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ON THE PICARD GROUP OF A 
COMPACT COMPLEX NILMANIFOLD 

ROBERT J. FISHER, JR. 

1. Introduction. This paper deals with compact complex nilmanifolds. 
By a nilmanifold we mean a homogeneous space of a nilpotent Lie group. 
The nilmanifold we consider arises as the compact quotient of a simply 
connected nilpotent Lie group G by a lattice r of G. We write G/F to 
denote such a space. In general, G/F is a non-Kähler manifold, and in 
fact, it is Kahler if and only if it is a complex torus (see [5]). However, 
G/F is a generalization of the torus, and to this end, there is a canonically 
associated torus T given by 

(1.1) T = G/[G, G]/TU(FX 

where G/[G9 G] is a vector group and n(F) is a lattice of G/[G, G\, %\ 
G -* G/[G, G] being the projection map. T plays an important role in 
the analysis of G/F. We point out that there is a holomorphic fibration 
of G/F over T where the fibre is the compact complex nilmanifold Nx = 
[G, G]/Fh Fx = F fi [G, G]. We let %\ G/F -> T also denote the bundle 
map. 

Our main purpose is to give a description of the Picard group of 
G/F; that is, Pic(G/F), the group of holomorphic isomorphism classes 
of holomorphic line bundles on G/F. To this end, we obtain a partial 
generalization of the Appell-Humbert Theorem from the case of the 
complex torus to the case of G/F. Sakane [4] has shown that the first 
Chern class of any holomorphic line bundle Sg on G/F, cx{Sâ), is rep­
resented by a unique hermitian form H defined on G/[G, G], As a conse­
quence of the Appell-Humbert Theorem, we know that H corresponds 
to the first Chern class of a line bundle on the complex torus T if and 
only if the imaginary part of //, A, is integral on the lattice %{F). Conse­
quently, we can factor £f as 

(1.2) se = sex ® **&!, 
where $ex is the line bundle associated to some character X of the lattice 
F and %*S£X is the pullback of a line bundle jgf x on T with c ĵgf J deter­
mined by H. See Theorem 3 for details. 
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Let Pic°(G/r) = {^ePic(G/r)\d(^) = 0} where Ö: H\GIT,(9*) 
-> H2(G/r, Z) is the Bockstein map. In §3 we prove the following 
theorem. 

THEOREM 2. Pic°(G//7) is a compact complex manifold. 

In fact, we show that Pic°(G//7) is a finite sheeted disconnected 
covering of the dual torus of T, Pic°(T). So Pic°(G/r) is itself a compact 
complex manifold whose connected components are each biholomorphic 
to Pic°(r). We note also that the number of components is dependent 
upon the order of /Vf/7, /*], where rx = T7 fi [G, G] and in fact, if the 
order is one, then Pic°(G//7) and Pic°(r) are holomorphically isomor­
phic. However, this order need not be one, and we present an example 
at the end of the paper showing this. 

2. A review of the classical Appell-Humbert theorem. Let T = V/A be a 
complex torus, where V is an «-dimensional complex vector space and A 
a lattice of V. Let H be a hermitian form on V and A its imaginary part. 
We consider all hermitian forms H on V such that A is integral valued 
on the lattice A. Then to such an H we associate a factor 

(2.1) ex(z) = a(X)e ±H{z9X) + ±H&X) 

where X e A9 z e V, e[ • ] = exp 2^i[ • ] and a: A -* Cf = {z G C | \Z\ = 1} 
satisfies a(Xi + /I2) = a{X{)a{X2)e[A{Xh X2)/2] ; the function a being called 
a semi-character of A for A. In fact, the correspondence X -> ^ is a 
group 1-cocycle on yl with coefficients in i /^ (see Appendix / of [2]). 
The factor ex{z) defines a holomorphic action of the lattice A on V x C 
via the rule 

(2.2) (z, a) . X = (z + A, ̂ OOa). 

The action is free and the quotient of V x C by A has a natural structure 
of a holomorphic line bundle over T. We shall denote this bundle by 
&(H, a:). Note that the map (H, a) -» {e^} satisfies the condition that if 
{e^} corresponds to (//,-, or/), then {^1}^2)} corresponds to (Hi + 7/2> 
aia2). Thus, we have an isomorphism of line bundles ££(Hi, ai) ® 
&(H2, a2) S ^f(^i 4- H2, aia2). 

The main theorem in the case of complex tori is the following theorem. 

THEOREM 1. (APPELL-HUMBERT). Any line bundle £g on the complex 
torus T is isomorphic to an £?(H, a) for a uniquely determined (H, a) as 
indicated by the previous paragraph. We have isomorphic exact sequences 

0 -> Hom(yl, Cf) -> {Group of data (H, a) } >jf • 0 

0 >Pic°(r) > Pic(r) —>Ker[H2(T,Z)-+H2(T9dT)]-+0 
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where Pic(7) is the group of line bundles on T, Pic°(r) the subgroup of those 
which are topologically trivial, 3tf is the group of hermitian forms H: V x 
V -> C with A(A x A) c= Z, and the last vertical map is given by H -> A 
{with the usual identification of H2(T, Z) with alternating 2-forms on A). 

REMARK. /X(H, a) = £?(H, a). Let À •= HomC4, Cf). Then for each 
a 6 A, a -> j£?(0, a) is the first map in the top sequence. Finally, c^£g) 
is the first Chern class of the line bundle 3?. See [2] for details. 

3. Pic°(G//T). In this section we give a geometric description of 
Pic°(G/D (see Theorem 2). To this end let a G T7 = Hom(r, Cf). Then a 
is a 1-dimensional holomorphic representation of/7; and similar to (2.1), 
one obtains the group 1-cocycle given by er(g) = a(f) for each y G T7. 
Thus, following (2.2) a defines a holomorphic line bundle <ga over G//7. 
We now have the following proposition. 

PROPOSITION 3.1. The map ß: f -> Pic^G//7) defined by ß(a) = £?a is an 
isomorphism. 

PROOF. Firstly, we can choose a finite cover <fy = {Uj} of G/T such 
that (1) Uj is compact, and (2) Uj is evenly covered by/?; i.e., if C//0 c 
P~KUj) is a connected component, then p maps t/y0 biholomorphically 
onto Uj and p~l(Uj) = Ur<=r ^/r *s a disjoint union where Ujr •= Är(£/y0) 
= ferisetffl}. Let 

(3.1) pj:Uj-+Ujo 

be the inverse of/?: £/y0 -• l/y. It follows that for each pair of indices 
(y, k) such that Uj (] Uk ^ 0 , there exists a unique ^ G r such that 

(3.2) pk{x) = p /^ry* 

for all xe Uj f] Uk. Note also that the 77^ s satisfy the cocycle condition 
fj/ = TjkTk/' Then relative to ^ , the transition functions of £?a are given 
by 

(3.3) gjk(x) = a(rJk) 

for jc e l/y fi t/*. The collection g = {gyJ G Z'(?U, 0*); i.e., g is a Cech 
1-cocycle. Computing the image of g under the Bockstein map, we get 
(ög)Jk/ = a{Tjkrk,rj}) = 1. So d(J?a) G T/^G//7, Z) is represented by the 
Cech 2-cocycle (dg)Jk/ = 1 G Z2(<%, Z) which is in fact a Cech 2-cobound-
ary. Thus, it follows that <5(j£?a) = 0; i.e., the map ß is well defined. 
Moreover, it is clear that ß is a homomorphism. 

Next, we show that ß is injective. To this end, let a G f with ß(a) = 1, 
the trivial holomorphic line bundle on G/T. In group cocycle language, 
ß(a) = 1 means that e = {er(g) = a{f)} is cohomologous to the 1-cocycle 
e' = {e'r{g) = 1 } . Thus, there exists a nonzero holomorphic function/ 
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on G such that a(r) = f(gr)lf(g) (VgeG, V7-G/7). We claim that fis 
a constant function on G. Relative to the cover <% from above, the 
argument goes as follows. Uj compact implies that UjQ is compact. 
Moreover, UJr = Rr(Üj0). Clearly, fis bounded on each Uj0. Since there 
is only a finite number of the £//0'

s> it follows that fis a bounded entire 
function on G and hence is constant. Thus, a{f) = 1 for each y e r imply­
ing that ß is injective. 

Finally, to show that ß is surjective, it suffices to show that any if 6 
Pic°(G//7) can be realized by constant multipliers. In other words, if 
ò{£?) = 0, then we will show that there is an element C e H^G/T, C*) 
such that i*C = £?, where /*: H\G\r, C*) -> H\G\r,(9*) is the induced 
map obtained from the inclusion of the constant sheaves C* c 0*. As­
suming the truth of the latter, we obtain from C a group 1-cocycle e == 
{er}rŒr of constant functions. In turn, we define a{y) = er(e) where e is 
the identity of G. The cocycle condition implies that a: T7 -> C* is a 
homomorphism. Using an argument similar to one in Weil [6, p. 93], 
we can then adjust C so that aeT. 

Lastly, we prove the existence of C G H\Gjr, C*) such that VC = if. 
Classically, it is known that for any complex manifold M one can compute 
Chern classes of line bundles by using the Bockstein operator 5. In fact, 
it is a theorem (cf. [7, pp. 106-109]) that the following diagram commutes: 

(3.4) 
W(M, 0*) - ^ H2(M, Z) 

*H2(M, R). 

Moreover, ci(Hl(M, @*)) = jöiH^M, 0*)), the cohomology classes in 
jH2(M, Z) c H2(M, R) which admit a ^-closed differential form of type 
(1,1) as a representative. So let i f e Pic°(G/r). Then cx(&) = jd(£>) = 0 
in H2(G/r, R) and hence by Proposition 3.4 of Sakane [4] there is a 
connection 7] = (TJJ) of type (1, 0) relative to <% such that drjj = 0 on Uj. 
Since drj = 0 on Uj, rjj = dfj where/,• : t/y -* C is a holomorphic function. 
Thus we have 

(3.5) rjk - 7jj = -±- d log g 
2% s» 

on Uj fi Uk # 0 where {gyj is a set of transition functions for S£ relative 
to <r Define 

(3.6) Cjk = ^ exp 27ui(fk - fj) on Uj f] Uk. 

Then Cy* is constant on Uj fl Uk. More importantly, the Cech 1-cocycle 
C = {Cj^eZ1^, C*) differs from the Cech 1-cocycle g = {gjk} e 
Z 1 ^ , 0*) by the Cech coboundary 3(h), where h = {/jy = exp 2%i fj} e 
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C°(^, (9). Hence, C and g define the same element jSf in H^G/F, &*) and 
we have our assertion. 

We now state and prove the main theorem of the section. 

THEOREM 2. Pic°(G//7) is a compact complex manifold. 

As mentioned in the introduction, we show that Pic°(G;//7) is a finite 
sheeted disconnected covering of Pic°(r), the latter already known to be a 
complex torus having the same dimension as T. Firstly, we have need of 
the following lemma. 

LEMMA 3.1. Let A denote the lattice r/Fi. There exists a surjective 
homomorphism D: F -• A having a finite kernel. 

PROOF. Firstly, note that F/[F9 F] is the direct sum of a free Abelian 
group of rank 2r and a finite Abelian group. The group /VIT7, F] where 
A = F fi [G, G] is finite because F\FX s (F/[F9 7 W V I A F]) is a free 
Abelian group of rank 2r (cf. [4, p. 206]). Let k be the order of / y [ / \ F]. 
Note also that^CT) = F[G, G]/[G, G] s / y /Y We now define a homo­
morphism D: F -+ A by 

(3.7) AtfXf) = cc(ry 

where a e f , 7*ef 6 ^7A» That 2) is well defined follows immediately 
from the fact that k is the order of Fi/[F, F]. It is also clear that D is a 
homomorphism. To see that D has finite kernel, note that Ker D = {a e 
TI image a is a subgroup of #, the &-th roots of unity group}. Secondly, 
the lattice F is generated by a set of 2« = dimRG elements (cf. [3, p. 42]) 
and K is a finite cyclic subgroup of Cf. The cardinality of Ker D is the 
number of homomorphisms from F into K and this number is finite by 
the previous sentence. 

To show that D is surjective, we use that F/F\ is a free Abelian group 
of finite rank. Let el9 . . . , e2r be a Z-basis for F/Fi. Then each y e TVA 
can be expressed uniquely as f = Tiihe%- Let areyî. Then 

<*(f) = n «(*,•)*; afe) e Cf. 
» 

So choose a £-th root of a(et), say a(et)
Vk, and fix it. Define 

Wr))17* = IT (ate)1'*)* 

for each ^ e / 7 , Then a 1 / Äe/* and D{aVk) = a:. 

Using the previous lemma and Proposition 3.1 we proceed with the 
proof of the theorem by constructing a holomorphic homomorphism 
D: Pic°(G/F) -> Pic°(r)which forces the following diagram to com­
mute : 
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A D 

r vi 
(3.7) I I 
v ß ß \ ß \ 

Pic^G//7) D >Pic°(r); 
that is, D = ßoDoßr1. Explicitly, if j£? = ga s Pic°(G/D, then D(&) = 
ü?(0, D(a)) and the result is now clear. 

COROLLARY 3.1. Let sea e Pic°(G/r). Then £>k
a = sea ® • • • ® £?a 

= <£a* s ^*if(0, £(<*)). 

4. Pic(G/.T). In this section we establish the factorization given by (1.2). 
To this end, let g denote the Lie algebra of right invariant vector fields on 
G; I denotes the complex structure of g, and g+ (resp. g~) denotes the 
vector space of *J — 1 (resp. — ^ — 1) eigenvectors of / in the complexi-
fication gc. Next, identify g with the complex Lie algebra (g, / ) . From 
Proposition 3.6 in [4] we can choose a basis {Xl9 . . . , Xn} of g+ such 
that {Xr+1,..., Xn} is a basis for [g+, g+] and also such that the canonical 
coordinates of the second kind with respect to {Xx, . . . , Xn}, denoted by 
zl5 . . . , zn9 define a biholomorphic mapping 0: G-• O given by 0(g) = 
(zi(g)> • • > zn(g))> where z1? . . . , zr are homomorphisms from G to C, 
r = dim g+/[g+, g+]. Letting H = (hJk) e M(r, C) be a hermitian matrix, 
we define a hermitian bihomomorphism H : G x G -» C by 

(4.1) H(gl9 g2) = £ hjkZj(g)zj(g2) Vgh g2 6 G. 
J, k=i 

Similarly, letting e3 (j = 1, . . . , r) denote the standard basis of Cr and 
ej (j = 1, . . . , r) the corresponding dual basis, we obtain a hermitian 
form H on Cr. Moreover, the map 0r(g) = (z\(g), . . . , zr(g)) is a holo-
morphic homomorphism of G to Cr with ker 0r = [G, G]. 0r then descends 
to a biholomorphism of G/[G, G] onto Cr. It is clear then that 0*H(g\, 
g2) = i/(^i, g2) and that the correspondence H -+ H is injective. 

We are interested in those hermitian bihomomorphisms H on G whose 
imaginary part A, difined by A(gh g2) = (H(gh g2) - H(gh g2))/2i, is 
integral valued on the lattice / \ We note that A is integral valued on r 
if and only if the imaginary part of //, A, is integral valued on the lattice 
0r(r) m Cr. Note also that via 0r we can identify the complex torus 
T = G/[G, G]/^/7) with Crj0r(n holomorphically and the lattice A = 
nrl with 0X/7). 

Let j£? e Pic(G//7). Then from Propositions 3.4 and 3.5 of [4] there 
exists a unique real right invariant 2-form cc^A2^ of type (1, 1) repre­
senting ci(<£), and it is given by 

(4.2) a = j : S hJkdzjAdzk 
^l j,k=i 
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where (hJk) is an r x r hermitian matrix and r = dim g+/[g+, g+]. Let H 
be the corresponding hermitian form on Cr as indicated above. Since À 
comes from an # , it follows from the Appell-Humbert Theorem that A 
represents the Chern class of a holomorphic line bundle over T if and 
only if it is integral on the lattice 0r(T)- Assuming that this is the case 
there exists S£\ e Pic(r) such that Ci(j£?i) is represented by A. Since 
;r*Ci(i?i) = C^TU^^I), it follows by an argument similar to the one in 
Proposition 3.1 showing the surjectivity of ß that j£? ® (^*j^i)_1e 
Pic^G//7). Hence, from Proposition 3.1 we obtain j£? = ££x ® %*g\ for 
some X e A Summarizing, we state the following theorem. 

THEOREM 3. Let 3?ePic(G/D and let a, as in (4.2), represent the Chern 
class of <£, Ci{<£). Then <g can be expressed as 

(4.3) se = sex ® %*sex 

where XGT and 3?i e Pic(r) ifand only if the imaginary part A of the 
hermitian bihomomorphism H defined by (4.1) is integral on the lattice T7. 

REMARK. Whether or not every i f e Pic(G//7) can be written as in (4.3) 
is not known to the author. 

5. An example. As mentioned in the introduction, r± = T fl [<?? G\ => 
LT, r] gives rise to A/IT, Z7]» a finite Abelian group of order possibly 
greater than one. Hence, it is possible to show the existence of a character 
X on r which does not descend directly to a character on A = r\T\. So 
in general, f # A and hence Pic°(G/D ^ Pic°(T). In the language of 
exact sequences, 

is exact, while 

i ^A—r-L^rl 

is left exact. We provide an example showing that @? is not surjective. 

EXAMPLE. Let G be the simply connected complex nilpotent Lie group 
defined by 

_ 

"1 
0 

.0 

Z 1 2 2 1 3 

1 Z 2 3 

o i 

and f be the lattice of G defined by 
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r = 
"1 2x z 

0 1 2y 

0 0 1 

| x, y, z 6 Z © Ï'Z 

One can show easily that / y [ A T7] s (Z © *Z)/4(Z © iZ). Next, define 
^: T7 -• Cf by A(r) = e[(Re c + Im c)/4] where 

r = 

"1 2a c 

0 1 2* 

Lo o i _ 

and c = Re c + / Im c. Clearly, X is a homomorphism. Further, if c s 
(Z + /Z)\4(Z + iZ), then A(r) ^ 1 where 

"1 0 c~\ 

0 1 o | 

0 0 1 
r = 

Thus, jl | r i # 0 and so 0? : A -* JT is not surjective. 
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