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RESEARCH PROBLEMS 

EDITED BY A.A. GIOIA AND M.V. SUBBARAO 

1. Communicated by M.V. Subbarao, University of Alberta, from 
original manuscripts by the late Leo Moser. 

"The squares of sides 1/2, 1/3, 1/4,. . . can be accommodated in a square 
of side 5/6, and this is 'best possible'. Can they be accommodated in some 
rectangle of area (7T2/6) — 1?" 

2. Proposed by E.G. Straus, University of California—Los Angeles. 
For the integer n, define A = 1cm (n + 1, . . . , n + k) and B = 

lem (n - k, . . . , n — 1). How likely is it that A < Bl 
It is known that the set S = {n: A < B for all k] has density 0. Are there 
infinitely many ne SI 

3. Proposed by A. Schinzel, Polish Academy of Science. 
Find a sequence {a{} of integers such that no 3 of the a{ are in arithmetic 

progression and 2J IM converges to a sum ^ 3.0085. This will improve a 
result obtained by the greedy algorithm which yields a series converging 
to a sum > 3.0078. [See J. Gerver and L. T. Ramsey, Math. Comput. 
33, 1353-1359 (1970); also, a construction of J. Wroblewski, Math. Com
put. (to appear 1984), which gives a sum > 3.0084.] 

4. Proposed by Paul Erdös, Hungarian Adademy of Sciences. 
The following three problems are concerned with the divisors 0 < 

d\ < • • • < dT(n) of the integer«. 
A. There exists a constant C such that there are infinitely many n for 

which 

ä(4f-- ' )<c 

What is the best possible C for which the inequality holds for infinitely 
many nl 

B. There exists a constant C such that 

L (rfm - rf,)2 < f» 
di < -Jn ( log n)c 
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for infinitely many n. What is the best possible C? 
C. Is it true that 4 + i < 2<̂  for almost all dp. 

5. Proposed by John Brillhart, University of Arizona. 
Let ax < a2 < • • • be positive integers. Iseki [Math. Sem. Notes Kobe 

Univ. 7 no. 1, 183-184 (1979)] easily proved that the number 

a = -L + - 1 - + . . . +
 l- + . . . 

ai axa2 axa2 • • • an 

is irrational. It is easy to see that a may be transcendental—for example, 
if an — n, then a = e — 1. On the other hand, a may be algebraic, if 
an = F2n/F22

n~\ where {Fn} is the Fibonacci sequence (F1 = F2 = 1, 
Fn+2 = Fn+i + Fn), then a = (5 - V~5~)/2. [See Good, Fibonacci Quart. 
12 no. 4, 346 (1974); or Hoggatt and Bicknell, Fibonacci Quart. 14 no. 3, 
272-276(1976).] 

How likely is it that a is transcendatal? 

ED. NOTE. The proposer has communicated another example : if a^ = 3 
and an+i = a2

n — 2, ax = 3, then a = (3 — ^/~§~)/2. 

6. Proposed by Hugh Edgar, San Jose State University. 
For the diophantine equation 

1 + a + a2 4- • • • 4- ax~l = p\ 

a > \,p an odd prime, x ^ 3, y ^ 1: 
A. is it true that y = 1 or y is prime? 
B. if a is a prime power, can it happen that a > pi 

7. Communicated by Carl Pomerance, University of Georgia, and 
credited to the late Leo Moser. 

Can the plane be tiled with all the integer squares? It is known that a 
tilling of the plane is possible using only integer squares; is it possible to 
use almost all the integers? 

8. Proposed by M.V. Subbarao, University of Alberta. 
Define c]j{n) = n — (p(n), where (p(n) is the Euler totient. It is easy to 

see that cjj{n) is prime if 
(1) n = p2, prime p, or 
(2) n = pq, prime /?, q such that p + q — 1 is prime (which occurs in

finitely often). 
Moreover, if </j(n) is prime and n is not the square of a prime, then n is 
squarefree. 

A. Find necessary and/or sufficient conditions (other than those stated 
above) for the primality of <J>(n). 
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B. Let n be the product of k distinct primes, k ^ 3. For each such k, 
is (p{n) prime at least once? 

ED. NOTE The proposer has shown that if p < q < r are primes and 
(]j(pqr) is prime, then q ^ 1 (mod /?), r & 1 (mod /?), and r ^ 1 (mod q). 

The question posed in B has been answered in the affirmative for k = 3 
and k = 4 by Hardy with the examples 0(3-5-17) = 127 and 0(3 • 17 • 29 • 
41) = 24,799. 

9. Proposed by V.C. Harris, San Diego State University. 
Let 

be an infinite sequence with an ^ 0, n = 1, 2, 3, . . ., and set 

r(an) = r^fl») = tfw+iAv 

Define 

r*+i(fln) = r(r*(«n)), k = 1, 2, 3, . . . 

If S is such that 

/**(#„) = c, a constant, « ^ 1, #1? a2> • • • •> akZiyQn 

then S = S(c, k\ ai9 a2, . . ., a*) is by definition a geometric series of order 
k. We let 

SJk) = Sm(c, k;al9a2,...9 ak) 

represent the sum of the first m terms of S. 
Assuming a geometric series of order k and aÌ9 a2, . . ., ak are integers 

or powers of one variable : 
A. determine what integers are representable by partial sums of a given 

S. 
B. determine whether a given S contains an infinite number of terms 

which are primes. 
C. determine which S represent an infinite number of r-th powers. 
D. discuss congrunence properties of the partial sums of a given S. 
Examples supplied by the proposer: 
S7(l,3; a, a2, a4) = a 4- a2 4- a4 4- a11 4- tf16 4- a22, 

and 57(1, 3; 2, 3,9) = 2 4- 3 4- 32 4- 32 . 2 4- 34 • 2* + 36 • 26 4- 36 • 21«. 

10. Proposed by V.C. Harris, San Diego State University. 
[See L.E. Bush, Amer. Math. Monthly 37, 353-357 (1930).] 
Let a, b, k, m, n be positive integers with (a, b) = 1, m ^ «, and let 

Sm,n(a, b, k) = £ (ai + by. 
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Determine 
A. For fixed k, the number of ways a positive integer N can be so re

presented (including trivial [one-term] representations). 
B. The requirements on a, b, k so that 

S = {SmJa, b, / f e 

contains infinitely many terms which are primes. 
C. The requirements on a, b, k that S contains infinitely many r-th 

powers for fixed r. 
Proposer's Note : The case Smn{a, b, /) is well known. 


