RESEARCH ANNOUNCEMENT ON EXTENDING NASH FUNCTIONS OFF SINGULAR CURVES

GUSTAVE EFROYMSON

The general extension problem is: given sets $W \subset V$ and a function $f: W \to \mathbf{R}$, to find a function $g: V \to \mathbf{R}$ with g = f on V. We say g extends f. To make the problem interesting, we need restrictions on f and g. In our case we want f and g to be Nash. The most general extension theorem about Nash functions doesn't quite fit the above description.

THEOREM [2] Let V be a Nash variety in \mathbb{R}^n (i.e., $V = h^{-1}(0)$ for a Nash function $h: \mathbb{R}^n \to \mathbb{R}$). Suppose U is an open neighborhood of V and f a Nash function $f: U \to \mathbb{R}$. Then there exists a Nash function g defined on \mathbb{R}^n with g = f on V.

Note we have to assume f is defined on a neighborhood of V to extend it. But from the above theorem it easily follows that

THEOREM. [2] If V is a non-singular variety in \mathbb{R}^n and $f: V \to \mathbb{R}$ is Nash then there exists $g: \mathbb{R}^n \to \mathbb{R}$ extending f.

At this point, it would be a good idea to say what we mean by a Nash function on a possibly singular variety. Recall first that if V is nonsingular, every point of V has a neighborhood which is essentially euclidean, and so the usual definition applies, i.e., f on V is Nash if f is analytic on V and f is algebraic. For a singular point of V, I don't know what an analytic function is, so I will define a globally algebraic function on V to be Nash at a point p of V if f has an analytic extension to some neighborhood of P in \mathbb{R}^n .

QUESTION. Can you always extend a Nash function $f: V \to \mathbb{R}$ to $g: \mathbb{R}^n \to \mathbb{R}$ where V is a possibly singular variety?

ANSWER. No. For example there is a Nash function on the Whitney umbrella $(x^2 + y^2)z = x^3$, which can't be extended.

I think the problem with the Whitney umbrella is that it is not coherent [4]. Since curves are always coherent, they are a good starting place for proving an extension result.

THEOREM 1. Let V be a Nash curve, $V \subset \mathbb{R}^n$, and f a Nash function $V \to \mathbb{R}$. Then f can be extended to \mathbb{R}^n .

We will sketch the proof in the planar case; the general case is similar. So let q(x, y) = 0 be the equation of the Nash curve and p(x, y) = 0 be the equation of the polynomial so that $V_q \subset V_p$. Let $f: V \to \mathbf{R}$ be a Nash function as defined above. By [1], there exists a Nash transformation of \mathbf{R}^r so that in the transformed plane, $p = \prod (z - \alpha_i(x))$ with the following properties:

- 1) All singular points (a, b) of p = 0, with a real, lie on the y axis.
- 2) If $p(a, b) = \partial p / \partial y(a, b) = 0$, a, b real, $a \neq 0$, then $\partial p / \partial y(a, b) \neq 0$.
- 3) If $\partial p/\partial y(a, b) = 0$, p(a, b) = 0, $a \neq 0$, a real, then b is real also.

LEMMA. The function f has an extension to that part of $V_{\mathbf{C}}$ which lies along the $\alpha_i(x)$.

PROOF. This follows from above by analytic continuation, since the only points where the $\alpha_i(x)$ meet away from x = 0 are at real points.

We now wish to construct a function, $r(x, y) = \sum_{i=0}^{d-1} \beta_i(x)y^i$, d = degree of q. We want r(x, y) = f(x, y) along $y = \alpha_i(x)$, and the $\beta_i(x)$ should be Nash functions. Then it will be clear that r(x, y) will extend f to \mathbb{R}^2 . We take x real, but $\alpha_i(x)$ can be complex.

The idea is to write $f(x, y) = \sum_{i=0}^{d-1} \beta_i(x)y^i$. Then $f(x, \alpha_j(x)) = \sum_{i=0}^{d-1} \beta_i(x)\alpha_j(x)^i$, $j = 1, \ldots, d$ gives d linear equations in d unknowns, $\beta_0, \ldots, \beta_{d-i}$, which we can solve, but we must show that the $\beta_i(x)$ are Nash functions. Using Cramer's rule, we set as denominator for the β_i , $\prod_{i < j} (\alpha_i - \alpha_j)$ which is 0 only at multiple points of q and so otherwise is analytic. So we must look at each point above x = 0 where we have a singularity. Let $P = (0, y_0)$ be a singular point of V. Then let $\alpha_1(x), \ldots, \alpha_e(x)$ be the α_i for which $\alpha_i(0) = y_0$. Then, by essentially the residue theorem of complex variables, it follows as in [3, p. 167] that all symmetric functions $s_k(\alpha_1, \ldots, \alpha_e)$ are analytic and so Nash. We use the local power series for f(x, y) to represent f in terms of symmetric functions of the α_i , which we use to get analyticity of the part of Cramer's formula which comes from $\alpha_1, \ldots, \alpha_e$. Putting together the various factorizations at points $(0, y_i)$, will give in a somewhat messy way a proof that all the $\beta_i(x)$ are Nash.

REFERENCES

1. G. Efroymson, Nash Rings on Planar Domains, T.A.M.S. 249 (1979), 435-445.

2. ——, The Extension Theorem for Nash Functions, in Lecture Notes in Math. 959, 343–357.

3. R. Gunning and H. Rossi, *Analytic Functions of Several Complex Variables*, Prentice-Hall, Englewood Cliffs, 1965.

4. A. Tognoli, *Algebraic Functions and Nash Functions*, Academic Press, New York, 1978.