RESEARCH PROBLEMS

EDITED BY A.A. GIOIA AND M.V. SUBBARAO

1. Communicated by M.V. Subbarao, University of Alberta, from original manuscripts by the late Leo Moser.
"The squares of sides $1 / 2,1 / 3,1 / 4, \ldots$ can be accommodated in a square of side $5 / 6$, and this is 'best possible'. Can they be accommodated in some rectangle of area $\left(\pi^{2} / 6\right)-1$?"
2. Proposed by E.G. Straus, University of California-Los Angeles.

For the integer n, define $A=1 \mathrm{~cm}(n+1, \ldots, n+k)$ and $B=$ $1 \mathrm{~cm}(n-k, \ldots, n-1)$. How likely is it that $A<B$?
It is known that the set $S=\{n: A<B$ for all $k\}$ has density 0 . Are there infinitely many $n \in S$?
3. Proposed by A. Schinzel, Polish Academy of Science.

Find a sequence $\left\{a_{i}\right\}$ of integers such that no 3 of the a_{i} are in arithmetic progression and $\sum 1 / a_{i}$ converges to a sum $\geqq 3.0085$. This will improve a result obtained by the greedy algorithm which yields a series converging to a sum >3.0078. [See J. Gerver and L. T. Ramsey, Math. Comput. 33, 1353-1359 (1970); also, a construction of J. Wroblewski, Math. Comput. (to appear 1984), which gives a sum > 3.0084.]
4. Proposed by Paul Erdös, Hungarian Adademy of Sciences.

The following three problems are concerned with the divisors $0<$ $d_{1}<\cdots<d_{\tau(n)}$ of the integer n.
A. There exists a constant C such that there are infinitely many n for which

$$
\sum_{i=1}^{\tau(n)}\left(\frac{d_{i+1}}{d_{i}}-1\right)<C
$$

What is the best possible C for which the inequality holds for infinitely many n ?
B. There exists a constant C such that

$$
\sum_{d_{i}<\sqrt{n}}\left(d_{i+1}-d_{i}\right)^{2}<\frac{n}{(\log n)^{c}}
$$

Received by the editors May 15, 1984.
Copyright (c) 1985 Rocky Mountain Mathematics Consortium
for infinitely many n. What is the best possible C ?
C. Is it true that $d_{i+1}<2 d_{i}$ for almost all d_{i} ?
5. Proposed by John Brillhart, University of Arizona.

Let $a_{1}<a_{2}<\cdots$ be positive integers. Iseki [Math. Sem. Notes Kobe Univ. 7 no. 1, 183-184 (1979)] easily proved that the number

$$
\alpha=\frac{1}{a_{1}}+\frac{1}{a_{1} a_{2}}+\cdots+\frac{1}{a_{1} a_{2} \cdots a_{n}}+\cdots
$$

is irrational. It is easy to see that α may be transcendental-for example, if $a_{n}=n$, then $\alpha=e-1$. On the other hand, α may be algebraic, if $a_{n}=F_{2^{n}} / F_{2^{n-1}}$, where $\left\{F_{n}\right\}$ is the Fibonacci sequence $\left(F_{1}=F_{2}=1\right.$, $\left.F_{n+2}=F_{n+1}+F_{n}\right)$, then $\alpha=(5-\sqrt{5}) / 2$. [See Good, Fibonacci Quart. 12 no. 4, 346 (1974); or Hoggatt and Bicknell, Fibonacci Quart. 14 no. 3, 272-276 (1976).]

How likely is it that α is transcendatal?
Ed. note. The proposer has communicated another example: if $a_{1}=3$ and $a_{n+1}=a_{n}^{2}-2, a_{1}=3$, then $\alpha=(3-\sqrt{5}) / 2$.
6. Proposed by Hugh Edgar, San Jose State University.

For the diophantine equation

$$
1+a+a^{2}+\cdots+a^{x-1}=p^{y},
$$

$a>1, p$ an odd prime, $x \geqq 3, y \geqq 1$:
A. is it true that $y=1$ or y is prime?
B. if a is a prime power, can it happen that $a>p$?
7. Communicated by Carl Pomerance, University of Georgia, and credited to the late Leo Moser.

Can the plane be tiled with all the integer squares? It is known that a tilling of the plane is possible using only integer squares; is it possible to use almost all the integers?
8. Proposed by M.V. Subbarao, University of Alberta.

Define $\psi(n)=n-\varphi(n)$, where $\varphi(n)$ is the Euler totient. It is easy to see that $\psi(n)$ is prime if
(1) $n=p^{2}$, prime p, or
(2) $n=p q$, prime p, q such that $p+q-1$ is prime (which occurs infinitely often).
Moreover, if $\psi(n)$ is prime and n is not the square of a prime, then n is squarefree.
A. Find necessary and/or sufficient conditions (other than those stated above) for the primality of $\psi(n)$.
B. Let n be the product of k distinct primes, $k \geqq 3$. For each such k, is $\psi(n)$ prime at least once?

Ed. Note The proposer has shown that if $p<q<r$ are primes and $\psi(p q r)$ is prime, then $q \not \equiv 1(\bmod p), r \not \equiv 1(\bmod p)$, and $r \not \equiv 1(\bmod q)$.

The question posed in B has been answered in the affirmative for $k=3$ and $k=4$ by Hardy with the examples $\psi(3 \cdot 5 \cdot 17)=127$ and $\psi(3 \cdot 17 \cdot 29$. 41) $=24,799$.
9. Proposed by V.C. Harris, San Diego State University. Let

$$
S=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right\}
$$

be an infinite sequence with $a_{n} \neq 0, n=1,2,3, \ldots$, and set

$$
r\left(a_{n}\right)=r^{1}\left(a_{n}\right)=a_{n+1} / a_{n}
$$

Define

$$
r^{k+1}\left(a_{n}\right)=r\left(r^{k}\left(a_{n}\right)\right), k=1,2,3, \ldots
$$

If S is such that

$$
r^{k}\left(a_{n}\right)=c, \text { a constant, } n \geqq 1, a_{1}, a_{2}, \ldots, a_{k} \text { given }
$$

then $S=S\left(c, k ; a_{1}, a_{2}, \ldots, a_{k}\right)$ is by definition a geometric series of order k. We let

$$
S_{m}(k)=S_{m}\left(c, k ; a_{1}, a_{2}, \ldots, a_{k}\right)
$$

represent the sum of the first m terms of S.
Assuming a geometric series of order k and $a_{1}, a_{2}, \ldots, a_{k}$ are integers or powers of one variable:
A. determine what integers are representable by partial sums of a given S.
B. determine whether a given S contains an infinite number of terms which are primes.
C. determine which S represent an infinite number of r-th powers.
D. discuss congrunence properties of the partial sums of a given S.

Examples supplied by the proposer:
$S_{7}\left(1,3 ; a, a^{2}, a^{4}\right)=a+a^{2}+a^{4}+a^{11}+a^{16}+a^{22}$,
and $S_{7}(1,3 ; 2,3,9)=2+3+3^{2}+3^{2} \cdot 2+3^{4} \cdot 2^{3}+3^{6} \cdot 2^{6}+3^{6} \cdot 2^{10}$.
10. Proposed by V.C. Harris, San Diego State University.
[See L.E. Bush, Amer. Math. Monthly 37, 353-357 (1930).]
Let a, b, k, m, n be positive integers with $(a, b)=1, m \leqq n$, and let

$$
S_{m, n}(a, b, k)=\sum_{i=m}^{n}(a i+b)^{k}
$$

Determine
A. For fixed k, the number of ways a positive integer N can be so represented (including trivial [one-term] representations).
B. The requirements on a, b, k so that

$$
S=\left\{S_{m, n}(a, b, k)\right\}_{n=1}^{\infty}
$$

contains infinitely many terms which are primes.
C. The requirements on a, b, k that S contains infinitely many r-th powers for fixed r.

Proposer's Note: The case $S_{m, n}(a, b, l)$ is well known.

