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ZEROS AND FACTORS OF POLYNOMIALS WITH POSITIVE 
COEFFICIENTS AND PROTEIN-LIGAND BINDING 

W. E. BRIGGS 

1. Introduction. Many physiological processes involve the interaction of 
ligands with biological macromolecules particularly proteins. The regula­
tion of the actions of enzymes, hormones and ions is an important example 
as is the transport of oxygen by hemoglobin in the blood. A protein 
macromolecule will have a number of sites at which the ligand can become 
bound and interact with the protein. This general process is knows as 
protein-ligand binding. The experimental study of this process consists in 
determining by titration the amount of ligand which is bound per mole of 
protein as a function of ligand activity such as oxygen pressure. This 
results in a so-called binding function which can be represented as a 
binding curve. Characteristics of the interaction process for various 
proteins and ligands can then be described in terms of the properties of 
the binding functions and curves. 

Many mathematical models have been developed to describe and inter­
pret this binding process. Models are based on the kinetics of confor­
mational changes in the molecule during its interaction with the ligand 
and on the symmetries and structure of the subunits of the molecule 
[7]. A fundamental tool in this analysis is the binding polynomial in­
troduced by Wyman [11]. If the molecule has n binding sites (which 
generally is four in the case of hemoglobin), then the binding polynomial 
has degree n and represents a distribution function of the n + 1 possible 
species of the molecule having from zero to n sites bound. The coefficients 
of the polynomial can be determined from observed equilibrium data and 
are the overall equilibrium constants for the chemical reaction which 
fills j binding sites. If ax represents ligand activity, then the binding poly­
nomial can be written in the form P(ax) = 1 + ßx

ax + ß2a
2
x + • • • + ßna

n
x 

where ßj > 0. The binding polynomial can also be written using stepwise 
equilibrium constants Kj for the stepwise reaction from j — 1 to j sites 
bound. In this form the usual representation is P(ax) = 1 + Ki<ix + 
KiK2fl2

x -f • • • + (KiK2 • • Kn)a
n
x. The relation between the binding poly­

nomial and the saturation function is given by 
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(1) y = axP'(ax)/nP(ax). 

The numerator represents the number of sites which are bound and 
the denominator the total number of sites so that y gives the fraction of 
sites bound or saturated as a function of ax. This value is zero when 
ax = 0 and is asymptotic to one as ax increases without bound. Two 
basic curve shapes are shown in Figure 1. Curves which have a sigmoidal 
shape as in (a) indicate an enhancement in filling subsequent sites after 
some sites are filled initially. This phenomenon is termed "positive cooper-
ativity" and is a characteristic shown generally in hemoglobin-oxygen 
binding. Curves which have a hyperbolic shape as in (b) often indicate 
an inhibition in filling subsequent sites and this is termed "negative or 
anti-cooperativity". 

The development of measures of cooperativity has been an important 
part of the analysis of binding curves. Hill [5] introduced a particularly 
useful measure generally know as the Hill slope which is the slope of the 
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Figure 1 
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graph of log (yj{\ — y)) versus log ax. If a molecule consists of« identical 
but independent sites each with binding constant K, then its binding poly­
nomial is P(ax) = (1 + Kax)

n. The Hill slope is one for all values of ax 

and the binding is statistically neutral with no site interaction. Thus the 
Hill slope can be used to indicate positive cooperativity when it is greater 
than one and negative cooperativity when it is less than one. It can be 
shown [2] that if the zeros of P(ax) are all real but not all equal, then the 
Hill slope is everywhere less than one. Therefore it is necessary for P(ax) 
to have non-real zeros for positive cooperativity to occur. The maximum 
possible value of the Hill slope is n and this occurs only in the theoretical 
case of all sites maximally linked when no intermediate species, having 
between zero and n sites bound, appear. The binding polynomial for this 
case is 1 + ßna

n
x. A change of variable of the form ax = ex will not alter 

these basic concepts and henceforth binding polynomials will be con­
sidered in the form P(x), a function of x. 

A hypothesis to explain cooperativity can be formulated in terms of 
linkages between two or more sites which produce conformational changes 
in the molecule when one site is filled which then enhance or inhibit filling 
other sites. If a binding polynomial of degree n can be factored into 
polynomials P\(x) andP2(*)°f degrees nx and n2, then a simple calculation 
using (1) shows that 

(2) y = -^-(«iJ'i 4- n2y2) 

where y1 and y2 are the saturation functions of P\(x) and P2(x). Thus it is 
natural to relate site linkages to the factorization of binding polynomials 
into polynomials with positive coefficients. The latter requirement arises 
from the need to interpret each factor as a binding polynomial for a 
subset of the binding sites. This hypothesis has been discussed extensively 
in the literature ([1], [2], [10]) and the purpose of this paper is to present 
some results about the zeros of polynomials with positive coefficients and 
the factorization of such polynomials into polynomials of the same type 
and to interpret irreducible positive factorizations in terms of site linkages. 

2. Preliminary Results. 
DEFINITION. A positive polynomial is a real polynomial whose leading 

and constant coefficients are positive and whose remaining coefficients 
are non-negative. 

DEFINITION. A positive factorization of a polynomial is a non-trivial 
factorization in which each factor is a positive polynomial. 

DEFINITION. A /^-irreducible polynomial is a positive polynomial which 
does not admit a positive factorization. 
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The following assertions either are obvious or are immediate conse­
quences of standard results. 

i) A positive polynomial cannot have a positive real zero. 
ii) A positive polynomial of odd degree must have a negative real zero. 

iii) A positive polynomial cannot have a factor of the form x2 — bx 
— c with b and c positive. 

iv) A positive polynomial of even degree cannot have all of its zeros 
with positive real parts. 

v) The product of two or more quadratic factors of the form x2 — 
bx + c with b and c positive cannot be a positive polynomial. 

An important result of Cowling and Thron [3] obtained as a special 
case of a result of Obreschkoff [9] is 

THEOREM A. A positive polynomial of degree n does not vanish for any 
value z with |arg z\ < %\n with the exception of polynomials of the form 
axn + b in which case there are two zeros with |arg z\ — %\n. 

3. Hurwtiz polynomials. An important class of positive polynomials 
consists of those whose zeros all lie in the half-plane Re z < 0. Such a 
polynomial is called a Hurwitz or stable polynomial, the latter term arising 
from the property of stability in the solutions of linear differential equa­
tions describing physical systems. Routh in 1875 and Hurwitz in 1895 
developed algorithms for determining the number of zeros of a poly­
nomial in the right and left half-planes of the complex plane. The Routh-
Hurwitz theorem provides a criterions for stability arising from the 
requirement that the number of zeros in the right half-plane be zero [9]. 
While all positive polynomials of degree two are Hurwitzian, the same is 
not true for polynomials of higher degree since for example 

x3 + x2 4- 2x + 8 = (x 4- 2)(x2 - x + 4). 

Binding polynomials which are Hurwitzian are significant because they 
can be factored uniquely into positive linear and /^-irreducible quadratic 
factors. Acording to the hypothesis then, the protein will have a number 
of independent sites corresponding to the linear factors and will have 
the remaining sites linked in pairs corresponding to the /^-irreducible 
quadratic factors. The algebraic problem reduces therefore to that of 
determining the factorization of non-Hurwitzian positive polynomials 
into /?-irreducible polynomials. Of particular interest are binding poly­
nomials which are/7-irreducible since this implies that all sites are linked. 
As noted previously maximum cooperativity occurs for 1 4- xn which is 
/7-irreducible so that there is a natural relationship between/7-irreducibility 
and strong positive cooperativity. 

4. (n = 3). Consider the positive cubic P(x) = x3 + axx
2 + a2x + a3. 
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By the Routh-Hurwitz criterion, P(x) will be stable if and only if a\a2 

> a3. In this case P(x) can be factored either into three linear factors or a 
linear factor and a /^-irreducible quadratic factor. If a^ = a3, then 
P(x) = (x + ai)(x2 + a2) even though it is not stable. 

Now assume the zeros of P(x) to be — r, a ± ßi with r > 0 and a > 0 
so that P(x) = (JC + r)(x2 - 2ax + a2 + ß2). Since P(x) is a positive 
polynomial, we have r — 2a è 0 and a2 + /32 — • Ira ^ 0 or 

(3) 

Thus we have 

0 < a ^ r/2 and (a - r)2 + /32 ̂  r2. 
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THEOREM 1. A positive cubic is p-irreducible if and only if its zeros 
satisfy (3). 

The region of the complex plane defined by (3) is shown in Figure 2. 
The inclination of the line OP is %ß in accord with Theorem A. Such 
polynomials represent positive cooperativity in proteins with three posi­
tively-linked sites. 

5. (n = 4). Consider the positive quartic P(x) = x4 + aiXs + a2x
2 + 

a3x + a4. By the Routh-Hurwitz criterion, P(x) will be stable if and only 
if aia2a3 > a\a± + a% In this case P(x) has a unique positive factorization 

Figure 3 
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into linear and /^-irreducible quadratic factors. If equality holds in this 
expression, then P(x) has a factor of the form x2 + a and the same con­
clusion follows even though P(x) is not stable. 

Now assume that P(x) is not stable and has two pairs of non-real zeros 
— r ± si and a ± ßi with r > 0 and a > 0 so that P(x) = (x2 — 2rx + 

? 

^ Q (V, tf ^r"-5"-) 

Figure 4 
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r2 + s2){x2 + lax + a2 + ß2). Since P(JC) is a positive polynomial, we 
must simultaneously have 

0 < a ^ r 

(4) (a - 2r)2 + £2 ^ 3r2 - s2 

("-H^ + rt^J-
We now have 

THEOREM 2. y4 positive quartic with no real zeros is p-irreducible if and 
only if its zeros satisfy (4). 

If r ^ s, then the second inequality of (4) is redundant since 3r2 — s2 ^ 
r2 + s2 and the region for this case is shown in Figure 3. The region for 
r > s is shown in Figure 4. Such polynomials represent positive coopera-
tivity in proteins having four positively-linked sites. 

In Figure 4, 0, P and Q are collinear and the inclination of OPQ is 
tan_1(V2r2^^2/r). The inclination of OP in Figure 3 is tan_1(^/r). Each 
has a minimum of %jA when r = s in accord with Theorem A. 

Now assume that P(x) has two real zeros — rx and — r2 and two non-real 
zeros a ± ßi with rx > 0, r2 > 0, a > 0 so that P(x) = (x + J*i)0c + r2) 
(x2 — 2CPC + a2 + /32). Since P(x) is a positive polynomial, we must have 
simultaneously 

0 < c t ^ ^ - ( r 1 + r2) 

- fa + r2)]2 + ß2 §; r\ + rxr2 + r2 

Vz/fri + r2)]2 + /32 ^ [ r ^ ^ + r2)]2. 

It is possible however for either or both linear factors to combine with 
the quadratic factor to produce a positive cubic if (3) is satisfied. Thus 
P(x) can be /^-irreducible or can have one or two positive factorizations. 
Such polynomials represent positive cooperativity in proteins having 
four sites positively linked or having one independent site and three sites 
positively linked in either one or two combinations. Thus we have 

THEOREM 3. A positive quartic with two real and two non-real zeros is 
p-irreducible if and only if its zeros satisfy (5) but do not satisfy (3) for either 
real zero. 

The shaded regions in Figure 5 show the locations of the non-real zeros 
which give a P{x) which is /^-irreducible. The regions marked I and II 
show locations which give a P(x) with one or two different /7-irreducible 
factorizations. 

(5) 
la­

t a -
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Figure 5 

Once again 09 P, and Q are collinear and the inclination of OPQ is 
tan_1[(3rf + 2rrr2 + 3r|)1/2/(r1 + r2)]. This quotient has a minimum of 
</~2 when rx = r2 and we have the 

COROLLARY. A positive quartic with real zeros does not vanish in |arg z\ < 
tan"1 VT. 

6. Applications. The results of the previous section can be applied to 
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experimental data obtained by Imai [6] for stripped native human hemo­
globin. The values obtained for overall equilibrium constants are ßt 

= .456, ß2 =.113, j33 = .088, ßA = .089. The zeros of the binding poly­
nomial with these coefficients are .95 ± 1.169i and — 1.44 ± .96i so that 
P(x) is both non-Hurwitzian and /^-irreducible. Thus all four sites are 
linked and positive cooperativity occurs everywhere. Maximum Hill slope 
is 2.51. 

Another application can be made to the MWC model [8] which has 
been used extensively for molecules having certain structural properties 
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including hemoglobin. With the assumptions made in this model, the 
binding polynomial can be written as N(x) = L(l + cx)n + (1 + x)n 

where L and c are certain parameters. If L — tn, then N(x) = 0 is equiv­
alent to 

(6) « j + c*> = m or x= °>-' , 
1 4- x - co + ct 

where con = — 1. Thus the zeros of N(x) are found by evaluating (6) for 
the w-th roots of — 1. Consider the bilinear mapping 

(7) »-=rïî*> '(c-D^o 

which is one-to-one and maps the unit circle onto another circle with 
center on the real axis. N(x) will be Hurwitzian if the n-th roots of — 1 
are all mapped into the left half-plane. The zeros of N(x) are all non-real 
except for a single real zero if n is odd. Thus the molecule has at most one 
independent binding site and the remainder form some pattern of linkages. 
For n = 4, N(x) is Hurwitzian for all values of L if 3 - 2 v"T < c < 3 + 
2 V T a n d for values of L1/4 not lying between \/~2(c+1 ± V c 2 - 6c+1)/ 
4c otherwise. Approximations to these bounds for L are 4 and l/(4c4) if 
c is small and 4/c4 and 1/4 if c is large. These regions are shown in Figure 
6. If N(x) is Hurwitzian, then there are two pairs of linked sites. If it is 
not, then it is /7-irredicible and all four sites are linked. Also shown in 
Figure 6 is point P corresponding to c = .01 and L = 10,000 which are 
approximate values to those used in the MWC model for hemoglobin. 
P lies in a non-Hurwitzian region which is an indication of positive 
cooperativity. 

7. Concluding remarks. The preceding results can be applied to any 
binding polynomial whose degree does not exceed four and this covers a 
large variety of classes of proteins including hemoglobin. This approach 
can be applied to polynomials of higher degrees by associating a pattern 
of positively linked sites with a factorization of the binding polynomial 
into /^-irreducible factors. One generalization will be presented here which 
also has mathematical interest. Consider a binding polynomial P(x) with 
k real zeros and a single pair of non-real zeros. The usual interpretation of 
site linkages applies if P(x) is Hurwitzian. If P(x) is non-Hurwitzian, then 
any number of sites from 3 to k + 2 may be positively linked with the 
latter occurring when P(x) is p-irreducible. Assume therefore that P(x) 
has zeros — rh — r2, . . . , — rh a ± ßi with r{ > 0 and a > 0. Since P(x) 
is a positive polynomial, we must have simultaneously 
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0 < a ^4-<7i 
(8) 

( a - - ^ ) 2 + ^ à ( ^ _ ) 2 _ ^ ± L , , - « 1 , 2 , . . . , * 

where Oi is the j-th elementary symmetric function of rl9 . . . , rÄ, aQ = 1 
and <7*+i = 0. As before we expect the boundary to consist of a sequence 
of circular arcs from the origin to a vertical line but it is necessary to 
employ a number of properties of the elementary symmetric functions 
before reaching this conclusion. 

Let Cl9 C2, . . . , Ck denote the respective circles in the a/3-plane defined 
by (8) using equal signs. Let (qi9 0) denote the center and pf- the radius of 
Q . It is well known that a* > 0V-107+1 so that 

(9) qk < qk^ < • • • < q2 < ql9 and p? > 0. 

We show first of all that Q intersects a = (l/2)al. The center of C\ is 
qx = (jj so that the condition for intersection is pi > q1 — (l/2)<7i = 
(l/2)<7i or (7f - <72 > (l/4)(7? or <7? > 4/3 <j2. But 

0l = hr2i+ 2a2>2a2> \o2 
1 -> 

so that Cx does intersect a = (\\7)a\. 
The points of intersection (a,-, ß,-) of Q and C I+1 for 1 = 1, 2, . . . , / :— 1 

are given by 

2(Ö-2. _ a^i^'+i) 

S f o ^ m 4- oy^-n)2 - 4(qf-_1^+1 4- <7fcv+2 4- <72-iöf+2) 
(a2

t- - tfV-itfV+i)2 

so that there will be real points of intersection if the numerator of /32 is 
non-negative. We will prove the 

LEMMA. If >1? r2, ..., rk are positive real numbers and aÌ9 a2, . . . , ok are 
their elementary symmetric functions, then the numerator of ß2

{ in (8) is 
non-negative. 

PROOF. A theorem of Malo and I. Schur [9] says that if the zeros of the 
polynomials aQ 4- axx 4- • • • 4- anx

n and bQ 4- b^x + • • • + bnx
n are all 

real and if those of the latter are all of the same sign, then the zeros of 
a0b0 4- a^b\X 4- • • • 4- anbnx

n are all real. The theorem applies to the 
polynomials 

(10) 
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so that 

Il (Ti + x) = Ok + (Tk-i x + • • • + x* 
1 

(1 +*)* = 1 + ( f c ^ j ) x + . . . +** 

Figure 7 
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has k real zeros. If a homogeneous polynomial of degree k in x and y is 
formed form this polynomial, then any of its partial derivatives will have 
all real zeros xjy by repeated applications of Rolle's Theorem [4]. The 
various partial derivatives of order k — 3 are <7,-_i *3 + 3atx

2y + 3aï+1xy2 

+ ai+2y
3 which must have three real zeros. Therefore each discriminant 

must be non-negative which gives the desired result. (Applying this 
method to the first polynomial will give the same result for G{ = aJQ) 
instead of <7,-.) 

Thus Cf- and Ci+1 have real points of intersection and the intersection 
of the regions defined by (8) is bounded by a sequence of circular arcs 
extending from the origin to a = (1/2)0"! as shown in Figure 7. 

If a ± ßi lie outside Cx and (1/2)(Ö"I — r{) < a ^ 0/2)<7i where rx is 
the smallest ri9 then P(x) is /^-irreducible and we have 

THEOREM 4. There are p-ir reducible polynomials having any set of negative 
real numbers among its zeros. 

There are several unanswered question about the details of the boundary 
including whether the sequences {ai] and {p{} are monotonie. The former 
is a monotonie sequence if 

and the latter if 

a\(o2 - tfVi<7m) > aU(a2
+1 - ö\tfV+2). 

It is easy to conjecture that both are true in general since they hold in the 
special case rt: = 1, / = 1, 2, . . . , k in which at- = (£). 

It is also of interest to examine the size of the angular sector of the 
zero-free region of the complex plane in this special case. Let Mt- be the 
square of the slope of the line through the origin and the point of inter­
section of Ci and C,-+1. From (10) we obtain 

M • = -@L = k + 2 7 = 1 2 k - 1 
Mt a2 (i+ l)(Jfc- 0 ' ' ' • • ' 

and it is evident that the points of intersection are no longer collinear for 
k > 2. The size of the sector will be determined by the minimum of the 
Mi which is 4/k for k even and 4(k + 2)/(k + l)2 for k odd. It is also 
easy to conjecture that the same result holds regardless of the values of 
the k real zeros. 
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