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Dedicated to the memory of Gus Efroymson 

Borei and Moore developed an homology theory for locally compact 
topological spaces using sheaf theoretical methods ([2], see also [3]). It 
allows us to consider not only homology with compact support (which 
is the same as classical singular homology) but also homology with 
arbitrary support. This general concept of homology has important ap
plications. A striking example is the proof that every algebraic variety 
over R (resp. over C) has a fundamental class [1]. To obtain similar results 
for varieties over an arbitrary real closed field R, or over its algebraic 
closure C = jR(^/3J), we are forced to introduce a semialgebraic version 
of Borel-Moore-homology. In this paper we will sketch how this may 
be done. (In [4] and [6] we handled the special case of complete support). 
Semialgebraic Borel-Moore-homology may even be of interest in the case 
R = R, because it is far simpler and more elementary than the classical 
sheaf theoretical theory. 

R denotes a real closed field. Let M be an affine semialgebraic space 
over R [5] and A be a semialgebraic subset of M. We can triangulate M, 
A simultaneously, i.e., there exists a finite geometric simplicial complex 
Jfover R, a subcomplex F of Zand a semialgebraic isomorphism <p: X ^ 
M which maps Y onto A [6, §2]. Notice that the simplicial complex X is 
not complete in general. Some faces may be missing. Adding these missing 
faces we obtain a simplicial complex X, the closure of X. X is a simplicial 
complex in the classical sense and a complete semialgebraic space. 

The basic building blocks in classical algebraic topology are closed 
simplices. But not all simplices occuring in X are closed. Nevertheless, 
they seem to contribute to the homology of M. So it is quite natural to 
take the open simplices as the building blocks of a homology theory for 
semialgebraic spaces. This idea will be formalized in the following. 

DEFINITION 1. An abstract simplicial complex K is a pair (E(K), S(K)) 
consisting of a set E(K), called the vertices of K, and a set S(K) of non
empty finite subsets of E(K), called the simplices of K9 such that E(K) = 
U (s | s e S(K)). K is called closed if, in addition, every non-empty subset 
t of a simplex s e S(K) is also a simplex. 
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In the literature only closed abstract complexes are considered (cf., 
e.g., [7, 3.1]). Adding all missing faces of K to S(K) gives us a closed 
abstract complex K, the closure of K. 

We can associate an abstract simplicial complex K(X) = (E(X)9 S(X)) 
to X as follows; E(X) is the set of vertices of X\ a subset s of E(X) 
belongs to S(X) if and only if the elements of s span an open simplex of X. 

We assume from now on that the given semialgebraic space M is locally 
complete. This means that every point of M has a complete semialgebraic 
neighborhood [5, §9] and corresponds to the topological notion "locally 
compact". (The space V(R) of ^-rational points is locally complete for 
every i^-variety V). Then X is open in its closure X. It also means that 
the abstract complex K(X) is an open subcomplex of its closure K(X) — 
K(X) (i.e.,K(X) - K{X) is aclosed subcomplex oiK(X)). For every abstract 
complex K with this property we can form the oriented chain complex 

C*(K9 G) := C*(K, G)/C*(K- K, G\ 

defined as the quotient of the oriented chain complexes [7, 4.1] of the 
closed simplicial complexes K, K — K (G an abelian group). 

REMARK. The generators of Cn(K(X), G) are in one-to-one correspond
ance with the open «-simplices of the geometric complex X. For any 
open w-simplex a the boundary da is the alternate sum of all oriented 
open (n — l)-dimensional faces of a which belong to X, i.e., da is obtained 
from the classical boundary chain just by omitting all faces which are not 
contained in X. 

DEFINITION 2. Hn(M, G) ••= Hn(C*(K(X), G)) is called the w-th homology 
group of M with closed support and coefficients in G. 

The homology groups of M9 defined in [4] and [6] as the homology 
groups of the largest subcomplex ÄX300 of K(X) which is closed, are now 
more precisely called the homology groups with complete support and 
denoted by Hc

n(M, G). 
Notice that the choice of a triangulation <p: X ^ M means, among 

other things, that we have chosen a "completion" M of M, namely M = 
X. By definition, Hn(M, G) = Hc

n(M9 M - M, G). The latter group does 
not depend on the triangulation of M, M [4]. But, since different triangu
lations lead, in general, to different completions of M9 it is a non trivial 
question whether Hn(M9 G) is independent on the triangulation of M. 
This is indeed true and can be proved using the homotopy axiom for 
semialgebraic cohomology with complete support. 

Homology with closed support is functorial under proper semialgebraic 
maps. It has all the properties of Borel-Moore-homology. This can be 
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verified using easy "simplicial arguments". In the case R = R it coincides 
with Borel-Moore-homology. 

Let U be an open semialgebraic subset of M and A ••= M\U. There is a 
canonical restriction map 

H*(M, G)JL>H*(JJ, G). 

If we triangulate M and U simultaneously, then r is induced by "for
getting" the simplices outside of U. A short look at the simplices proves 
the following proposition. 

PROPOSITION 1. There is a canonical exact sequence 

• HH(A, G) - Hn(M, G) JL. HH(U, G) -> Hn_x{A, G) - • • • • 

Assume now that M is a connected «-dimensional semialgebraic mani
fold over R. 

PROPOSITION 2. Hn(M, Z/2) = Z/2-z s Z/2. 

Here, z is the cycle represented by the sum of «-simplices of M. For M 
orientable, Proposition 2 is also true with Z/2 replaced by Z. 

THEOREM 3. (see [1] for JR = R, [6] for the complete case). Let V be an 
n-dimensional algebraic variety over R. Then the space V(R) of real points 
of V has a fundamental class mod 2, i.e., there exists a {uniquely determined) 
homology class z e Hn(V(R), Z/2) whose restriction z\M to every component 
M of Vreg(R) generates H„(M, Z/2). 

The proof is easy. We immediately reduce to the case V irreducible. 
Let U := Vreg(R) and A ••= Vsing(R) = V(R)\U. If dimFs/JW ^ n - 2, 
then the exact sequence in Proposition 1 shows that Hn(V(R), Z/2) c* 
Hn(U, Z/2). In general, let %\ V -> V be the normalization of V and z' 
be the fundamental class of V\K). TCR = 7Ü\V\R): V'(R) -> V(R) is proper 
and the image z of z' under 

fe)*: Hn(V\R\ Z/2) -> Hn(V(Rl Z/2) 

is the fundamental class of V(R). 
If Kis an «-dimensional variety over the algebraic closure C = R(^ — 1) 

of R, connected in the Zariski-topology, then similar arguments show 
that H2n(V(C)9 Z) is isomorphic to Z. It posesses a canonical generator z, 
the fundamental class, corresponding to the natural orientation of Vreg{C). 
Using a refinement of the classical simplicial proof of Poincaré-duality 
(with compact support) we can prove Poincaré-duality for semialgebraic 
manifolds over R and arbitrary support, without use of spectral sequences. 
Applying this result to Vreg(C) considered as a semialgebraic space over 
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R, we then can define the intersection multiplicities of algebraic cycles 
on a variety over any algebraically closed field of characteristic zero in a 
purely topological (i.e., semialgebraic) way (see [1] for the case C = C). 
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