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A NOTE ON ORDER CONVERGENCE IN 
COMPLETE LATTICES 

H. DOBBERTIN, M. ERNÉ AND D. C. KENT 

ABSTRACT. Order convergence is studied in a complete lattice Lx 

which is the image of another complete lattice L under a complete 
homomorphism. The goal is to relate order convergence in L to 
that in Lx. For instance, we show that order convergence in Lx is 
pretopological if it is pretopological in L, while topological 
order convergence is in general not preserved under complete 
images. We conclude with some applications and examples. 

1. Complete homomorphisms and order convergence. Throughout this 
note, let L and Lx be complete lattices and suppose that <p\ L -> Lx is a 
surjective, complete homomorphism (i.e., cp(L) = Lx and <p preserves 
arbitrary sups and infs). The lower adjoint (p*: Lx -> L and the upper 
adjoint cp* : Lx -> L of cp are given by 

(p*(y) = inf{x e L: <p(x) = y}9 

<p*(y) = sup{x e L: cp(x) = y) 

The following facts are well-known (see, e.g., [3] or [6] for a general 
theory of adjoint pairs) : 

(i) <p*<p(x) ^ x and <p*<p(x) ^ x, xeL, 

00 <P9*(y) = y and w>*(y) = y, ye Ll9 

(iii) (p* preserves sups, and <p* preserves infs. 

We set [a) = {x e L: a ^ JC}, (b] = {x e L: x ^ b}9 and [a, b] = [a) f] 
(b], for all a, beL. Sets of this form are called intervals. For X ç L, 
[X = (J{(x]: xeL} denotes the lower set generated by X. 

A (set-theoretical) filter $ on L order converges to a point x e L, written 

x = inf{sup F: Fe 5} = supjinf F: Fe g}. 

By the order convergence O(L) of L we mean the set of all pairs (g, x) 
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with 5 ->LJC. In the order topology on L, closed sets are precisely those 
which contain all of their order-convergent limit points. It may also be 
characterized as the finest topology S o n i such that order convergence 
implies convergence with respect to %. If not stated otherwise, all topologi­
cal notions refer to the order topology. Note that a set U ^ L is open 
iff xeU and $ ~+LX implies Ue%. Another characterization of open 
sets has been given in [5]. 

PROPOSITION 1. A subset U of L is open if and only if for any up-directed 
set Y and any down-directed set Z with sup Y = inf Z e U, there are ele­
ments a e Yandb e Z such that the interval [a, b] is contained in U. 

Passing to complements, we see that any closed set is closed under 
up-directed sups and down-directed infs. For each xeL, ^8(x) denotes 
the intersection of all filters order converging to x; we refer to %$(x) as 
the pre-neighborhood filter of x. The neighborhood filter of x is denoted 
by tl(x). The order convergence of L is said to be pretopological (resp., 
topological) if each of the filters 3S(x) (resp., tt(*)) order converges to x. 
It is easy to see that order convergence is topological iff it agrees with 
convergence in the order topology, and in this case %$(x) — U(x) for all 
xeL. Conversely, if this equality holds and order convergence is pre­
topological then it is already topological. References [4, 5, 9, 10, 13] 
give further background information on order convergence in lattices 
via filters, including various conditions under which order convergence is 
pretopological or topological. 

For xeL, let I(x) denote the intersection of all ideals / ç L with 
sup I = x, and D(x) the intersection of all dual ideals D ^ L with 
inf D = x. The following results have been shown in [9]. 

PROPOSITION 2. The order convergence of L is pretopological if and only 
ifx = supl(x) = inf D(x), for all xeL. In this case, the intervals [a, b] 
with a e I(x) and b e D(x) form a base for the pre-neighborhood filter SS(x). 

Hence O(L) is topological iff it is pretopological and the interior of the 
intervals [a, b] with a e I(x) and b e D(x) always contains the point x, 

The existence of a complete lattice with pretopological but not topologi­
cal order convergence has already been mentioned in [9]. However, the 
given example has to be modified slightly to ensure pretopological order 
convergence also at the greatest element. 

EXAMPLE 1. The following subset of the real unit square 

L = {(*, y) e [0, 1]2: x + y ^ 1 or x = y = 1}, 

partially ordered componentwise, is a complete lattice with pretopological 
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order convergence (as can easily be checked with the help of Proposition 
2). But the pre-neighborhood filters of the points (0, 1) and (1, 0) differ 
from the topological neighborhood filters, whence O(L) cannot be topo­
logical. 

EXAMPLE 2. Another complete lattice with pretopological but not 
topological order convergence is this. 

1 

o 

X (J I 

: : ? 
• o I 
o J o 
I T 

\ 

Here the interval [x) has empty interior, although x e 1(1). 

Recall that L is meet-continuous if the identity x A sup / = sup(x A /) 
holds for every x e L and every ideal / of L. L is bicontinuous if L and 
its dual are meet-continuous. As shown in [4], O(L) is in fact topological if 
0(L) is pretopological and L is bicontinuous. Further, L and its dual are 
continuous in the sense of Scott (see [6]) iff L is bicontinuous and O(L) 
is (pre)topological. These lattices have been called order-topological in [4]. 

PROPOSITION 3. A map between complete lattices is isotone and continuous 
if and only if it preserves up-directed sups and down-directed infs. In parti­
cular, the continuous lattice homomorphisms are precisely the complete 
homomorphisms. 

PROOF. Let ^ : L -• Lx be isotone and continuous, and consider an 
up-directed subset X of L. Setting y = sup <p(X), we know that the inverse 
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image A = ^((y]) is closed, and cjj{x) ^ y for ail x e X, i.e., X ^ A. 
Hence, by Proposition 1, sup Xe A, and this means 0(sup X) ^ y = 
sup (j)ÇX). On the other hand, we have sup (J){X) ^ ^(sup X) because <J) 
is isotone. Thus ^ preserves up-directed sups, and by duality, it also pre­
serves down-directed infs. Conversely, if this is true then $ is certainly 
isotone. Further, let V ^ Lx be open. We have to show that U = (]rl(V) 
is open. In view of Proposition 1, we consider an up-directed set Y e L 
and a down-directed set Z ç L with x = sup y = inf Z e £/. Then <p{ Y) 
is up-directed, 0(Z) is down directed, and </>(x) = sup 0(y) = inf (J){Z). 
Hence we find a e Y and 6 e Z such that [0(<z), </>(b)] is contained in K 
But then [a, b] £ ^ ( [ ^ O ) , #*)]) £ 0_1(*O = U. This proves £/ open. 

Of course, a continuous map between complete lattices need not be 
isotone. For example, every map between two finite lattices is continuous 
because the order topologies are discrete. 

As an application of Proposition 3, we note that L is meet-continuous 
iff each local meet-function pa : x -> a A x is continuous. 

2. Which convergence properties are preserved by complete homomor-
phisms? The order convergence on L is a limitierung (that is, $i -+Lx 
and $2 ->L x always implies gi f| |Ç2 ->L x) iff for all ideals 7l5 72 of L with 
sup /x = sup 72 = x, we have sup (Ji fl ^ ) = *> and dually (see [5]). This 
criterion is used to prove the next proposition. 

PROPOSITION 4. If the order convergence on L is a limitierung then so is 
the order convergence on Lx. 

PROOF. Assume that O(L) is a limitierung, and let sup J1 = sup J2 = y 
for ideals Jl9 J2 of Lx. Then Ix = j#>*(/i) and I2 = i^)*(^2) a r e ideals of 
L with p*(j>) = sup Ix = sup /2>

 a n d it follows that s u p ^ fl J2) = 

sup ^(/j n h) = ^(sup(/i n 2̂)) = w>*(y) = ^ 
PROPOSITION 5. if L has pretopological order convergence then so has Lx. 

The proof is essentially the same as for Proposition 4. Alternatively, 
one may apply the following lemma in connection with Proposition 2: 

LEMMA 6. For all y e Lh I(y) = <p(I(<p*(y))) and D(y) = <p(D(<p*{y))). 

PROOF. In order to prove the inclusion I(y) ç= <p(I(<p*(y)))9 consider an 
element z e I(y) and an ideal I of L with sup I = <p*(y). As y preserves 
sups, we have y = <fxp*(y) = sup cp(I), and (p(I) is easily seen to be an 
ideal of Lv Thus z e cp(I) and so <p*(z) e I. This shows <p*(z) e I(<p*(y))9 

whence z = pp*(z) e <p(I)<p*(y))). Conversely, let x e I(<p*(y)) and 
sup / = y for some ideal / ç Lx. Then p*(j>) = sup (p*(J), hence there 
exists z e /wi th * <; p*(z), and therefore p(x) ^ z, i.e. p(x) G / . 
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Notice that the order-topological lattices are precisely the images of 
bicompactly generated lattices under complete homomorphisms (cf. [6; 
1-4. 16]). In a bicompactly generated lattice L, the neighborhood filter 
Vi(x) has a base consisting of all intervals [a, b] which contain x, where a 
is compact and b is cocompact (see [5] and [10]). Hence from Lemma 6, 
we infer the following fact: 

PROPOSITION 1. If L is bicompactly generated then Lx has topological 
order convergence\ and a base for the neighborhood filter ofy e L\ is formed 
by the intervals [<p(a), <p(b)] with compact a ^ <p*(y) and cocompact b ^ 

In case that L is bicontinuous, Proposition 5 states that a complete 
image of an order-topological lattice is again order-topological (cf. [6; 
1-2.14]). 

Since a smooth lattice-theoretical characterization of topological order 
convergence seems to be impossible, one might expect that this property 
is not preserved under complete homomorphisms. Indeed, a closer ex­
amination leads to the following counterexample. 

EXAMPLE 3. Consider the complete lattices L, Lx and the complete 
homomorphism <p as defined by the diagram below (where <p(at) = (p(bt) = 
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It is a routine matter to verify that 0(L) is topological. However, 0(L{) 
is not topological, since cQ is not an element of the interior of [c0) but 
co e I(c0). 

3. Concluding remarks. The preceding considerations apply to the fol­
lowing situation : Let L0 be a subset of a complete lattice L which contains 
the least element of L, and assume that 

(Cj) For any subset A of L0, the sup of A in L belongs to L0. 
(C2) The map </>: L -> L0, x -> x0 = sup{>> 6 L 0 : j ; ^ x } preserves 

arbitrary sups. 
Condition (Cx) means that L0 is a complete lattice in its own right and 

arbitrary sups in L0 coincide with those formed in L. Condition (C2) 
ensures that $ is a complete homomorphism from L onto L0. The lower 
adjoint (j>* is simply the inclusion map from L0 into L, while the upper 
adjoint has to be defined according to §1. On the other hand, every 
complete image Lx of L is isomorphic to a substructure L0 of this kind. 
Indeed, if <p: L -• Lx is a surjective, complete homomorphism then the 
lower adjoint (p* induces an isomorphism between Lx and a subset L0 of 
L satisfying (C{) and (C2). The corresponding map ^ is given by <j>(x) = 
<p*<p(x) (x e L). 

In a complete Boolean lattice L, the conditions (C{) and (C2) are very 
strong. In fact, the only subsets LQ of L satisfying (Q) and (C2) are the 
principal ideals. More generally, we can show the following result for a 
surjective, complete homomorphism <p: L -» Lx. 

PROPOSITION 8. If L is modular and complemented then the adjoints 
<p* and (p* are complete homomorphisms satisfying 

<P*(y) = <p*(y) A p*(i), 

<P*(y) = P * W v p*(0) 

(y e A). 
Furthermore, cp* induces an isomorphism between Lx and the principal 

ideal (<p*(l)], while cp* induces an isomorphism between Lx and the principal 
dual ideal [<p*(0)). 

PROOF. We claim that <p*<p(x) = x v <p*(0) (x e L). Let x' be a com­
plement of x. Then <p*<p(x) A x' ^ p*p(x) A #>*#>(*') = <p*<p(x A x') = 
p*(0), and applying modularity we get <p*<p(x) = <p*<p(x) A (x' V x) = 
(p*p(*) A x') v x ^ ^>*(0) v x (since x ^ <p*<p(x)). The other inequality 
is obvious. Now, setting x = <p*(y), we obtain >> = <p(x) and #)*(» = 
P*O0 V <p*(0). As p* preserves sups, the same holds for p*. Finally, 
p*(Li) = <p*(p(L) = L v p*(0) = fy>*(0)). The remaining assertions follow 
by duality. 
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We know that any complete homomorphism <p is continuous. A related 
question is: when is <p open, closed or at least a quotient map? These 
problems will be discussed in a forthcoming note, but a few simple re­
marks should be added already at this point. 

Call a map / between topological spaces X and Y pseudo-open if, 
given y e/(x) and a neighborhood U of/-1(>>), the image f(U) is a neigh­
borhood of y. Notice that every open and every surjective closed map 
is pseudo-open, and that pseudo-open continuous surjections are already 
quotient maps. Furthermore, if there exists a continuous g: Y -+ X with 
fg = idY then it is easy to see that / is pseudo-open. In particular, if #>* or (p* 
is continuous then cp is pseudo-open. But in view of Proposition 3, the 
upper adjoint cp* is continuous iff it preserves up-directed sups. (This is 
certainly the case if <p*(y) — sup <p*(I(y)) for y e Lv In the presence of 
pretopological 0(L{)9 both conditions are equivalent.) Hence we have 
the following consequence of Proposition 8 which applies in particular 
to Boolean lattices. 

COROLLARY 9. If L is complemented and modular then tp is pseudo-open. 

We conclude with two examples. 

EXAMPLE 4. Associated with any uniform space (5, II) are two complete 
lattices which are called, respectively, the scale P and the retracted scale 
P0 of (S, II). These concepts were introduced by D. Bushaw in 1967 and 
have various applications as diverse as topological dynamics and gener­
alized metrization (see [1] and [2]). The scale is a subcomplete lattice of 
an atomic Boolean algebra, while the retracted scale is a sublattice satisfy­
ing (Ci) and (C2) (but not a subcomplete lattice) of the scale. However, 
PQ is completely distributive, being the image of P under a complete 
homomorphism. Such lattices are order-topological and have compact 
T2 order topologies (cf. [12]). Therefore every complete homomorphism 
defined on a completely distributive lattice is not only continuous, but 
also closed onto its image. In particular, this holds for the retraction from 
P onto PQ. Proposition 6 provides an explicit description of the neigh­
borhood filters for the order topology of P0 in terms of that for P. These 
results turn out to have interesting applications in the study of topological 
compactifications which will be published elsewhere. 

EXAMPLE 5. Starting with an uncountable set S, let <£(S) be the set of 
all convergence structures on S, and let &~(S) be the set of all topologies 
on S. (A convergence structure is called a "localized convergence rela­
tion" in [5]). Every topology can be considered as a special case of a 
convergence structure, and so &~(S) can be regarded as a subset of &(S) ; 
furthermore, the usual order relations on these sets are mutually com­
patible. Indeed, relative to their usual order relations, ^(S) is a subcom-



654 H. DOBBERTIN, M. ERNÉ AND D. C. KENT 

plete lattice of an atomic Boolean algebra, and ^{S) is a complete lattice 
which satisfies our condition ( Q ) relative to ^{S). If q e <g(S), then q0 

(as defined in (C2)) is what is commonly called the topological modifica­
tion of q. Since order convergence in 3~(S) is not pretopological (cf. [10] 
and [11]), it follows from our Proposition 7 that the pair ^(S), ^(S) 
fails to satisfy (C2). In other words, the topological modification of the 
least upper bound of a set of convergence structures on S is not neces­
sarily the least upper bound of their topological modifications. 
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