convinced of the depth and power of the 
interrelationships described in the first part of this paper. I also hope that 
some of this is a bit less mysterious to those unfamiliar with the spectral 
connection and perhaps have encouraged a few to begin a study of this 
rich and potentially lucrative subject. 
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