ON MULTIDIMENSIONAL COVERING SYSTEMS OF CONGRUENCES

J. FABRYKOWSKI

Dedicated in memory of E. G. Straus

Let us consider a homogeneous system of congruences:

(1)
$$\sum_{j=1}^{k} a_{ij} x_j \equiv 0 \mod m_i, \ 1 \leq i \leq n$$

where $m_i \ge 2$ and

(2)
$$(a_{i1}, a_{i2}, \ldots, a_{ik}, m_i) = 1.$$

In [2] we have proved that if $n \ge 2$ and a homogeneous system of the form (1) covers a k-dimensional cube $C_k \subset Z_k$ with the side length 2^{n-1} and such that $0 = [0, 0, \ldots, 0] \in C_k$ then it is a covering system, i.e., it covers every k-dimensional integer vector. We conjectured that the length $2^{n-2} + 2$ of the side of our cube is sufficient for the assertion and gave an example showing that the length $2^{n-2} + 1$ is not enough for the purpose.

In this paper we show that for a fixed number of variables and congruences we can check the conjecture by performing a finite number of operations.

In fact we shall prove the following:

THEOREM. If there exists a homogeneous system of congruences of $k \ge 2$ variables that covers a k-dimensional cube C_k with the side length $2^{n-2} + 2$ and such that $0 \in C_k$ which is not covering, then there exists a system (not necessary homogeneous) having the same properties which has all moduli less than $2\max(k, 2^{n-2} + 2)(2^{n-2} + 2)^{k-1}$.

PROOF. Suppose that (1) covers the cube C_k , $0 \in C_k$ and is not covering. Certainly we can assume that no proper subset of our system has the same properties. We split indices $i \leq n$ into three disjoint classes A, B, C as follows:

 $i \in A$ if the *i*-th congruence is satisfied by k + 1 integer points from C_k which form a linearly independent set.

Received by the editors April 11, 1984.

Copyright © 1985 Rocky Mountain Mathematics Consortium

- $i \in B$ if $i \notin A$ and the *i*-th congruence is satisfied by k linearly independent points from C_k .
- $i \in C$ if $i \notin A \cup B$ and the *i*-th congruence is satisfied by $r(1 \leq r \leq k 1)$ lenearly independent points from C_k .

Suppose first that $i \in A$ and let $p_1, p_2, \ldots, p_{k+1}$, where $p_s = (p_{s1}, p_{s2}, \ldots, p_{sk})$, $1 \leq s \leq k + 1$ be k + 1 linearly independent points satisfying the *i*-th congruence of (1).

For every r, $1 \leq r \leq k + 1$ we have the system of k congruences:

$$\sum_{j=1}^k a_{ij} p_{sj} \equiv 0 \mod m_i, \, s \in J_r$$

where $J_r = \{1, 2, \ldots, r-1, r+1, \ldots, k+1\}$. Therefore for some integers L_s

(3)
$$\sum_{j=1}^{k} a_{ij} p_{sj} = m_i L_s, s \in J_r.$$

Applying Cramer's Rule to (3) we find

(4)
$$a_{ij} = m_i W_{rj} / V_r$$

where $V_r = \det[p_{sj}]_{1 \le j \le k, s \in J_r}$ and W_{rj} are determinants as desired. Since $a_{ij} \in Z$ then from (4) it follows that

(5)
$$m_i | V_r a_{ij}, 1 \leq r \leq k+1, 1 \leq j \leq k, i \in A$$

and using (2) we obtain

(6)
$$m_i | V_r \text{ for every } 1 \leq r \leq k+1.$$

By virtue of the following identity

$$D = \det \begin{vmatrix} 1 & p_{11} & p_{12} & \cdots & p_{1k} \\ 1 & p_{21} & p_{22} & \cdots & p_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & p_{k+11} & p_{k+12} & \cdots & p_{k+1k} \end{vmatrix} = \sum_{r=1}^{k+1} (-1)^{r-1} V_r$$

and (6) it follows that $m_i|D$.

On the other hand it is known that $|D| = k! \Delta(p_1, \ldots, p_{k+1})$, where $\Delta(p_1, \ldots, p_{k+1})$ denotes the k-dimensional measure of the simplex determined by the points p_1, \ldots, p_{k+1} . (See, e.g., [1]) Since $p_1, p_2, \ldots, p_{k+1} \in C_k$ then $|D| \leq (2^{n-2} + 2)^k$ so $m_i \leq (2^{n-2} + 2)^k$.

Let *M* be the least common multiple of all moduli m_i , $i \in A$. All prime divisors of *M* are less then $(2^{n-2} + 2)^k$. Now we show that for every *n* and $k \ge 2$ there are at least *n* prime numbers between Γ and 2Γ , where

$$\Gamma = \max(k, 2^{n-2} + 2)(2^{n-2} + 2)^{k-1}.$$

372

Suppose first that $k \ge 2^{n-2} + 2$, so that

$$\Gamma = k(2^{n-2} + 2)^{k-1}.$$

We use the following inequality of *P*. Finsler [3]:

$$\pi(2y) - \pi(y) > y/(3 \log 2y).$$

Take $y = \Gamma$ and let us consider the expression

$$\frac{\Gamma}{3 \log 2\Gamma} = \frac{k(2^{n-2}+2)^{k-1}}{3 \log 2k(2^{n-2}+2)^{k-1}}.$$

If A > 1 then the function $f(x) = xA^{x-1}/(3 \log 2xA^{x-1})$ is increasing. Therefore it is enough to show that $f(2^{n-2} + 2) > n$ with $A = 2^{n-2} + 2$. It is easy to check the inequality for n = 1, 2, 3, and for $n \ge 4$ we have $f(2^{n-1} + 2) \ge 2f(2^{n-2} + 2)$ therefore the inequality follows by mathematical induction. Suppose now that $k < 2^{n-2} + 2$, so that $\Gamma = (2^{n-2} + 2)^k$. Let us consider the function

$$g(k, n) = \frac{(2^{n-2} + 2)^k}{3 \log 2(2^{n-2} + 2)^k}$$

which is decreasing with k, so taking k = 2 it is enough to show that g(2, n) > n for every $n \ge 1$. On the other hand the function

$$h(n) = \frac{g(2, n)}{n} = \frac{(2^{n-2} + 2)^2}{n 3 \log 2(2^{n-2} + 2)^2}$$

is increasing with *n* if $n \ge 5$.

Moreover $h(5) \ge 1$. If n = 1, 2, 3 or 4 by direct computation it is easy to verify that between Γ and 2Γ there are at least n primes.

Let us denote the primes in the interval $(\Gamma, 2\Gamma)$ by q_1, q_2, q_3, \ldots

Let now $i \in B$ and denote our points by p_1, p_2, \ldots, p_k . They determine a k - 1 dimensional hyperplane having an equation $B_{i1}x_1 + B_{i2}x_2 + \cdots + B_{ik}x_k = B_{i0}$. Let us consider the congruences:

(7)
$$MB_{i1}x_1 + MB_{i2}x_2 + \cdots + MB_{ik}x_k \equiv B_{i0} \mod q_i, i \in B.$$

Since $q_i \not\mid M$ and as we shall prove, $q_i \not\mid (B_{i1}, B_{i2}, \ldots, B_{ik})$ the system (7) has a solution $(x_1^0, x_2^0, \ldots, x_k^0)$. A k - 1 dimensional hyperplane determined by the points p_1, \ldots, p_k , where $p_s = (p_{s1}, p_{s2}, \ldots, p_{sk})$, $1 \leq s \leq k$, has an equation of the form:

Det
$$\begin{vmatrix} 1 & x_1 & x_2 & \cdots & x_k \\ 1 & p_{11} & p_{12} & \cdots & p_{1k} \\ \vdots & \vdots & \ddots & \vdots & \cdots & \vdots \\ 1 & p_{k1} & p_{k2} & \cdots & p_{kk} \end{vmatrix} = 0.$$

Therefore for every $1 \leq j \leq k, i \in B$

$$B_{ij} = \det \begin{vmatrix} 1 & p_{11} & p_{12} & \cdots & p_{1j-1} & p_{1j+1} & \cdots & p_{1k} \\ \vdots & \vdots & \vdots & & \vdots & & \vdots \\ 1 & p_{k1} & p_{k2} & \cdots & p_{kj-1} & p_{kj+1} & \cdots & p_{kk} \end{vmatrix}.$$

Similarly, as previously $|B_{ij}| = (k-1)! \Delta^{(j)}(p_1, p_2, \ldots, p_k)$ where $\Delta^{(j)}(p_1, \ldots, p_k)$ is the k-1 dimensional measure of the simplex determined by vertices $p_1^{(j)}, p_2^{(j)}, \ldots, p_k^{(j)}$, where $p_s^{(j)} = (p_{s1}, p_{s2}, \ldots, p_{sj-1}, p_{sj+1}, \ldots, p_k)$.

All points $p_s^{(j)}(1 \le s \le k)$ are in the k - 1 dimensional cube $C_{k-1,j}$ with side length $2^{n-2} + 2$. So $|B_{ij}| \le (2^{n-2} + 2)^{k-1}$ and

$$0 < \sum_{i=1}^{k} |B_{ij}| \le k(2^{n-2} + 2)^{k-1} \le I$$

which proves that $q_i \not\mid (B_{i1}, B_{i2}, \ldots, B_{ik})$.

Now let $i \in C$. For every hyperplane $H_{r-1}(1 \leq r \leq k-1)$ in k-dimensional space we can find a k-1 dimensional hyperplane containing H_{r-1} and the point $P = [x_1^0 M, x_2^0 M, \ldots, x_k^0 M]$. It can be done by enlarging the set of points $p_1, p_2 \ldots p_r, P$ if $P \notin \{p_1, \ldots, p_r\}$ or p_1, p_2, \ldots, p_r if $P \in \{p_1, \ldots, p_r\}$ by the points p_{r+2}, \ldots, p_k or $p_{r+1}, p_{r+2}, \ldots, p_k$, respectively, and such that the enlarged set is linearly independent.

Let us consider for $i \in C$ equations $C_{i1}x_1 + C_{i2}x_2 + \ldots + C_{ik}x_k = C_{i0}$ such that

$$C_{i1}x_1^0M + C_{12}x_2^0M + \cdots + C_{ik}x_k^0M = C_{i0}$$

The system of congruences:

(8)
$$\sum_{j=1}^{k} a_{ij} x_j \equiv 0 \mod m_i \quad i \in A$$

(9)
$$\sum_{j=1}^{k} B_{ij} x_j \equiv B_{i0} \mod q_i \quad i \in B$$

(10)
$$\sum_{j=1}^{k} C_{ij} x_j \equiv C_{i0} \mod q_i \quad i \in C$$

covers the same k-dimensional cube C_k as the system (1), the vector $[x_1^0M, x_2^0M, \ldots, x_k^0M]$ is a common solution and the system is not covering. If it were a covering one then using Theorem 2 [2] we would infer that congruences (9) and (10) are not essential and so could be omitted and this would contradict the assumption that the system (1) is not covering.

374

.

References

1. K. Borsuk, *Multidimensional Analytic Geometry*, PWM-Polish Scientific Publishers, Warsaw 1969.

2. J. Fabrykowski *Multidimensional covering systems of congruences*, Acta Arithmetica, to appear.

3. P. Finsler *Uber die Primzaheln zwischen n und* **2***n* Festschrift zum 60. Geburstag von Prof. Dr. Andreas Speiser, Zurich 1945, 118–122. see also E. Trost "Primzahlen" Satz **32**, Basel-Stuttgart 1953.