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INDUCING LATTICE MAPS BY 
SEMILINEAR ISOMORPHISMS 

V.P. CAMILLO 

In this paper all modules are left modules and all module homomor-
phisms act on the right. Ring homomorphisms are written on the left. 

If M is a module, let L(M) denote the lattice of submodules of M. 
The Fundamental Theorem of Projective Geometry asserts that if D and 
AT are two division rings and X: L(D{3)) -> L(K(3)) is a lattice isomorphism 
between two three-dimensional free modules, then X is induced by a semi-
linear isomorphism. This means that there is an additive isomorphism 
L: D(3) -> K™ and a ring isomorphism a:D - K such that (X)L = X(X) 
for each X e L(D™) and (dV)L = a(d)(V)L for all V e D™ and deD. 
For convenience the phrase "lattice isomorphism X: A -> 5 " will be used 
to mean X: L(A) -> L(B) is a lattice isomorphism. 

There has been some interest in generalizing this theorem to larger 
classes of rings. We prove here: 

COROLLARY 6. Let n ^ 3. Let R be any one of the following: 
1) A serial ring (i.e., a finite product of rings, each of which has linearly 

ordered lattice of left ideals) ; 
2) A semiher editar y ring; or 
3) An integral domain (not assumed to be commutative). Let X: R{n) = 

2?=i ® Rik -* Sin) be a lattice isomorphism where the {ik} form a 
basis for R{n) and Sa « 5, with X(Rik) = Sa, for some k. Then X is 
induced by a semilinear isomorphism. 

We also show that if R is an artinian ring of composition length N and 
if n ;> N + 2, then any lattice isomorphism X: Rin) -+ S{n) which preserves 
cyclic submodules must be induced by a semilinear isomorphism. We 
actually need only that X preserves a small subset of the set of cyclic 
submodules of Rin). Note, since division rings have composition length 1, 
this generalizes the Fundamental Theorem. We also observe in the 
remarks before Lemma 1 that modulo lattice maps induced by certain 
kinds of projective modules, all such lattice maps preserve enough cyclic 
modules. 
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In fact, many attempts to generalize this theorem have been made. 
The results of this work seem to be of some interest, but they also seem 
to be not generally well known. For example, Stephenson [11] pointed 
out that von Neumann essentially proved in his Continuous Geometry 
[12] that for rings R and S and an integer n ^ 3, L(S(n)) » L(R(n)) if and 
only if Rn « Sn, where Rn is the ring of n x n matrices over R. Baer [2] 
extended the Fundamental Theorem of Projective Geometry to abelian 
groups and obtained results in which the groups need merely contain a 
free group (of rank 2, in fact) or an appropriate torsion group. Stephenson, 
in [11] and in his thesis [10], proved a very general theorem in which he 
showed that if M = T*?=\ ® M{ is a module with n ^ 3 and each M{ 

contains a copy of a module PR, and if there is a lattice isomorphism X : 
MR -> Ns then, letting Q = X(P) (this can be shown to be independent 
of the copy of P chosen), 7\ = End(P) « End(g) = T2. Let G be the 
isomorphism between End(P) and End(0 . Then there is a semi-
linear isomorphism (L, G): (Hom^P, MR)9 End^P)) » (Homs(g, Ns), 
Ends ( 0 ) . If we let M be a free module and let M{ « P « R, then the 
left side of the above is just R{n\ and we may ask if the semilinear map 
described actually induces X. It is clear that if X is induced by a semi-
linear map, then X must take cyclic submodules oï R{n) to cyclic sub-
modules of S(n). 

A result on when a lattice map is induced by a semilinear map was 
obtained by Stephenson-Skornyakov [11]. 

The following definition and Theorem may be found in Stephenson's 
thesis [10] and the result is a generalization of work in [9]. 

DEFINITION. (Stephenson-Skornyakov). Sx : For any x, y, ze M with 
Rx fi Ry = 0 there is a free element w in M such that (Rx + Ry) f] 
Rw = (Ry + Rz) H Rw = (Rx + Rz) f] Rw = 0. 

S2:lf t e M and u, x, y are free elements of M with (Ru + Rt) f] Rx = 
(Ru + Rt) fi Ry = 0 and Rx fl Ry * 0, Ru f] Rt ^ 0, then there is a 
free element we M such that Ru f] Rw = Rt f] Rw = Rx f] Rw = 
Ry f] Rw = 0. 

THEOREM (Stephenson). If M is a module satisfying S\ and S2 and if X : 
RM -> SN w a lattice isomorphism such that X(Ru) = Su' for two free ele­
ments u and u', then X is induced by a semilinear map. 

Now, the main thrust of the above work is that by suitably generalizing 
the Fundamental Theorem we can associate to every lattice map a semi-
linear map which we denote by (L, a). It is not in any way obvious however 
that (L, a) induces X. We need here some special properties of (L, a). 
Technically, it would be possible to refer the reader to Stephenson [11], 
but his construction is very general and would make understanding here 
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difficult. Therefore, we have made the first part of this paper expository, and 
written it, we hope, for maximum accessibility. Our ideas were first derived 
from [5] and were apparent in [11], but it is clear that the underlying idea 
is the same as the usual proof of the Fundamental Theorem, see [7], 

Now, projective modules induce lattice maps, and the theme here is 
that in going from fields to rings these are the only nonsemilinear maps 
one needs to be concerned with. Specifically, let RP be a finitely generated 
projective module, and let T be its endomorphism ring. 

The functor Hom(P, ) takes left A-modules to left T-modules. It is 
well known that this functor preserves lattices. In particular, if RRCn:> « 
P (m) , Hom(P, ) induces a lattice isomorphism between RRCn) and 
Hom(P, P{m))&TTim\ One should not in general expect this isomorphism 
to be semilinear. It is reasonable, however, to expect a lattice isomorphism 
to factor into a composition of a semilinear isomorphism and one induced 
by a projective module (actually the inverse of the above). Now, let R(n) 

and S(m) be free modules over rings R and S and let A be a lattice isomor­
phism. Then, by simple arguments below, S{m) = [X(R)](n). So X(R) is 
projective, say isomorphic to SP. If T = End (SP) then the functor 
Hom(RP, ) gives a lattice isomorphism S(m)) to Tin\ and the composi­
tion of the two takes R(n) to T{n) and takes the w-th coordinate of R(n) to 
the n-th coordinate of T{n) when the isomorphisms are constructed in the 
usual way (as below). It turns out that this composition preserves enough 
cyclic submodules to prove that it is semilinear in a large number of cases. 

In what follows, those not interested in this level of generality may 
assume U is a free module so that A = R. It cannot be assumed that 
B * S. 

LEMMA 1. Let X = A © B. Then A * B if and only if there is a D c X 
such that X=A®D = B®D. 

PROOF. If/: A -• B is an isomorphism, take D = A(\ — f). To prove 
sufficiency, l e t / b e the projection onto B along D, restricted to A. 

PROPOSITION 2. Let R and S be rings. Let RU = £g= 1 © Ak, n ;> 3, 
where Ak « A for some fixed A. Let SV be a left S module and suppose 
there is a lattice isomorphism X: RU -> SV. Then V decomposes into a sum 
V = 2jf=1 © Bk with À(Ak) = Bk, and all the Bk isomorphic to a fixed left 
S-module B. Further, for any set of isomorphisms {ik}, ik: A -> Ak9 there is 
a set of isomorphisms {ek: B -» Bk} and a ring isomorphism a: End A -* 
End B such that whenever X = A{fii + • • • + /„/,-) with some fk = 1, 

W = % ( / i ) ^ i + ••• +a(fn)en). 

In particular, End^É/) « End(sK). 

PROOF. We divide the proof into several steps. In what follows, F = 
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End(A), G = End(B). We note at the outset that for the {ik} and {ek}, 
Hom(^, £ / ) = £ © Fik and Hom(£, K) = £ 0 Gek. In what follows, 

fke F and gk^G always. 
1) Bk « B/ « 5. By one implication of Lemma 1, Ak ® A, = D ® 

Ak = D ® A, so that, applying X, Bk ® B, = X{D) ® Bk = X(D) ® B, 
and by the other implication of the lemma, Bk « B,. 

Let {,sÂ} be any set of isomorphisms from B to Bk. 
2) X = A(Ylfkh) with / / = 1 if a n d only if A' is a complement for 

E,*, e ^ = r. 
The condition is obviously sufficient. On the other hand, let / be the 

projection from U onto Y along X. Then, X = U{\ - f) = (.4/ © r ) 
(1 - / ) s o I = A,(l - / ) , since y(l - / ) = 0. But A/ = Ai, so X = 
^ 0 / ~ *//)> where /, ,/e Hom(^, 7). Thus /V/is a linear combination of 
the ik, / # / , so 2) is established. Notice also that 2) holds for B with 
the fk replaced by gk and the ik replaced by ek. 

3) Let X = A(T>fkh\ with some/ , = 1, then X{X) = £ ( I ] ^ ) , with 
* , = 1-

This follows because X is a complement for Txk*/ Ak if and only if X(X) 
is a complement for S * ^ ^ . Note we have not proved that for an arbi­
trary X = A(Zfkh\ UX) has the form B(Egkßh). 

4) The ek may be modified so that X A(i1 + ik) = B(e\ + ek)> To see 
this, note XA(ix 4- ik) is a complement for Be\ and 2?e* in itex + Bek by 
2) so that 

XA{ix + ik) = B(£l + gkek) = B(giei + £*)• 

We claim g ^ = gkgx = 1. To see this, let b e B, then there is a b' e B 
such that b{ex + gkek) = è'tei^i + £*), so foi = Vg^ubg^k = b'ek. Can­
celling the 5! and ek gives è = b'gi and &' = 6g*. So è = òg*gi and è' = 
b'gigk' Since we also can find 6, given b', this proves the claim. 

We now change the ek to gkek so that 4) is established. 
5) For each k > 1 there is a bijection ak: F -• G such that 

^O ' i + A ) = B(ei + <7,(/>*). 
For any / , XA(i1 + //Ä) = B(si + g£*) by 2). It is easy to see that 

# 0 i + g\ek) = B(ex + g2£*) if and only if gx = g2, so that the map ak(f) 
= g is well defined. Since the modules in question are exactly the comple­
ments of Aik in Aii + Aik (respectively Bek in Bei + Bek), and X is a lat­
tice isomorphism with XAik = ite*, # must also be one-to-one and onto. 

6) XA(ix + f2i2 + - - • + fjn) = B(e1 + a2(f2)£2 + • • • + aJLfM-
By 3), the right hand side of the above is of the form B(e1 + g2e2 + • • • 

+ gnen). But 

^ ( / i + / 2 / 2 + ••• +/„/„) 0 i4(2]/A) 
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= A(Ì! +ftik) e AiZUt)-
fri 

frk 

So, applying A, 
B(ei 4- g2e2 4- • • • + gnen) ® M Zftßt) 

fri 

= B{£l + ak{fk)£k) © MllUt)-
fri 
frk 

Therefore, if b e B, b(ex 4- g2e2 + • • • + gkek 4- • • • 4- gn£n) = *itei + 
0k(fk) ed + h where b2 s X(A Et*i,kfiït) S E**i,* £<• So, b = bx and igÄ = 
*i0*(/*) = b(Tk(fk)> s o £* = **(/*)• 

7) A^(i* + /,) = *(e, + eA). 
Start with A(ix + i, 4- iA) © 4(1, 4- /*) = Aix © ^OV + ik). So, apply­

ing 6) and using the fact that <jt(l) = 1, we have B(si 4- e, 4- £*) © 
;U(*V 4- /*) = Bei © Ai4(«V 4- /*). But also by 3) (for U = A i, © ,4/*), 
Â OV 4- /*) = Jß(£/ 4- gkek) = B(g,e, 4- e*) (as in the proof of 4), gxgk = 
gkg/ = 1). So B(e1 4- e, 4- e*) © 5(e, 4- gkek) = £ex H- £(e, 4- gkek). Let 
è e B; then fcfo 4 - ^ 4 - e*) = bxei 4- è2(^/ 4- gkek). Then b = bh b = b2 

and è = 6 ^ - So, in particular, b = Z?g*. Therefore g* = 1. 
8) a, = ak. 
We have A(ix 4- fi, 4- //*) © A{i, 4- /*) = -4i"i © A{}/ 4- i*). So using 

6) and applying A, we have B(ex 4- a X / X 4- ak{f)ek) © £ f e 4- e,) = 
A ! © £(e* 4- e,). Write òfo + * , ( / > , + **(/>*) = *i*i + We* + */)• 
Cancel e, and $ft as before to get boXf) = b2 = bak(f). 

We denote the common value of the ak by a. Fix some /. 
9) Let tk(f) be defined by U(it + /?*) = *fe + Tk(f)ek). Then r*(/) = 

First by 7), r*(l) = 1. Then since the zk are defined in a manner an­
alogous to the Gk, 6) allows us to conclude that 

M(fih + • • • 4- i, • • • + /,!„) 

= Ä ( r i ( / i ) £i 4- • • • 4- e, 4- • • • + Tn (fn)en). 

Therefore, for any k, 

XA(xi 4- ii +fik) = Ä(ri(l)ei + et + zk(f)ek) 

= B(el + a If) et 4- **(/>*). 

So B(el + et + Tk(f)ek) = Äfo + £, + *,(/>*) and r*(/) = ak(f). We 
therefore have, 

10) Given any {ik} as in the proposition, there is a bijection a: F -> G, 
such that CT(1) = 1, and a set of isomorphisms {ek} as in the proposition 
such that 
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XAVù + ••• + f„in) = BiffV&t + ••• + a(fn)en), 

whenever some/^ = 1. 
11) We now claim that a as defined in 10) is a ring isomorphism. 

Note that 

^O'l + (fa +/*)«2 + ''3) c A(iX + fj2) + A(fbi2 + I3). 

So, applying X9 we have 

Ä(ei + a(fa +ft)e2 + e3)
 c *(*i + ^ ( / > 2 ) + B(a(fb)e2 + £3). 

So, if bx e 5, 

*itei + (Kfa +f)e2 + £3) = iztei + «rt/otez) + h(a{fb)e2 + e3). 

So bY= b2 = bz and MC/i + /*) = °\(<?(fa) + <K/*)), so <7 is additive. 
Also, 

A(h + fafbh +fah) c Ah) + Afbh + I3), 

so we have 

Ä(fii + (7(fafb)e2 + (7(/a)£3) C **1 + *(/**2 + S*)-

Thus if bi G 5, 

*itei + *(/«/*) £2 + <?(/*) fi3) = *2̂ 2 + b3(a(fb) e2 + £3). 

Then bxa(fafb) = *3<K/*) a n d ^3 = VC/aX so that *i<K/«/*) = *i<r(/J 
(7(/Ô)- Thus cr is multiplicative and is a ring isomorphism. Also, 
End(U) « Fn; End(F) « G„, so End(U) « End(F). This establishes 
the proposition. 

PROPOSITION. //" i? and S are rings, and RU and SV are modules with 
U « A(n) for some module RA and some n ^ 3 and if L(RU) » L(SV)> then 
End{RU) « End(sF). 

The above proposition has a special case, the fact that if R{n) and*S(m) 

are free modules with L(R{n)) « L(S(m)) and one of m or « greater than 
3, then Rn « Sm, where 7?M (resp. Sm) is the « x n (resp. m x m) matrix 
ring over R (resp. 5) It is claimed by Stephenson [10] that this fact is 
implicit in von Neumann's Continuous Geometry [12]. 

Below is a proposition which seems to summarize the situation nicely, 
using a bit of folklore. 

THEOREM A. The following are equivalent, for n ^ 3 : 
1) L(R{n)) « L(5 (w)); 
2) S<*> = /><»> with End (P) « R. 
3) i?w « 5m. 
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PROOF. 1) implies 2). This is a special case of Proposition 2. Let ik be a 
free basis for R(n\ take Ak = Rik, P — B and we have the isomorphism 
given by a. 

2) implies 3). Take the endomorphism ring of both sides of 2. From 
the left side it is Sm. From the right side it is (End (P))n » Rn, so Sm » Rn. 

3) implies 1). This proof must "factor through" 2). Let e{j be a set of 
matrix units for Rn, that is, e0-ek/ = dj^, and J^eH = 1. Let 0 be the 
isomorphism. Think of the rings as operators on R(n) and S{m\ respec­
tively. Then let f(j = 0(ef-y). The f{j are matrix units in the above sense. 
This means V = S « = £ © F/*. Claim, K/ff * Vfjj. First, % => 
Vfjifu = K/y, => K//y/y, = Vfih so K/„ = Vfj. Second, the map K/y,-* 
Vfjify = Vf j j has inverse K/yy -> K/yy/y,- = K/;,so that Vfu « F/yy. 

Take P = K/„; then End (/>) = /„(End (K))& = MS J h = 0 ( * , A e*) 
» R, which shows 3) implies 2). Now, apply the functor Hom(P, ), 
we have L(S^ « L Hom(i>, S ^ ) = L(Hom(P, P<*>) * L(End (P<«})) = 
L(R{n)). The fact that Hom^P, ) preserves lattices is well known [1]. 

It is natural to ask, if L(Rin)) « L(S(m)) must R and S be isomorphic? 
We do have from folklore the following proposition. 

PROPOSITION. Let R and S be commutative semi-local rings or let one 
of them be semilocal (i.e., artinian modulo its radical). Then, if there are 
free modules RU and SV of the same rank ^ 3 with L(U) « L(V), R & S. 

PROOF. If R and S are commutative then by Theorem A, Rn « Sn. In 
particular, R and S are Morita Equivalent and, as is well known, if they 
are both commutative, R « S. 

If one of them is semilocal, we may count the simples in the top (P/PJ) 
of P in 2) to conclude P « S (or perhaps R) so that R » End(P) « S. 

Remarkably, M. Isaacs (personal-communication) has proved that if 
Rn « Sn, and only one of the rings is assumed to be commutative, then 
R « S. In fact, if R is commutative he has shown the conclusion follows 
if Rn » Sm and n ^ m. 

An example of two rings ,R and 5 for which Rn « £„ but R and 5 
not isomorphic is given by Plastiras in [8]. This example has a certain 
naturalness about it, but verifying its correctness here would take us too 
far afield. A sketch of this example is the following. 

Let K be a field and V an infinite dimensional vector space over K. 
\n V ® V look at the ring generated by the linear transformations of 
the form T ® T with Te End KV together with the transformations of 
finite rank. Call this ring R. 

In K ® V ® V look at the linear transformations of the form 0 ® T ® 
T together with the transformations of finite rank. Call this ring S. Then, 
R2 « S2 but R and S are not isomorphic. It is also asserted that this 
example may be made to work for Rn and S„ where n is any even integer. 
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In general, as the previous theorem shows, Rn « Sn if and only if 
R(n) = P(n) with S = End (PR). The existence or nonexistence of such 
projective modules P can be a deep and difficult matter. 

Semilinearity. Here we address the question, if yl: R{n) -» S{n) is a 
lattice isomorphism, is X induced by a semilinear isomorphism? We show 
here that for large classes of rings such maps are either semilinear or 
are determined by a semilinear map and a projective module. In what 
follows the reader who is interested only in rings may let A = R and 
assume {ik} is a basis for Rin). 

We begin with a discussion which justifies the above paragraph. 
Let X: R(n) -» S(m). Then let us write R<n) = 2 ^ © Rik, and let/% = 

X(Rik). Then, as we have shown previously, S(n) = £j?=i © PÄ and all 
the Pk are isomorphic to a projective S-module P. Let 7" = End (SP). 
Then, the function Hom(P, ) induces a lattice isomorphism from 
S(w) to Hom(P, S^) = Hom(F, 2 © P*) = EäU © Hom(i>, i \ ) but 
Hom(P, /%) = T and, choosing a basis ek of isomorphisms ek: P -+ Pk, 
Hom(P, 2 © ^*) = L*=i © ?£*» and it is clear that the composition of 
the two lattice maps Hom(P, ) o X takes Rik to 7s*. Below we will be 
concerned with lattice maps which preserve enough cyclic modules. 
The composition above will always satisfy our hypotheses, and will turn 
out in these cases to be induced by a semilinear map. Let us isolate this 
as a proposition. 

PROPOSITION. Write Sin) = £2=i © Sik. Let X: R{n) -> S(m) be a lattice 
isomorphism. Then there is a projective module SP and a lattice isomor­
phism HomOP, ): Sm -» ESU © Te» where T= EndOP), such that 
( H o m ( / \ _ ) 0 X{Rik) = Tek. 

PROPOSITION 3. The equation X(X) = B(a(fi)ei + • • • 4- <T(fn)en) of 
Proposition 2 holds if some f = 0. 

PROOF. Without loss of generality, f = 0. Start with Aix + A(ix + 
/2'2 + • • • + fjn) = A + ^(/2»2 + • • • + /„*'„)• Applying A, we obtain 
the following: 

1) Be, + B(e1 + 0O2) fi2 + • • • + * ( />„) = **i + ^ ( / 2 / 2 + • • • + 
fnin). Now, given b e B there is a ^ G B and x e XA(f2i2 + • • • + fjn) with 

2) b(ei + <r(/2) £2 + • • • + <r(ftÒ£f) = è i £ i + *> a n d conversely, given 
any such x, a èj and b can be found. But then, because A(f2i2 + •'• • •+• 
fjn) c S!=2 © Ai„ A(f2i2 + . . . + /„/„) <= £ | = 2 © *£*• Thus, in equa­
tion 2, we have always b = bx and x = b(a(f2) e2 4- • • • + a(fn)en). Since 
x and 6 can each be found from the other, 

XA(f2i2 + - • - + /wi„) = £(<7(/2) e2 + • • • + *(/«)£„). 
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PROPOSITION 4. Let X = A(J^=1fkik). Suppose there are distinct indices 
k, / such that X (] (Aik + Ai,) = 0. Then X(X) = A{j:a(fk)ek). 

PROOF. Assume X = Ax, x = £j=i/* '* a n d ^ 0 O^'i © ^'2) = Ó. 
Start with y4x © ^ = ^/'i © ^(/2 ' '2 + ' * * + fJn)- Applying X and using 
Proposition 3 for the right hand side, we obtain 

X(Ax) © Bex = Bel © B(a{f2) e2 + • • • + tfCQe*). 

We show first that there is a g e G with 

X(Ax) = B(gex + a(f2) e2 + • • • + *( />„) . 

Let >> e >l(^x). Write 

>> = bxei + 62W/2) £2 + ' • • +e(fM-

On the other hand, given b2, the left side of 

y - bxei = b2(a(f2) e2 + • • • + * ( />„) 

is uniquely determined. This means first that the map 

b2 -> b2((r(f2) e2 + • • • + a(fn) en) -> i ^ -* Ẑ  

is a homomorphism. (b\e\ -» 61 is well defined because ^ is a monomor-
phism.) Call this map g. Then, 

y = (b2)g£l + b2(a(f2)e2 + • • • + a{fn)en) 

y = b2(gei + a(f2)e2 + • • • + a(fn)en). 

So, we have shown every y has the form on the right hand side. On the 
other hand, from the definition of g the right hand side is always con­
tained in X(Ax). We wish to show g = a(fi). To do this, define A, analogous 
to g for e2 and obtain y = b2(<r(fi)ei + he2 + • • • + a(fn)£ny Next observe 
;Wx fi 0^1 + ^ 2 ) = 0. Let è e B, let 

1) * = *(g£i + o(f2)e2 + • • • + a(fjeu), and 

find b' eB with 

2) * = b\a(fl)el + Ae2 + • • • + o C / ^ ) . 

Then M / „ ) = *VCO for * à 2, so (è - *')(*</i)ei + ^ 2 + • • • + 
* O t a ) e A(^x) fi (£si + Be2) = 0. 

This means (b - 6 > ( / i ) = 0. Also from 1) and 2), bg = è' (T(/Ì). SO 

baWÙ = * X / i ) and % = b'fftfù- So M / i ) = bg for all beBsog = #(&). 
Let us now apply this result to lattice isomorphisms between free 

modules, and then indicate how to prove it in more general settings. 
Note, if a lattice map is to be induced by a semilinear map X, then X(Rx) 
must be cyclic. Let X: R{n) -> S(m) be a lattice isomorphism. 
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PROPOSITION 5. Let R(n) = £*=i © Rik, where {ik} is a basis for R{n\ 
n ^ 3 Assuine that every submodule of R{n) is a sum of modules A, each 
of which satisfies either 

1) A has zero projection to Rik for some k, or 
2) there are distinct indices k, / such that A f| (Rik + Ri,) = 0. 
If in addition X(Rik) = Sa where Sa « S for some k, then X is induced 

by a semilinear map. 

PROOF. If X(Rik) = Sa, then X(Ri,) is cyclic for all / , because Rik © 
Ri, = D © Rik = D © Ri, so X(Rik) « X(Ri,). Therefore, by Proposi­
tions 2,3, and 4, there is a basis {ek} for S(n) and an isomorphism a : R-+ S 
such that XR{Tifik) = SŒ<r(fk)Gk) whenever (J^fkik) is contained in one 
of the above ,4's. 

That is to say, we are given the semilinear map (L, a)', where (E/*i*) 
L = ZJaC/i)^, and X(B) = (2?)L for any B contained in any A above. 
However, co = {X\\(X) = {X)L} is a sublattice of R{n), and our hypothesis 
gives that œ = L(R(n)). 

COROLLARY 6. Let n ^ 3. Le/ /? &e any one of the following: 
1) ^ serial ring (i.e., a finite product of rings, each of which has a linearly 

ordered lattice of left ideals) ; 
2) A semiher editar y ring', or 
3) An integral domain {not assumed to be commutative). Let A: R(n) = 

S?=i © ^'* -+ S(w) be a lattice isomorphism where the {inform a basis for 
R(n) and Sa « S, with X(Rik) = Sa, for some k. Then A is induced by a 
semilinear isomorphism. 

PROOF. Find L, G, ek as usual. We need to find submodules A a R(n) 

such that each A satisfies 1) or 2) of Proposition 5. In this case we use 
the set (or a subset of the set) of cyclic modules of R(n). 

1) Since R = n?=i Bet with Re serial we need only consider ,4 = Rx 
with Rx serial. Project to the complement of each Rik. The intersection 
of the kernels of these maps is zero. Since there are only finitely many 
of them, and since Rx is not zero, one of them is zero. Thus Rx f| £**/ © 
Ri, = 0 for some k. Since there are at least more than three Rik, condi­
tion 2) of Proposition 5 is satisfied. 

2) Project Rx to Reh This splits Rx = T © K, where K a £g= 2 © Rik. 
Then K satisfies 1) of Proposition 5 while T satisfies 2). 

3) Let x = Tifkh- If some fk = 0 then Rx satisfies 1), of Proposition 5, 
if not, Rx satisfies 2). 

To make Proposition 5 work, we need only that if R -> E © Rik then 
Im R H (Ria + Rh) = 0 f° r s o m e a> b* L e t u s say R has the bounded 
annihilator condition if there is an integer N such that for any finite set 
X a R there are xh ..., xN s X with /(X) = /{xh ..., xN}. 
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THEOREM 7. Let A: R(n) -> S(m) be a lattice isomorphism. If R satisfies 
the bounded annihilator condition with bound N then X is induced by a 
semilinear isomorphism whenever n ^ N + 2. In particular, if R is left 
artinian, X = L whenever n è C(RR) + 2. 

We remark that there is a free module Ri3) which satisifies our condi­
tions, but not Stephenson's. Let R be a local commutative ring with 
radical / . Assume that J3 = 0 and that R has simple essential socle. We 
need to know that every cyclic module R(x, y, z) is in the lattice generated 
by the modules above. If one of the coordinates is a unit, we are done 
by counting dimension. If not, they are all contained in / so R(x, y, z) « 
R/I with / # 0. But SocCK(3)) has Goldie dimension 3, so R(x, y, z) has 
composition length at most 4. Note if y = 0, then 1) of Propositixn 5 
is satisfied. Now the module R(x, 0, 0) © R(0, y, z) is in the set of 
lattice generators and by a similar argument has composition length at 
most 5, because the first module has length at most 2, and the second 
has length at most 3. Further, this module contains R(x, y, z). One verifies 
R(x, y, 0) © R(0, 0, z) & R(x9 0, 0) © R(0, y, z). We have assumed y # 0 
so the right side cannot contain R(0, 0, z). Therefore, the intersection of 
these two modules has length 4 and so is equal to R(x, y, z). 

This free module does not in general satisfy Stephenson's condition S\. 
To see this, find two elements a and b in R with incomparable annihilators. 
Let z = (0, a, b). Then Rz has Goldie dimension 2 and if we choose 
x = (1, 0, 0); y = (0, 0, 0) we have Rx © Rw is essential, so no w can 
exist. 

All of this raises the question: When is the lattice of R(3) equal to the 
lattice generated by the modules in 1) and 2) of Proposition 5. We know 
of no situation where it is not, and conjecture that the two are equal 
except on a set of measure zero (you define the measure). 
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