ON MULTIDIMENSIONAL COVERING SYSTEMS OF CONGRUENCES

J. FABRYKOWSKI

Dedicated in memory of E. G. Straus

Let us consider a homogeneous system of congruences:

$$
\begin{equation*}
\sum_{j=1}^{k} a_{i j} x_{j} \equiv 0 \bmod m_{i}, 1 \leqq i \leqq n \tag{1}
\end{equation*}
$$

where $m_{i} \geqq 2$ and

$$
\begin{equation*}
\left(a_{i 1}, a_{i 2}, \ldots, a_{i k}, m_{i}\right)=1 \tag{2}
\end{equation*}
$$

In [2] we have proved that if $n \geqq 2$ and a homogneneous system of the form (1) covers a k-dimensional cube $C_{k} \subset Z_{k}$ with the side length 2^{n-1} and such that $0=[0,0, \ldots, 0] \in C_{k}$ then it is a covering system, i.e., it covers every k-dimensional integer vector. We conjectured that the length $2^{n-2}+2$ of the side of our cube is sufficient for the assertion and gave an example showing that the length $2^{n-2}+1$ is not enough for the purpose.
In this paper we show that for a fixed number of variables and congruences we can check the conjecture by performing a finite number of operations.
In fact we shall prove the following:
Theorem. If there exists a homogeneous system of congruences of $k \geqq 2$ variables that covers a k-dimensional cube C_{k} with the side length $2^{n-2}+2$ and such that $0 \in C_{k}$ which is not covering, then there exists a system (not necessary homogeneous) having the same properties which has all moduli less than $2 \max \left(k, 2^{n-2}+2\right)\left(2^{n-2}+2\right)^{k-1}$.

Proof. Suppose that (1) covers the cube $C_{k}, 0 \in C_{k}$ and is not covering. Certainly we can assume that no proper subset of our system has the same properties. We split indices $i \leqq n$ into three disjoint classes A, B, C as follows:
$i \in A$ if the i-th congruence is satisfied by $k+1$ integer points from C_{k} which form a linearly independent set.
$i \in B$ if $i \notin A$ and the i-th congruence is satisfied by k linearly independent points from C_{k}.
$i \in C$ if $i \notin A \bigcup B$ and the i-th congruence is satisfied by $r(1 \leqq r \leqq$ $k-1$) lenearly independent points from C_{k}.
Suppose first that $i \in A$ and let $p_{1}, p_{2}, \ldots, p_{k+1}$, where $p_{s}=\left(p_{s 1}, p_{s 2}, \ldots\right.$, $\left.p_{s k}\right), 1 \leqq s \leqq k+1$ be $k+1$ linearly independent points satisfying the i-th congruence of (1).

For every $r, 1 \leqq r \leqq k+1$ we have the system of k congruences:

$$
\sum_{j=1}^{k} a_{i j} p_{s j} \equiv 0 \bmod m_{i}, s \in J_{r}
$$

where $J_{r}=\{1,2, \ldots, r-1, r+1, \ldots, k+1\}$. Therefore for some integers L_{s}

$$
\begin{equation*}
\sum_{j=1}^{k} a_{i j} p_{s j}=m_{i} L_{s}, s \in J_{r} \tag{3}
\end{equation*}
$$

Applying Cramer's Rule to (3) we find

$$
\begin{equation*}
a_{i j}=m_{i} W_{r j} / V_{r} \tag{4}
\end{equation*}
$$

where $V_{r}=\operatorname{det}\left[p_{s j}\right]_{1 \leqq j \leqq k, s \in J_{r}}$ and $W_{r j}$ are determinants as desired. Since $a_{i j}$ $\in Z$ then from (4) it follows that

$$
\begin{equation*}
m_{i} \mid V_{r} a_{i j}, 1 \leqq r \leqq k+1,1 \leqq j \leqq k, i \in A \tag{5}
\end{equation*}
$$

and using (2) we obtain

$$
\begin{equation*}
m_{i} \mid V_{r} \text { for every } 1 \leqq r \leqq k+1 \tag{6}
\end{equation*}
$$

By virtue of the following identity
and (6) it follows that $m_{i} \mid D$.
On the other hand it is known that $|D|=k!\Delta\left(p_{1}, \ldots p_{k+1}\right)$, where $\Delta\left(p_{1}, \ldots, p_{k+1}\right)$ denotes the k-dimensional measure of the simplex determined by the points p_{1}, \ldots, p_{k+1}. (See, e.g., [1]) Since p_{1}, p_{2}, \ldots, $p_{k+1} \in C_{k}$ then $|D| \leqq\left(2^{n-2}+2\right)^{k}$ so $m_{i} \leqq\left(2^{n-2}+2\right)^{k}$.

Let M be the least common multiple of all moduli $m_{i}, i \in A$. All prime divisors of M are less then $\left(2^{n-2}+2\right)^{k}$. Now we show that for every n and $k \geqq 2$ there are at least n prime numbers between Γ and 2Γ, where

$$
\Gamma=\max \left(k, 2^{n-2}+2\right)\left(2^{n-2}+2\right)^{k-1}
$$

Suppose first that $k \geqq 2^{n-2}+2$, so that

$$
\Gamma=k\left(2^{n-2}+2\right)^{k-1}
$$

We use the following inequality of P. Finsler [3]:

$$
\pi(2 y)-\pi(y)>y /(3 \log 2 \mathrm{y}) .
$$

Take $y=\Gamma$ and let us consider the expression

$$
\frac{\Gamma}{3 \log 2 \Gamma}=\frac{k\left(2^{n-2}+2\right)^{k-1}}{3 \log 2 k\left(2^{n-2}+2\right)^{k-1}} .
$$

If $A>1$ then the function $f(x)=x A^{x-1} /\left(3 \log 2 x A^{x-1}\right)$ is increasing. Therefore it is enough to show that $f\left(2^{n-2}+2\right)>n$ with $A=2^{n-2}+2$. It is easy to check the inequality for $n=1,2,3$, and for $n \geqq 4$ we have $f\left(2^{n-1}+2\right) \geqq 2 f\left(2^{n-2}+2\right)$ therefore the inequality follows by mathematical induction. Suppose now that $k<2^{n-2}+2$, so that $\Gamma=\left(2^{n-2}+2\right)^{k}$. Let us consider the function

$$
g(k, n)=\frac{\left(2^{n-2}+2\right)^{k}}{3 \log 2\left(2^{n-2}+2\right)^{k}}
$$

which is decreasing with k, so taking $k=2$ it is enough to show that $g(2, n)>n$ for every $n \geqq 1$. On the other hand the function

$$
h(n)=\frac{g(2, n)}{n}=\frac{\left(2^{n-2}+2\right)^{2}}{n 3 \log 2\left(2^{n-2}+2\right)^{2}}
$$

is increasing with n if $n \geqq 5$.
Moreover $h(5) \geqq 1$. If $n=1,2,3$ or 4 by direct computation it is easy to verify that between Γ and 2Γ there are at least n primes.

Let us denote the primes in the interval $(\Gamma, 2 \Gamma)$ by $q_{1}, q_{2}, q_{3}, \ldots$
Let now $i \in B$ and denote our points by $p_{1}, p_{2}, \ldots, p_{k}$. They determine a $k-1$ dimensional hyperplane having an equation $B_{i 1} x_{1}+B_{i 2} x_{2}+\cdots$ $+B_{i k} x_{k}=B_{i 0}$. Let us consider the congruences:

$$
\begin{equation*}
M B_{i 1} x_{1}+M B_{i 2} x_{2}+\cdots+M B_{i k} x_{k} \equiv B_{i 0} \bmod q_{i}, i \in B \tag{7}
\end{equation*}
$$

Since $q_{i} \nmid M$ and as we shall prove, $q_{i} \nmid\left(B_{i 1}, B_{i 2}, \ldots, B_{i k}\right)$ the system (7) has a solution $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{k}^{0}\right)$. A $k-1$ dimensional hyperplane determined by the points p_{1}, \ldots, p_{k}, where $p_{s}=\left(p_{s 1}, p_{s 2}, \ldots, p_{s k}\right), 1 \leqq s \leqq k$, has an equation of the form:

$$
\text { Det }\left|\begin{array}{cccccc}
1 & x_{1} & x_{2} & \cdots & x_{k} \\
1 & p_{11} & p_{12} & \ldots & p_{1 k} \\
\vdots & \cdot & \vdots & \cdots & \vdots & \ldots
\end{array}\right|=0 \ldots c c: .
$$

Therefore for every $1 \leqq j \leqq k, i \in B$

$$
B_{i j}=\operatorname{det}\left|\begin{array}{cccccccc}
1 & p_{11} & p_{12} & \cdots & p_{1 j-1} & p_{1 j+1} & \cdots & p_{1 k} \\
\vdots & \vdots & \vdots & & \vdots & \vdots & & \vdots \\
1 & p_{k 1} & p_{k 2} & \cdots & p_{k j-1} & p_{k j+1} & \cdots & p_{k k}
\end{array}\right| .
$$

Similarly, as previously $\left|B_{i j}\right|=(k-1)!\Delta^{(j)}\left(p_{1}, \quad p_{2}, \ldots, p_{k}\right)$ where $d^{(j)}\left(p_{1}, \ldots, p_{k}\right)$ is the $k-1$ dimensional measure of the simplex determined by vertices $p_{1}^{(j)}, p_{2}^{(j)}, \ldots, p_{k}^{(j)}$, where $p_{s}^{(j)}=\left(p_{s 1}, p_{s 2}, \ldots, p_{s j-1}\right.$, $p_{s j+1}, \ldots, p_{k}$).

All points $p_{s}^{(j)}(1 \leqq s \leqq k)$ are in the $k-1$ dimensional cube $C_{k-1, j}$ with side length $2^{n-2}+2$. So $\left|B_{i j}\right| \leqq\left(2^{n-2}+2\right)^{k-1}$ and

$$
0<\sum_{i=1}^{k}\left|B_{i j}\right| \leqq k\left(2^{n-2}+2\right)^{k-1} \leqq \Gamma
$$

which proves that $q_{i} \not \backslash\left(B_{i 1}, B_{i 2}, \ldots, B_{i k}\right)$.
Now let $i \in C$. For every hyperplane $H_{r-1}(1 \leqq r \leqq k-1)$ in k-dimensional space we can find a $k-1$ dimensional hyperplane containing H_{r-1} and the point $P=\left[x_{1}^{0} M, x_{2}^{0} M, \ldots, x_{k}^{0} M\right]$. It can be done by enlarging the set of points $p_{1}, p_{2} \ldots p_{r}, P$ if $P \notin\left\{p_{1}, \ldots, p_{r}\right\}$ or $p_{1}, p_{2}, \ldots, p_{r}$ if $P \in\left\{p_{1}, \ldots, p_{r}\right\}$ by the points p_{r+2}, \ldots, p_{k} or $p_{r+1}, p_{r+2}, \ldots, p_{k}$, respectively, and such that the enlarged set is linearly independent.

Let us consider for $i \in C$ equations $C_{i 1} x_{1}+C_{i 2} x_{2}+\ldots+C_{i k} x_{k}=C_{i 0}$ such that

$$
C_{i 1} x_{1}^{0} M+C_{12} x_{2}^{0} M+\cdots+C_{i k} x_{k}^{0} M=C_{i 0} .
$$

The system of congruences:

$$
\begin{align*}
& \sum_{j=1}^{k} a_{i j} x_{j} \equiv 0 \bmod m_{i} \quad i \in A \tag{8}\\
& \sum_{j=1}^{k} B_{i j} x_{j} \equiv B_{i 0} \bmod q_{i} \quad i \in B \tag{9}\\
& \sum_{j=1}^{k} C_{i j} x_{j} \equiv C_{i 0} \bmod q_{i} \quad i \in C \tag{10}
\end{align*}
$$

covers the same k-dimensional cube C_{k} as the system (1), the vector $\left[x_{1}^{0} M, x_{2}^{0} M, \ldots, x_{k}^{0} M\right]$ is a common solution and the system is not covering. If it were a covering one then using Theorem 2 [2] we would infer that congruences (9) and (10) are not essential and so could be omitted and this would contradict the assumption that the system (1) is not covering.

References

1. K. Borsuk, Multidimensional Analytic Geometry, PWM-Polish Scientific Publishers, Warsaw 1969.
2. J. Fabrykowski Multidimensional covering systems of congruences, Acta Arithmetica, to appear.
3. P. Finsler Uber die Primzaheln zwischen n und $2 n$ Festschrift zum 60. Geburstag von Prof. Dr. Andreas Speiser, Zurich 1945, 118-122. see also E. Trost "Primzahlen" Satz 32, Basel-Stuttgart 1953.
