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ON THE PICARD GROUP OF A
COMPACT COMPLEX NILMANIFOLD

ROBERT J. FISHER, JR.

1. Introduction. This paper deals with compact complex nilmanifolds.
By a nilmanifold we mean a homogeneous space of a nilpotent Lie group.
The nilmanifold we consider arises as the compact quotient of a simply
connected nilpotent Lie group G by a lattice I' of G. We write G/I" to
denote such a space. In general, G/I" is a non-Kéhler manifold, and in
fact, it is Kéhler if and only if it is a complex torus (see [S]). However,
G/I is a generalization of the torus, and to this end, there is a canonically
associated torus 7 given by

(1.1) T = G/[G, G]/=(I"),

where G/[G, G] is a vector group and #([") is a lattice of G/[G, G], =:
G - G/[G, G] being the projection map. T plays an important role in
the analysis of G/I". We point out that there is a holomorphic fibration
of G/I" over T where the fibre is the compact complex nilmanifold N; =
G, G)/I'\. 'y =T N [G,G]. Welet z: G/I' - T also denote the bundle
map.

Our main purpose is to give a description of the Picard group of
G/I'; that is, Pic(G/I"), the group of holomorphic isomorphism classes
of holomorphic line bundles on G/I'. To this end, we obtain a partial
generalization of the Appell-Humbert Theorem from the case of the
complex torus to the case of G/I'. Sakane [4] has shown that the first
Chern class of any holomorphic line bundle % on G/I', ¢|(¥), is rep-
resented by a unique hermitian form H defined on G/[G, G]. As a conse-
quence of the Appell-Humbert Theorem, we know that H corresponds
to the first Chern class of a line bundle on the complex torus T if and
only if the imaginary part of H, A, is integral on the lattice z(/"). Conse-
quently, we can factor & as

(1.2) L = &,

where .#; is the line bundle associated to some character A of the lattice
I' and ©*#; is the pullback of a line bundle %, on T with ¢;(%;) deter-
mined by H. See Theorem 3 for details.
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Let Pic°(G/I") = {& € Pic(G/I'") | () = 0} where §: HYG/I', 0%)
— H%G|I', Z) is the Bockstein map. In §3 we prove the following
theorem.

THEOREM 2. Pic®(G/I'") is a compact complex manifold.

In fact, we show that Pic°(G/I") is a finite sheeted disconnected
covering of the dual torus of 7, Pic®(T). So Pic’(G/I") is itself a compact
complex manifold whose connected components are each biholomorphic
to Pic®(T). We note also that the number of components is dependent
upon the order of I'y/[I", '], where I’y = I (] [G, G] and in fact, if the
order is one, then Pic°(G/I’) and Pic°(T) are holomorphically isomor-
phic. However, this order need not be one, and we present an example
at the end of the paper showing this.

2. A review of the classical Appell-Humbert theorem. Let 7 = V/A be a
complex torus, where V is an n-dimensional complex vector space and /1
a lattice of V. Let H be a hermitian form on ¥ and 4 its imaginary part.
We consider all hermitian forms H on ¥V such that A is integral valued
on the lattice 4. Then to such an H we associate a factor

@.1) ex(2) = ae| 37 G, 2) + 4 HG, D]

where le A,zeV,e[-] =exp2zi[-]anda: 4 - C¥ = {ze C|[|z| = 1}
satisfies a(d; + A2) = a(A)a(A2)e[4(2;, A2)/2]; the function o being called
a semi-character of A for A. In fact, the correspondence 1 — ¢; is a
group l-cocycle on A with coefficients in Hi¥ (see Appendix I of [2]).
The factor e;(z) defines a holomorphic action of the lattice 4 on ¥ x C
via the rule

2.2) (z,a) - A = (z + 2, e(2)a).

The action is free and the quotient of ¥ x C by A has a natural structure
of a holomorphic line bundle over 7. We shall denote this bundle by
%(H, ). Note that the map (H, a) — {e;} satisfies the condition that if
{ef)} corresponds to (H;, a;), then {e{PeP} corresponds to (H; + Hj,
ajap). Thus, we have an isomorphism of line bundles ¥(H;, a;) ®
P(H,, 6‘(2) ~ P(Hy + H,, ajay).

The main theorem in the case of complex tori is the following theorem.

THEOREM 1. (APPELL-HUMBERT). Any line bundle & on the complex
torus T is isomorphic to an P(H, @) for a uniquely determined (H, «) as
indicated by the previous paragraph. We have isomorphic exact sequences

0 —» Hom(4, C%) - {Group of data (H, a) } —H 0

18 s o i
0 — Pic*(T) Pic(T) Ker[HX(T, Z)— HX(T, 6;)] - 0
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where Pic(T) is the group of line bundles on T, Pic°(T) the subgroup of those
which are topologically trivial, 3¢ is the group of hermitian forms H: V x
V — C with A(A x A) < Z, and the last vertical map is given by H — A
(with the usual identification of HX(T, Z) with alternating 2-forms on /).

REMARK. ((H, a) = £(H, a). Let A = Hom(/A, C*). Then for each
a e A, a » £, a) is the first map in the top sequence. Finally, c;(%)
is the first Chern class of the line bundle .. See [2] for details.

3. Pic°(G/I). In this section we give a geometric description of
Pic°(G/I") (see Theorem 2). To this end let @ € = Hom(/", C%). Then «
is a 1-dimensional holomorphic representation of /”; and similar to (2.1),
one obtains the group l-cocycle given by e (g) = a(y) for each ye .
Thus, following (2.2) « defines a holomorphic line bundle %, over G/I.
We now have the following proposition.

PROPOSITION 3.1. The map f: I’ > Pic(G/I") defined by Bla) = Ly isan
isomorphism.

Proor. Firstly, we can choose a finite cover % = {U;} of G/I" such
that (1) U; is compact, and (2) U; is evenly covered by p; i.e., if U
pY(U,;) is a connected component, then p maps U biholomorphically
onto U; and p~Y(U,) = ( J,er U}, is a disjoint union where U;, = R(U )
= {grlge Uj}. Let
3.1 pi:U; = Uj

be the inverse of p: U;p = U;. It follows that for each pair of indices
(J, k) such that U; N U, # @, there exists a unique 7, € " such that

(3.2) pi(x) = p{X)7 s

for all x € U; N U,. Note also that the y,,’s satisfy the cocycle condition
1is = TirTe Then relative to %, the transition functions of %, are given
by

3.3) gi(x) = a(rr)

for x € U; | U, The collection § = {g;,} € Z'(%, 0*); i.e., § is a Cech
1-cocycle. Computing the image of g under the Bockstein map, we get
(08)jr, = alyjura r3}) = 1. So 8(&,) € HAG|I', Z) is represented by the
Cech 2-cocycle (08)z, = 1 € ZH%, Z) which is in fact a Cech 2-cobound-
ary. Thus, it follows that §(%,) = 0; i.e., the map S is well defined.
Moreover, it is clear that 8 is a homomorphlsm

Next, we show that j is injective. To this end, let a € I’ with Ble) = 1,
the trivial holomorphic line bundle on G/I'. In group cocycle language,
B(e) = 1 means that e = {e,(g) = a(y)} is cohomologous to the 1-cocycle

= {e/(g) = 1}. Thus, there exists a nonzero holomorphic function f
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on G such that a(y) = f(gr)/f(g) (Vge G, Vyel). We claim that fis
a constant function on G. Relative to the cover  from above, the
argument goes as follows. U; compact implies that U; is compact.
Moreover, U;, = R/(Uj). Clearly, fis bounded on each Uj. Since there
is only a finite number of the U s, it follows that f'is a bounded entire
function on G and hence is constant. Thus, a(y) = 1 for each y € " imply-
ing that 8 is injective.

Finally, to show that § is surjective, it suffices to show that any ¥ €
Pic®°(G/I") can be realized by constant multipliers. In other words, if
0(%) = 0, then we will show that there is an element C € H{(G/I", C*)
such that i*C = &, where i*: H(G/I", C*) - HYG/I', 0*) is the induced
map obtained from the inclusion of the constant sheaves C* = 0*. As-
suming the truth of the latter, we obtain from C a group l-cocycle e =
{e,},er of constant functions. In turn, we define a(y) = e,(e) where e is
the identity of G. The cocycle condition implies that ¢: [' > C* is a
homomorphism. Using an argument similar to one in Weil [6, p. 93],
we can then adjust C so that ¢ € I

Lastly, we prove the existence of C € HI(G/I', C*) such that i*C = #.
Classically, it is known that for any complex manifold M one can compute
Chern classes of line bundles by using the Bockstein operator §. In fact,
it is a theorem (cf. [7, pp. 106-109]) that the following diagram commutes:

HY(M, 0%) > HX M, Z)
(3.4) i
TS H2M, R).

Moreover, ¢;(H{(M, 0%)) = jo(H,(M, 0*)), the cohomology classes in
JHAM, Z) < H%(M, R) which admit a d-closed differential form of type
(1,1) as a representative. So let & € Pic°(G/I"). Then ¢;(¥) = jéo(¥) = 0
in H¥G/I', R) and hence by Proposition 3.4 of Sakane [4] there is a
connection 5 = (y;) of type (1, 0) relative to % such that dy; = 0 on U,.
Since dy = Oon U, y; = df; where f;: U; — Cis a holomorphic function.
Thus we have

(3.5 T — 0 = ﬁ dlog g

onU; N U, # @ where {g,,} is a set of transition functions for & relative
to %. Define

(3.6) Cir = gjr exp 2zi(fy — f) on U; N U,

Then Cj, is constant on U; (1 U;. More importantly. the Cech 1-cocycle
C = {Cj}eZ u, C* differs from the Cech l-cocycle § = {g;}€
Z\ (%, 0*) by the Cech coboundary §(%), where h = {h; = exp 2zi f;} €
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C°(#, 0). Hence, C and § define the same element & in HY(G/I", 0*) and
we have our assertion.

We now state and prove the main theorem of the section.
THEOREM 2. Pic°(G/I") is a compact complex manifold.

As mentioned in the introduction, we show that Pic°(G/I") is a finite
sheeted disconnected covering of Pic°(T), the latter already known to be a
complex torus having the same dimension as 7. Firstly, we have need of
the following lemma.

LeEMMA 3.1. Let A denote the lattice I'|I"y. There exists a surjective
homomorphism D: ' — A having a finite kernel.

Proor. Firstly, note that I'/[I", I'] is the direct sum of a free Abelian
group of rank 2r and a finite Abelian group. The group [I'y/[I", I'] where
I'y =T N [G, G] is finite because I'/"; = (I'/[I", ')/(I'JII', I']) is a free
Abelian group of rank 2r (cf. [4, p. 206]). Let k be the order of I'y/[I", I'].
Note also that #(I") = I'[G, G}/[G, G] = I'/’;. We now define a homo-
morphism D: I' —» A by

3.7 D7) = a(p)*

where a e/, refel/l'. That D is well defined follows immediately
from the fact that k is the order of ['y/[I", I']. It is also clear that D is a
homomorphism. To see that D has finite kernel, note that Ker D = {a e
I'| image a is a subgroup of K, the k-th roots of unity group}. Secondly,
the lattice /" is generated by a set of 2n = dimgG elements (cf. [3, p. 42])
and K is a finite cyclic subgroup of C*. The cardinality of Ker D is the
number of homomorphisms from " into K and this number is finite by
the previous sentence.

To show that D is surjective, we use that J'/I'; is a free Abelian group
of finite rank. Let ey, ..., e, be a Z-basis for I'/I";. Then each y € I'/I";
can be expressed uniquely as 7 = Y}, A,e;. Let a € A. Then

a(f) = [] ale)¥; ale) € C¥.

1

So choose a k-th root of a(e;), say a(e;)V*, and fix it. Define
(a(p)V* = [] (ale) /%)
for each y € I'. Then a'* € [ and D(aV/*¥) = a.

Using the previous lemma and Proposition 3.1 we proceed with the
proof of the theorem by constructing a holomorphic homomorphism
D: Pic®(G/I") — Pic®(T)which forces the following diagram to com-
mute:
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A D

r A
| ;
Pic®(G/I")—2— Pic*(T);

3.7

that is, D = 0D B, Explicitly, if =2, € Pic°(G/I), then D(¥) =
#(0, D(@)) and the result is now clear.

COROLLARY 3.1. Let %, € Pic®(G/I"). Then &% = ¥, @ - ® L,
= Lu = 7520, D(a)).

4. Pic(G/I"). In this section we establish the factorization given by (1.2).
To this end, let g denote the Lie algebra of right invariant vector fields on
G; I denotes the complex structure of g, and g* (resp. g-) denotes the
vector space of 4/—1 (resp. — 4/ —1) eigenvectors of I in the complexi-
fication g®. Next, identify g with the complex Lie algebra (g, 7). From
Proposition 3.6 in [4] we can choose a basis {X3, ..., X,} of g+ such
that {X,.4, ..., X,} is a basis for [g+, g+] and also such that the canonical
coordinates of the second kind with respect to {X, ..., X,}, denoted by
Z1, - . -5 Z,, define a biholomorphic mapping @: G — C= given by &(g) =
(z1(9), - - ., z,(g)), where z, ..., z, are homomorphisms from G to C,
r = dim g*/[g*, g*]. Letting H = (h;) € M(r, C) be a hermitian matrix,
we define a hermitian bihomomorphism H: G x G — C by

4.1) H(gy, g2) = ij=1 hiz{(8)21(g2) Vg1, 82€0G.

Similarly, letting e; (j = 1, ..., r) denote the standard basis of Cr and
ef (j=1,...,r) the corresponding dual basis, we obtain a hermitian
form H on C’. Moreover, the map 9,(g) = (z1(g), - . ., z,(g)) is a holo-
morphic homomorphism of G to Cr with ker @, = [G, G]. @, then descends
to a biholomorphism of G/[G, G] onto C’. It is clear then that ®*H(g,
g2) = H(gy, g5) and that the correspondence H — H is injective.

We are interested in those hermitian bihomomorphisms H on G whose
imaginary part A4, difined by 4(g1, g2) = (H(g1, g2) — H(g1, £2))/2i, is
integral valued on the lattice /. We note that A4 is integral valued on [”
if and only if the imaginary part of H, 4, is integral valued on the lattice
®,(I') in Cr. Note also that via @, we can identify the complex torus
T = G/[G, G)/=(I") with Cr/@(I") holomorphically and the lattice A4 =
I'|I'y with @I).

Let & € Pic(G/I'). Then from Propositions 3.4 and 3.5 of [4] there
exists a unique real right invariant 2-form a € A%g* of type (1, 1) repre-
senting ¢;(%), and it is given by

Js k=1



PICARD GROUP 637

where (h;,) is an r x r hermitian matrix and r = dim g*/[g*, g*]. Let Ia:!
be the corresponding hermitian form on Cr as indicated above. Since 4
comes from an A, it follows from the Appell-Humbert Theorem that 4
represents the Chern class of a holomorphic line bundle over T if and
only if it is integral on the lattice @,(/"). Assuming that this is the case
there exists .#; € Pic(T) such that ¢;(%;) is represented by 4. Since
z*cl(#) = ci(z*#,), it follows by an argument similar to the one in
Proposition 3.1 showing the surjectivity of 8 that ¥ ® (z*¥))le
Pic°(G/I"). Hence, from Proposition 3.1 we obtain ¥ = #; ® z*%; for
some A € I'. Summarizing, we state the following theorem.

THEOREM 3. Let & €Pic(G/I") and let «, as in (4.2), represent the Chern
class of ¥, ¢)(¥). Then & can be expressed as

(4.3) L =9, Q"%

where Ael' and %1€ Pic(T) if and only if the imaginary part A of the
hermitian bihomomorphism H defined by (4.1) is integral on the lattice I'.

REMARK. Whether or not every % € Pic(G/I") can be written as in (4.3)
is not known to the author.

5. An example. As mentioned in the introduction, /'y = I' ) [G, G] o
[I’, Il gives rise to I'y/[I", I'], a finite Abelian group of order possibly
greater than one. Hence, it is possible to show the existence of a character
A on I' which does not descend directly to a character on A= I'/I";. So
in general, ' # A and hence Pic°(G/I") # Pic°(T). In the language of
exact sequences,

> -r2n g1
is exact, while
a OF o
l>A—T—T 1
is left exact. We provide an example showing that @ is not surjective.

EXAMPLE. Let G be the simply connected complex nilpotent Lie group
defined by

1 zip 23
G = 0 1 223 IZ,‘jEC,i<j
0 0 1

and [" be the lattice of G defined by
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1 2x =z
'=(10 1 2||x,py,2ze6Z®IZ].
00 1

One can show easily that ['1/[", I'] = (Z @ iZ)/4(Z @ iZ). Next, define
A: I' = C¥ by A(y) = e[(Re ¢ + Im ¢)/4] where

1 2a c¢
r=0 1 2b
0 0 1

and ¢ = Re ¢ + i Im ¢. Clearly, A is a homomorphism. Further, if ce
(Z + iZ)\AZ + iZ), then A(y) # 1 where

1 0 c
r=1|0 1 0l
0 0 1

Thus, A |, # 0 and so @}: A - I is not surjective.
BIBLIOGRAPHY

1. Y. Matsushima, On the intermediate cohomology group of a holomorphic line bundle
over a complex torus, Osaka J. Math. 16 (1979), 617-631.

2. D. Mumford, Abelian varieties, Tata Inst. Studies in Math. Oxford Univ. Press,
1970.

3. M.S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der math. und
ihrer Grenzgebiete, Band 68, Springer-Verlag, New York, 1972.

4. Y. Sakane, On compact complex parallelisable solvmanifolds, Osaka J. Math. 13
(1976), 187-212.

5. H.C. Wang, Complex parallelisable manifolds, Proc. Amer. Math. Soc. 5 (1954).

6. A. Weil, Introduction a I'étude des variétés Kihlériennes, Hermann, Paris, 1958.

7. R. Wells, Jr., Differential analysis on complex manifolds, Prentice-Hall, Englewood
Cliffs, N.J., 1973.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OK 73019



