THE CENTRALIZER OF THE LAGUERRE POLYNOMIAL SET

N.A. AL-SALAM AND W.A. AL-SALAM

1. Introduction. By a polynomial set (p.s.) we mean a sequence \(P = \{P_0(x), P_1(x), P_2(x), \ldots \} \) of polynomials in which \(P_0(x) \neq 0 \) and \(P_n(x) \) is of exact degree \(n \). In this work we shall be interested in sets (or classes) whose elements are themselves polynomial sets. This point of view is not new. Appell [2] considered the class \(\mathcal{A} \) of Appell polynomials \(A = \{A_n(x)\} \) whose generating function is

\[
A(t) = \sum_{n=0}^{\infty} A_n(x) \frac{t^n}{n!}.
\]

The Sheffer class \(\mathcal{S} \) [6] is the class of all p.s. \(S = \{S_n(x)\} \) for which

\[
A(t) e^{xH(t)} = \sum_{n=0}^{\infty} S_n(x) \frac{t^n}{n!}.
\]

Similarly the Boas-Buck class \(\mathcal{B} \) consists of all p.s. \(B \) for which [3]

\[
A(t) \Phi(xH(t)) = \sum_{n=0}^{\infty} \phi_n B_n(x) t^n,
\]

where in these formulas \(A(t), H(t) \) and \(\Phi(t) \) are formal power series such that \(A(0) \neq 0, H(0) = 0 \) but \(H'(0) \neq 0 \), and \(\Phi(t) = \phi_0 + \phi_1 t + \phi_2 t^2 + \cdots \) with \(\phi_k \neq 0 \) for all \(k \geq 0 \). (1.1) is obtained when \(H(t) = t \) and \(\Phi(t) = e^t \).

Many of the well known p.s. are included in one or more of the above classes. For example, the Hermite p.s. is in \(\mathcal{A} \) as well as in \(\mathcal{S} \). The Laguerre p.s. \(L(\alpha) \) is in \(\mathcal{S} \). Other examples are the Abel, the Meixner, the Bernoulli, and the Boole polynomial sets.

Appell [2], Sheffer [6] as well as Rota, Kahaner and Odlysko [5] (see also [4]) gave sets of polynomials (\(\mathcal{A} \) in [2], \(\mathcal{S} \) in [4], [5], [6]) an algebraic structure by defining multiplication in the following manner.

Let \(P = \{P_n(x)\} \) and \(Q = \{Q_n(x)\} \) be two elements of the set under consideration. Let, furthermore, \(P_n(x) = \sum_{k=0}^{n} p_{nk} x^k \) and \(Q_n(x) = \sum_{k=0}^{n} q_{nk} x^k \) where \(p_{nk}, q_{nk} \) are functions of \(n \) and \(k \) respectively. The product of \(P \) and \(Q \) is defined by

\[
P \ast Q = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} p_{nk} q_{nk} \right) x^n.
\]

Received by the editors on June 15, 1983.

Copyright © 1984 Rocky Mountain Mathematics Consortium

713
\[\sum_{k=0}^{n} q_{nk}x^k \] for all \(n \). Then the (umbral) product \(R \equiv PQ \) is defined as the p.s. for which
\[R_n(x) = P_n(Q) = \sum_{k=0}^{n} p_{nk}Q_k(x) \quad n = 0, 1, 2, \ldots . \]

It is clear that \(\pi \), the set of all p.s., with this multiplication is a group (non-commutative) in which the identity is \(I = \{ x^n, n = 0, 1, 2, \ldots \} \).

In [1] the present authors characterized the centralizer, \(C_{\pi}(L(\alpha)) \), of the Laguerre p.s. in the Boas-Buck group \(B \).

If we recall that \(B \subset \pi \) it becomes natural to characterize elements of \(C_{\pi}(L(\alpha)) \) the centralizer of \(L(\alpha) \) in \(\pi \).

As we shall see that, perhaps due to the fact that \(\pi \) lacks the nice structure that \(B \) has, this problem is somewhat more difficult than the problem considered in [1]. To our surprise the Euler numbers and polynomials played a prominent role in the solution (which did not arise in [1]).

2. Preliminaries. Let us recall the Euler polynomials

\[\frac{2}{e^t + 1} e^{xt} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!} \]

and the related tangent numbers \(C_0 = 1 \) and

\[\tanh t = -\sum_{n=1}^{\infty} C_n \frac{t^n}{n!} \]

so that \(C_{2n} = 0 \) if \(n > 0 \) and \(C_{2n+1} = 2^{2n+1} E_{2n+1}(0) \). We shall abbreviate \(C_{2n+1}/2^{2n+1} \) by \((-1)^{n-1} \alpha_n \) \((n = 0, 1, 2, \ldots) \).

It follows that in term of the Bernoulli numbers we have \(C_n = 1 + 2^n(1 - 2^n)B_n/n \quad (n \geq 1) \), and that

\[(2.3) \quad C_n + (2 + C)^n = \begin{cases} 0 & (n > 0) \\ 2 & (n = 0), \end{cases} \]

and

\[(2.4) \quad x^n = \frac{1}{2} \{ E_n(x + 1) + E_n(x) \}. \]

In (2.3) \((2 + C)^n\) is to be expanded by the binomial theorem and \(C^k \) be replaced by \(C_k \).

In this work we shall need the following lemmas:

Lemma 1. We have for \(N = 1, 2, 3, \ldots \)

\[\alpha_N = -\frac{1}{2} \left[1 + \sum_{j=0}^{N-1} (-1)^{j-1} \alpha_j \binom{2N + 1}{2j + 1} \right], \]

\[(2.5) \quad -1 = \sum_{j=0}^{N-1} (-1)^{j-1} \alpha_j \binom{2N}{2j + 1}. \]
These formulas follow from (2.3) with \(n = 2N + 1 \) and \(n = 2N \) respectively.

Lemma 2. For \(0 \leq r \leq 2m + 1 \) we have

\[
-\frac{1}{2} \sum_{k \geq 0} \left\{ (-1)^k \binom{2m + 1 - r}{k} + \binom{r}{k} \right\} \frac{C_{2m+1-k}}{2^{2m+1-k}} = \delta_{0r}.
\]

Lemma 3. For \(0 \leq r \leq 2m \) we have

\[
\sum_{k \geq 0} \left\{ \binom{r}{2k + 1} - \binom{2m - r}{2k + 1} \right\} \frac{C_{2m-2k-1}}{2^{2m-2k-1}} = \delta_{0r}.
\]

To prove (2.6) and (2.7) let \(f(x) \) be the polynomial defined by

\[f(x) = x^r(x - 1)^{m-r} \quad (0 \leq r \leq m). \]

Then

\[f(x) + f(x + 1) = \sum_{k \geq 0} \left\{ (-1)^k \binom{m - r}{k} + \binom{r}{k} \right\} x^{m-k}. \]

This, using (2.4), gives

\[f(x) + f(x + 1) = \frac{1}{2} \sum_{k \geq 0} \left\{ (-1)^k \binom{m - r}{k} + \binom{r}{k} \right\} \left[E_{m-k}(x) + E_{m-k}(x + 1) \right]. \]

But if \(g(x) \) is a polynomial such that \(g(x) + g(x + 1) \equiv 0 \) then \(g(x) \equiv 0 \). Hence we get

\[f(x) \equiv \frac{1}{2} \sum_{k \geq 0} \left\{ (-1)^k \binom{m - r}{k} + \binom{r}{k} \right\} E_{m-k}(x). \]

Now putting \(m \) even or odd and \(x = 0 \) we get either (2.7) or (2.6).

3. The Centralizer \(C_\pi(L^{(\alpha)}) \). Let \(P = \{P_n(x)\} \) be an arbitrary p.s. in \(\pi \) and write for \(n = 0, 1, 2, \ldots \)

\[
P_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{(1 + \alpha)_n}{(1 + \alpha)_k} p_{n,k} x^k \quad (p_{n,n} = \beta_n \neq 0).
\]

Let \(L = \{L_n^{(\alpha)}(x)\} \) be the Laguerre p.s. defined by

\[
L_n^{(\alpha)}(x) = \sum_{k=0}^n \binom{n}{k} \frac{(1 + \alpha)_n}{(1 + \alpha)_k} (-x)^k, \quad n = 0, 1, 2, \ldots .
\]

Our problem is, therefore, to determine \(p_{n,k} \) in (3.1) so that \(PL = LP \).

In this section we prove our main theorem, shown here.

Theorem. A p.s. \(P \in C_\pi(L^{(\alpha)}) \) if and only if

(a) \[p_{n,n-2m-1} = \sum_{f=0}^m \frac{C_{2f+1}}{2^{2f+1}} \binom{2m + 1}{2f + 1} \nabla^{2f+1} p_{n,n-2m+2f} \]
and
(b) \(p_{n,n-2k} \) are arbitrary with \(p_{n,n} \neq 0 \).

Here \(\nabla \) is the backward difference operator acting on \(n \): \(\nabla f(n) = f(n) - f(n - 1) \).

Proof. We first note that \(PL = LP \) is equivalent to requiring that for \(j = 0, 1, 2, \ldots, n \) and \(n \geq 0 \) we have

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} p_{k,n} = \sum_{k=0}^{n} (-1)^k \binom{n}{k} p_{n,k}.
\]

(3.3)

We next see that by putting \(j = n, n - 1, \) etc. in (3.3) we get that \(p_{n,n} \) is arbitrary, that \(p_{n,n-1} = -(1/2)(\beta_n - \beta_{n-1}) \) for \(n = 1, 2, 3, \ldots \) so that (3.3) determines uniquely \(p_{n,n-2m-1} \), and that \(p_{n,n-2m} \) remains arbitrary.

To find the general solution of (3.3) we note that (3.3) can be rewritten in the form

\[
\sum_{k=0}^{s} (-1)^k \binom{s}{k} p_{n+k-s,n-s} = \sum_{k=0}^{s} \binom{s}{k} p_{n,n-k} \quad (0 \leq s \leq n)
\]

which implies, for \(s = 2m \) \((m = 1, 2, \cdots) \),

\[
\sum_{k=0}^{m} \binom{2m}{2k} \{p_{n-2m+2k,n-2m} - p_{n,n-2k}\} = \sum_{k=0}^{m} \binom{2m}{2k+1} \{p_{n-2m+2k+1,n-2m} + p_{n,n-2k-1}\}.
\]

(3.4)

and for \(s = 2m + 1 \),

\[
2p_{n,n-2m-1} = \sum_{k=0}^{m} \binom{2m+1}{2k} \{p_{n-2m+2k-1,n-2m-1} - p_{n,n-2k}\}
\]

(3.5)

We now show that (3.4) and (3.5) are satisfied if \(p_{n,n-2m} \) are arbitrary and

\[
p_{n,n-2m-1} = \sum_{j=0}^{m} (-1)^{j-1} \alpha_j \binom{2m+1}{2j+1} \nabla^{2j+1} p_{n,n-2m+2j}.
\]

(3.6)

Indeed if we substitute (3.6) in the right hand side (RHS) of (3.4) we get

\[
\text{RHS} = \sum_{k=0}^{m} \binom{2m}{2k+1} \sum_{j=0}^{k} (-1)^{j-1} \alpha_j \binom{2k+1}{2j+1}
\]

\[
\{\nabla^{2j+1} p_{n-2m+2k+1,n-2m+2j+1} + \nabla^{2j+1} p_{n,n-2k+2j}\}.
\]

(3.7)

Since \(\nabla^{2j+1} f(n) = \sum_{r=0}^{j+1} (-1)^{r} \binom{2j+1}{r} f(n-r) \) then the above expression (3.7) is a sum of terms of the form \(p_{n-\mu,n-\mu-2k} \). To show that (3.6) satisfies
(3.4) we must show that the coefficient of $P_{n-\mu,n-\mu-2k}$ is $-\binom{2m}{\mu}$ if $\mu = 0$, is $\binom{2m}{\mu}$ if $\mu = 2m - 2k$ and is zero if $\mu \neq 0$ or $\mu \neq 2m - 2k$.

For example in the latter case, the coefficient of $P_{n-\mu,n-\mu-2k}$ in (3.7) is a multiple of

$$\sum_{j=0}^{m-k-1} (-1)^{j-1} \alpha_f \left(\binom{2m-2k}{\mu} - \binom{2m-2k-2j}{\mu} \right)$$

which is zero by Lemma 3.

Similarly $\mu = 0$ and $\mu = 2m - 2k$ follows from Lemma 1.

Formula (3.5) can be seen to be satisfied by (3.6). This time we need to use Lemmas 1 and 2 and also we must show that that coefficient of $P_{n-\mu,n-\mu-2k}$ is

$$\sum_{j=0}^{m-k-1} \left[\binom{2m-2k+1-\mu}{2m-2k-2j} + \binom{2m-2k-2j}{\mu} \right] \alpha_f (-1)^{j-1} = 0.$$

This formula is a consequence of Lemma 2. This finishes the proof of the main theorem.

Formula 3.6 can be written operationally using the Euler polynomials $E_n(x)$. To do this let $\eta f(n, m) = f(n - 1, m)$ and $\mu f(n, m) = f(n, m - 1)$ so that $\nabla f(n, n) = (1 - \eta \mu) f(n, n).$ We get

$$P_{n,n-2m-1} = (1 - \eta \mu)^{2m+1} E_{2m+1} \left(\frac{\mu}{1 - \eta \mu} \right) \beta_n.$$

where we have again written $\beta_n = p_{n,n}$.

4. Special Cases. (a) $L^{(\alpha)}$ commutes with itself. This case follows when $P_{n,n-k} = (-1)^{n-k}$. Formula (3.6) can be seen to be satisfied since it implies that

$$P_{n,n-2m-1} = (-1)^n \{(1 + C)^{2m+1} - 1\} = (-1)^{n-1}.$$

This is easily seen because $(1 + C)^{2m+1} = 0$ for $m = 0, 1, 2, \cdots$.

(b) Let $\beta_n = p_{n,n} = n + \alpha$ and let $p_{n,n-2k} = 0$ for $k > 0$. Then easy calculations show that

$$P_n(x) = (n + \alpha)x^n - \frac{1}{2} n(n + \alpha)x_{n-1}.$$

The commutativity implies the known recurrence formula for the Laguerre polynomials $L_n^{(\alpha)}(x) - n L_{n-1}^{(\alpha)}(x) = L_n^{(\alpha - 1)}(x)$. The polynomial set $\{P_n(x)\}$ is not of the Boas-Buck type.

(c) The “symmetric subgroup” Σ. A p.s. P is said to be symmetric if $P_n(-x) = (-1)^n P_n(x)$. It is easy to argue that the class of all symmetric p.s. Σ with umbral composition forms a subgroup of π. We ask the question, what are the elements of $C_{\Sigma}(L^{(\alpha)})$?
To answer this question we note first that \(P \in \sum \Rightarrow p_{n,n-2m-1} = 0 \) for \(m = 0, 1, \ldots, \lceil n-1/2 \rceil \).

Putting \(m = 0 \) in (3.6) shows that \(p_{n,n} \) is independent of \(n \). It now follows by induction on \(m \) that \(p_{n,n-2m} = \gamma_{2m} \) is independent of \(n \). Thus such polynomial sets are given by

\[
P_{n}^{(r)}(x) = \sum_{k \geq 0} \binom{n}{2k} \frac{(1 + \alpha)_n}{(1 + \alpha)_{n-2k}} \gamma_{2k} x^{n-2k}.
\]

Furthermore one can easily show that \(P_{n}^{(r)}(P^{(u)}) = P_{n}^{(u)}(P^{(r)}) = P_{n}^{(\omega)}(x) \) where \(\delta_{2n}/(2n)! = \sum_k \binom{2k}{k} \mu_{2k} \gamma_{2n-2k} \) so that we have the following result.

Theorem. \(C_\pi(L^{(\alpha)}) \) is a commutative subgroup of \(C_\pi(L^{(\alpha)}) \).

We also remark that elements of \(C_\pi(L^{(\alpha)}) \) are related to Brenke polynomials since we can show that

\[
\sum_{n=0}^{\infty} \frac{t^n}{n!(1 + \alpha)_n} P_{n}^{(r)}(x) = \left(\sum_{n=0}^{\infty} \gamma_{2n} \frac{t^n}{(2n)!} \right) \cdot 0F_1(-; 1 + \alpha; xt)
\]

where \(0F_1(-; 1 + \alpha; u) = \sum_{n=0}^{\infty} u^n/(1 + \alpha)_n \).

The case \(r = \{1\} \) gives \(P_{n}^{(1)}(x) = 1/2\{(-1)^n L_n^{(\alpha)}(x) + L_n^{(\alpha)}(-x)\} \).

(d) As remarked earlier Appell showed that \(\mathcal{A} \) is a subgroup of \(\pi \). To determine \(C_{\mathcal{A}}(L) \) we see that if \(P \in \mathcal{A} \) then \(P_n(x) = \sum (\xi) a_n x^k \). Hence \(p_{n,n-k} = (1 + \alpha)_{n-k}/(1 + \alpha) a_k \) where \(a_k \) is independent of \(n \). Since \(n, n-2k \) are arbitrary so are \(a_{2k} \). Using (3.6) we can show that

\[
a_{2m+1} = - (2m)! \sum_{k=0}^{m} \binom{2m + 1}{2k + 1} \frac{C_{2k+1}}{2^{2k+1}} \frac{(2m - k)}{(2m - k)!} a_{2m-2k}.
\]

We can also show that such p.s. are generated by

\[
e^{E(\log(1-t)+xt)} = \sum_{n=0}^{\infty} A_n(x) \frac{t^n}{n!}
\]

where \(E(t) \) is an arbitrary even function of \(t \).

References

The University of Alberta, Edmonton, Canada T6G 2G1