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A PRESERVATION OF INTEGRABILITY CHARACTERIZATION 
THEOREM 

WILLIAM D.L. APPLING 

ABSTRACT. Suppose AT is a positive integer and Q denotes the set 
to which g belongs if and only if g is a function from R^+1 into R 
such that for some (wl9 . . . , WN) in R^ and d > 0, g{wu . . . , wN) 
is bounded on [-d; d]. A characterization is given of those elements 
/ o f Q having the property that if U is a set, F is a field of subsets of 
U, each of <xu ... <*N is a function from F into a collection of subsets 
of R with bounded union, £ is a real-valued, bounded finitely ad
ditive function defined on F and each of the set function integrals 
JW/)£(/), • • -, SU<XN(IW) exists, then the integral Suftatf), . . . , 
<*N(I), £(/)) exists, these integrals being limits for subdivision refine
ment. 

1. Introduction. Suppose N is a positive integer. In a previous paper 
[5] (see [2] for the earlier interval function version) the author showed the 
following preservation of integrability characterization theorem (see 
§2 for the notion of integral. 

THEOREM l.A.l. Iff is a function from RN into R, then the following two 
statements are equivalent. 

1) If ¥ is afield of subsets of a set U, £ is a real-valued bounded finitely 
additive function defined on F, and each of cc\, . . . , a^ is a function from 
F into a collection of subsets of R with bounded union (in [5] the a's were 
single valued, but the argument carries over for this version with trivial 
modifications) such that each of the integrals jVa:iC0£(/), . . . , JV<x#C0£C0 
exists, then the integral jV/(tfi(/), . . . , aN(I))^(I) exists. 

2) The function f is continuous. 

In this paper we extend the above theorem. Notice that if fis given 
as above and A is a function from R^+1 into R such that for each 
(*i, . . . , xN, z) in R*+1, h(xx,..., xN, z) = / ( x l 5 . . . , xN)z, then the 
conclusion of statement 1) above has the form "juh(cci(I), . . . , aN(I\ 
£(/)) exists". The question naturally arises as to whether there exists 
a class, Ö, of functions from R^+i into R that includes the functions 
of the form "/(*i, . . . , xN)z'\ and a subset which has the integrability 
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preservation property described in statement 1) with the conclusion 
of the form given above for h, such that this subset can be characterized 
in a "sequence vs. convergence" manner similar to continuity. To 
this end we notice that for h defined as above, trivially there are 
some (wh . . . , wN) in R^ and d > 0 such that h(wl9 . . . , wN) is 
bounded on [ — d, d]. Accordingly, we shall let Q denote the set to which 
g belongs if and only if g is a function from R^+1 into R such that for 
some (wi, . . . , wN) in R^ and d > 0, g(wh . . . , wN) is bounded on 
[—d, d\. Our generalization of Theorem l.A.l is a characterization of 
those elements g of Q such that if F, U, £ and a\, . . . , aN are as in 
the hypothesis of statement 1) of Theorem l.A.l, then the integral 
Jc/g(ö:1(/), . . . , aN(I), £(/)) exists. We shall first describe in general terms 
what this generalization is. To begin with, it is an assertion of the equiv
alence of three statements. The first of these statements is the imme
diately preceding remark about integrability preservation. The second is 
an analogue of the first statement for bounded interval functions and 
functions of bounded variation on the interval [0, 1]. The third is a 
"sequence vs. convergence" condition. 

As the reader might guess at this point, even without an explicit rendi
tion of the above three statements, the deduction of the second statement 
from the first is fairly routine, and we dispose ol it (see §3) with relative 
ease. However, the fact that the first statement follows from the second, 
even though intuitively plausible, is quite another matter, and its proof 
involves some fairly intricate considerations, of which one type is the 
third statement. Thus our arugment for the characterization that we shall 
state immediately below will proceed as follows: 1) => 2) => 3) => 1). 

THEOREM 3.1. Suppose g is in Q. The following three statements are 
equivalent. 

1) If F is afield of subsets of a set U, £ is a real-valued bounded finitely 
additive function defined on F, an each of a^ . . . , aN is a function from 
F into a collection of real number sets with bounded union such that each 
of the integrals ju<Xi(I)S(I), . . . , jV<*jvC0£(/) exists, then the integral 
iugfai(I)9 . . . , tfjvCO, £(/))exists. 

2) If t is a real-valued function defined and of bounded variation on 
[0; 1], each ofAÌ9 . . . , AN is a function from the subintervals of[0; 1] into 
a collection of real number sets with bounded union such that each of 
the integrals J[0;1] Ai(I)dt9 . . . , J[0;1] AN(I)dt exists, then the integral 
J"(:o;i]S04iCD> • • -, AN(I\ dt) exists. 

3) The following statements hold. 
a) The function g is continuous. 
b)IfO< min{c, M}, then there is d > 0 such that if {(a[J\ . . . , a{j\ 
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Xj)}nj=i is a sequence of elements ofRN+1 with maxflfl^l: / = 1, . . . , N, 
y = 1, . . . , « } ^ M and Ly=il*/I < d, then 

c) Suppose {D(j)}f=i is a sequence of interval subdivisions of[0; 1] such 
that D(n + 1) < D(n) (see §2) for all n, and h is a real-valued function 
defined onW = {x : x in {p, q}, [p ; q] in D(n)for some n}. Suppose for each 
[p; q] such that {/?, q} g W, v[p; q] = sup{ED(m)zp;qi\Ks) ~ K')\: ™ a 
positive integer, {p, q} g (J[r;s]inD(m) {r, s}, D(m)[p; q] = {[r; s] : [r: s] 
in D(m), p g r < s ^ q}} < oo. Suppose M > 0 and for each positive 
integer n, each of a\(n), . . . , aN(n) is a function from D(ri) into R such 
that max{\ai(n)(I)\, . . . , \aN(n)\} ^ M for all I in D(n). Suppose 

L 2 L \ 2 I^O'X/) - aJJ + D(J)\v(J)] < oo 

(again, see section 2 for notation). Then, ifO<c, there are a real number 
d > 0 and a positive integer N* such that for any positive integer m greater 
than or equal to N* and D(m)* = {/: I in D(m), v(I) < d), 

£ Igia^mXl), ...,aN(m)(I),Ajh) 
Dim)* 

- L g{ai(m + \)(J), . . . , aN(m + 1)(/), J7A)]| < c . 
ZXm+l)(J) I 

The author wishes to thank the referee for his many helpful suggestions 
for the improvement of this paper, as well as for pointing out at least one 
forgetful omission. The referee has suggested that certain observations be 
made about Theorem 3.1. We now complete this introduction with state
ments of these observations. 

Theorem 3.1 remains valid if in statements 1) and 2), respectively, <*i, 
. . . , ccN and AÌ9 . . .,AN are singleton-valued, so that we really have five 
equivalent statements, the first three of which are Theorem 3.1, and the 
last two of which are the above assertions about singleton-valued func
tions. We leave to the reader the fairly easy task of modifying the ap
propriate portions of the proof of Theorem 3.1 for singleton-valued func
tions. 

In Theorem 3.1, statement 1) implies statement 2) independently of 
whether the function g, from RN+1 into R, is in Q. 

Suppose that a < i , / i s a function with domain the set of all subinter-
vals of [a; b] and range a collection of real number sets with bounded 
union, and h a function from [a; b] into R having bounded variation. 
Let B = {(r; s]: a ^ r < s ^ b}9 and F be the field of subsets of (a; b] 



284 W.D.L. APPLING 

which is the collection of all unions of finite subcollections of B. Let £ 
denote the bounded, finitely additive function from F into R such that if 
a ^ r < s ^ b, then £((r; s]) = h(s) - h(r). Then $La;blf(I)dh exists 
if and only if J(c;W g(/)f (/) exists for some g from F into exp(R) such 
that a g r < s ^ b implies g((r; s]) = f([r; s])9 in this case equality holds. 

Q ü Q0 = the set of all functions g from R^+1 into R such that for some 
/ from R^ into R, g(xl9 . . . , xN, x) = f(xl9 . . . , xN)x for all (xl9 ..., 
JC#, x) in R^+1. By Theorems l.A.l and 3.1, for each such g a n d / , / i s 
continuous if and only if the third statement of Theorem 3.1 holds. On the 
other hands, it follows from Theorem 3.1, independently of Theorem 
l.A.l, that for each such g a n d / / i s continuous if and only if the third 
statement of Theorem 3.1 holds; thus Theorem l.A.l is a consequence of 
Theorem 3.1. 

2. Preliminary theorems and definitions. For the notions of subdivision, 
refinement and integral, we refer the reader to [1] as they apply to real 
number set-valued interval functions, and to [3] and [6] as they apply to 
real number set-valued set functions. 

In this section we shall state set function theorems that we shall use in 
§3. Each of these has an interval function version, the stating of which 
we leave to the reader. Throughout this paper, when in a given discussion, 
the context of set function versus interval function is clear, we shall refer 
to such notions as "subdivision", "refinement", "integral", etc., without 
preamble and with at most minor notational changes. In either setting 
" < " shall mean "refinement of". If E < D and / is in D9 then E(I) de
notes {/: / in E9 J ü / } . In certain computations involving real-valued 
functions defined on number intervals we shall use the " J " notation in 
the standard way to denote differences; when there is possibility of con
fusion as to which subdivision the differences arise from, appropriate sub
scripts will be attached. Finally, in the matter of terminology, if S is a 
set and a is a function from S into a collection of sets and T S 5, then 
the statement that a is an a-function on T mean that a is a function with 
domain T such that if x is in T, then a(x) is in a(x). 

The following is one of many well-known characterizations of integral 
existence, and we shall use both its set function and interval function 
versions. 

THEOREM 2.P.I. If U is a set, F is a field of subsets of U, a is a function 
from F into a collection of subsets of R, then the following three statements 
are equivalent. 

1) jWCO exists. 
2)IfO<c, then there are K in R and D < {U} such that if E < D 

and a is an a-function on E, then \K — 2 ^ ( / ) | < c. 
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3) IfO < c, then there is D < {[/} such that if H < E < D9 a is an a-
function on E9 a* is an a-function on Hand G E E, then 

2>(n - 2 **OI < c 
G H(V) 

(see [10]). 

Suppose U is a set, F is a field of subsets of U, a is a function from F 
into a collection of real number sets with bounded union, and each of 
£ and /j, is a real-valued bounded finitely aditive function defined on F 
with fi nonnegative-valued. 

THEOREM 2.A.I. [7] (see [1] for interval function version). J^a(/)f(7) 
exist if and only if$ucc(l) j/ |£(/)| exists. 

We now state two consequences of the Bochner-Radon-Nikodym The
orem. 

THEOREM 2.A.2. [6]. If foot (/)//(/) exists, then 

= 0, 

i.e., if0<c, then there is D < {£/} such that if' E <D and for each V in 
E, a( V) is in <x( V), then 

Ç$Y\«v)fM-f/*J)f*J) < c. 

THEOREM 2.A.3. (Michael Keisler, class presentation, also see [8] and 
[9]). If foa(I)/u(I) exists andO < c, then there is D « {U} such that if 
£ < A for each V in E, a*(V) is in a(V\ H{V) < {V} and for each I in 
H(V\a(I)isina(I\then 

2 2 \a*(V) - a(I)\ß(I) < c. 
E mv) 

We shall need the following theorem in showing that 3) implies 1) in 
Theorem 3.1. 

THEOREM 2.A.4. [4]. Suppose that for each V in F, /u*(V) = 
inf{max{/i(/):/in2)}: D <.{V}}. Then fo[fi(I)2 - ^(I)2] = 0, which 
implies that for 0 < c, there is D < {U} such that 0 g /u(I) — /**(/) < c 
ifE<g.D and I is in E. 

We now consider the interval [0; 1] and the well-known "standard" 
associated field of sets. We let G(0;1] = {(/>; q]: 0 ^ p < q <Z 1}. and 
Emi denote the collection of all unions of finite subcollections of Gmi. 
The collection F(0;1], as is well known, is a field of subsets of (0; 1]. For 
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each Fin F^.ll9 we shall let Cv denote the collection of all components of 
V, note that Cv g G(0;1], and we shall let Cv(i) denote {[p ; q] : (p ; q] in Cv}. 

Once again, we remind the reader that if 0 ^ p < q <^ l9 then a sub
division of [p; q] is a finite collection of nonoverlapping intervals whose 
union is [p ; q], and that if F is a field of subsets of a set U and W is in F, 
then a subdivision of W is a finite collection of mutually exclusive sets of 
F whose union is W. 

Finally, suppose that D is a subdivision of [0; 1] and A is a function 
from D into R. We shall let As denote the function of subintervals of 
[0; 1] such that if / is a subinterval of [0; 1], then AS(I) = A([p; q]) if 
[p; q] is in D and I E [p; q], and AS(I) = 0 otherwse. We note the im
portant fact that iff is a function from [0; 1] into R and E « Z>, then 

5M(W= 5MsGD4/= J^/s^'Hf-
3. The preservation of integrability characterization theorem. In this 

section we prove Theorem 3.1, as stated in the introduction. Throughout 
this paper we adopt the convention that a/b = 0 if b = 0, and has the 
usual meaning otherwise. 

PROOF OF THEOREM 3.1. We first show that 1) implies 2). Suppose 
1) is true. Suppose that A is a real-valued function defined and having 
bounded variation on [0; 1], and each of Al9 . . . , AN is a function 
from the subintervals of [0; 1] into a collection of real number sets with 
bounded union such that each of J[0;1]/l1(/)t//i, . . . , \mxiAN{I)dh exists. 
Let v denote the variation function of h. By Theorem 2.A.1, each of 
I c o ^ i W * » • • •> ho;iiÄN(I)dv exists. 

For each V in F(0;1], we let h*(V) denote TXCVÜ)AK and for each W 
in F(0;i] we let v*(W) = \w\h*(J)\ and note that v*{W) = Ecvco Av. 
For each V in Fmi and k = 1, . . . , N, w e l e t ^ ( F ) denote {x: x = 
Œcvd)a(I)dvlv*(V\ such that for each / in CF(/), a{I) is in >4Ä(/); or 
x is in ^ ( / ) if Cv(i) = {/}}. # 

Suppose 0 < c and fc = 1, . . . , N. There is D < {[0; 1]} such that 
if E < Z> and for each I'm E, a{I) is in Ak(I), then 

If Ak(I)dv-j:a(I)Av 
I J [0;1] £ 

< C . 

Let D0 = {(p; q]: [p; q] in D). Suppose H < Z>0, and for each V in 
H, b(V) is in tffcCF). There is a function a from (J#CV(/) such that if 
Kis in H, then either Cv = {V}, a(I) is in Ak{I) for CF(/) = {/} and 
b(V) = a(7), or b{V) = ( S c v c o ^ ^ V v ^ K ) . Note that for each Vm 
H, b(V)v*(V) = Ecyii) <I)âv. Now, \JHCv{i) < 2), so that 
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If Ak{I)dv - ZKV)v*{V)\ 
IJ [0;1] H I 

= I f Ak(I)dv - 2 2] a{I)Av 
I J C0;l] H Cvii) 

< C . 

Therefore \®-ï](xk{I)v*(I) exists, so that \^iipck{I)h^{I) exists. 
Therefore J"(0;1] g(ai(I), . . . , aN(I), A*CO) exists. So suppose 0 < c. 

There is D < {(0; 1]} such that if E < Z) and for each fc = 1, . . . , N 
and /in Z), ftÄ(/) is in ak(I), then 

I f g(ai(J), .. -, ̂ ( 7 ) , /**(•/)) - S ^ i ( / ) , . . . , ^ ( / ) , A*(/)) 
I J (0;l] J? 

< C 

Let /)(/) = U£>CF(/). Suppose H < Z>(/), and for each I in H and fc = 1, 
. . . , N9 ak(I) is in Ak(I). Let H0 = {(/? ; #] : [p : q] in H). For each (/? ; q] in 
#o> <**([/>; ?]) is in ak((p; q]) and h*((p; q]) = h(q) - h(p). Therefore, 
since H0 < D, 

I f g f e ( / ) , . . . , <*„(/), /**(/)) - E g(fiiW, • • •, ̂ ) , 4A) 
I J (0;l] 77 

= I f gicaV), .. •, aN(J), *,(/)) - S g(tfiW, 
I J (0;l] //0 

Therefore $toaig(Ai(J), ...,AN(J), dh) exists. Therefore 1) implies 2). 
We now show that 2) implies 3). Suppose that 2) is true. Let w denote 

wi, . . . , Wtf. We begin by showing that g(w9 x) -* 0 as x -* 0, and 
g(vt>, 0) = 0. Suppose not. Then, by some conventional observations, it 
follows that there are c > 0 and a sequence {xJ^Li of numbers such that 
the g(w, xvY$ are of consistent sign and for each v, \g(w, xv)\ ^ c and 
\xv\ < 111*. 

There is a function h defined on [0; 1] such that A(0) = 0 and if n is 
a positive integer such that ì/(n + Ì) < x ^ l/n, then h(x) = 2JL» *„. 
Clearly A(l/«) — h(\/(n+ 1)) = *M for all «, h is of bounded variation on 
[0; 1], h(x) -> 0 as x -• 0, and trivially, each of the integrals J[0;i]>Vî A, 
• • • » J[0;i] ŵ rfA exists. Therefore the integral J[0;1] g(w, rfA) exists. From the 
afrorementioned properties of h and given boundedness conditions on g, 
it follows that there are D < {[0; 1]} and M ^ 0 such that if E < Z> and 
[0;.y]isin £, then 

max{|g(H>, A(s) - A(0))|, |2>(w, JA)|} ^ M. 

There are [0; #] in D and a positive integer v such that 1/v < q. From the 
conditions on g at the end of the previous paragraph and on h at the 
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beginning of this one, it follows that there are a positive integer t > v 
and Q < {[l/t; 1/v]} suchthat 

|Ç*(w,J/»|=Ç|s(w, JA) 

> IM + \g(w, h(q) - A(l/v))I + I S g(w, Ah) 

so that 

M < -M- \g(w, h(q) - A(l/v))| - I S g(w, JA) I + I 2S(w, J*) 
lö-{C0;^]} I I Q 

^ - \g(w9 h(llt) - A(0))| + |g(w, % ) - A(l/v)) 

+ L g(w,àh) + Zz(^àh) 
D-mq]) Q 

^ |g(w,A( l /0 - A(0)) + C # , J A ) 

+ g(w,A(?)-A(l/v)) + S g(H>,JA)|, 
£-{[0;$]} I 

a contradiction, inasmuch as 
{[0; 1//]} U Ô U {[1/v; q]} U [D - {[0; </]}] « D . 

Therefore g(w, x) -> 0 as x -> 0, and g(w, 0) = 0. 
We now show part a) of 3), i.e., that gis continuous. Suppose not. Then 

there are (al5 . . . , aN, b) in RN+1, c > 0 and for each odd positive integer v, 
(^(v), . . . , aN(y\ bx) in R*+* such that \g(ah ...,aN,b)- g(«i(v), . . . , 
aN(v), bv)\ > cand \b - bv\ + E J U M v ) - ak\ < 1/2». 

There is a function A defined on [0; 1] such that A(0) = 0 and if « is a 
positive integer such that l/(n + 1) < x ^ 1/«, then A(x) = èw if « is 
odd, and A(;c) = b if « is even. From the second of the immediately pre
ceding inequalities it is clear that A is of bounded variation on [0; 1] and 
thatA(0+) = b. 

For each k = 1, . . . , N, there is a function Pk of the subintervals of 
[0; 1] such that if 0 ^ /> < # ^ 1, then Pk[p; q]) = wk when 0 < /?, and 
if « is a positive integer such that l/(n + I) < q ^ l/n, then Pk([0; q]) = 
ürÄ(fl) when n is odd and P*([0; q]) = ^ when n is even. If D < {[0; 1]}, 
/: = 1, . . . , N and [0; q] is in Z>, then 

ZPk{I)àh = Pk{[^q\)[h{q) 
D 

K0)] + *,[*(!) - % ) ] , 

which easily implies that J[0;1] Pk(I)dh exists and is akb + w*[òi — b]. 
Therefore J[0;1] giP^I), . . . , PN(I), dh) exists, so that there is D 

{[0; 1]} such that if E < D and £* < D, then 
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J Ç g ^ / ) , . . . , PN(I)9 Ah) - £ ^ ( 7 ) , . . . , i>„(7), Ah) < c/4. 

There is d > 0 such that if |*| < d, then \g(wh . . . , w#, x)| < c/4. There 
are f and q with 0 < f < q and [0; #] in D such that if 0 < r < s g t, 
then |A(s) — h(r)\ < d. There is an odd positive integer z such that 1/z ^ f. 
Let 

E - [{0; l/(z 4- 1)]} U {[l/(z + 1); 1/z]} U {[1/z; *]} U (D - {[0; ,]}) 

and 

£* = {[0; 1/z]} U {[l/z; 9]} U P - {[0; q]}). 

Clearly £ < D and £* < Z>. Therefore 

c/4 > | Ç g(Pi(/)), . . . , />„(/), JA) - E giP1(l)9 . . . , P^(/), JA) 

= Igfa, - . . , aN, b) + g ^ , . . . , wN, A(l/z) - A(l/(z + 1)) 

~ g(di(z), ...9aN(z)9bz)\ 

^ \g(ah ...,aN,b) - gOi(z), . . . , aN(z), bz)\ 

- I^(wi, . . . , w „ , A ( l / z ) - A ( l / ( z 4 - 1))| 

è c - c/4 = 3c/4, 

a contradiction. Therefore g is continuous. 
We now show that part b) of 3) is true. Suppose not. Then there are 

M > 0 and c > 0 such that for 0 < d there are a positive integer m and 
a sequence {(tfi(s), . . . , aN(s)9 xs)}f=1 of elements of R^+1 with msix{\ak(s)\ : 
k = 1, . . . , N; s = 1, . . . , m} ^ M and Lf=1|x5| < d9 but L f = i l ^ i ( ^ 
. . . , aN(s)9 xs)\ ^ 2c. It follows that for each d > 0 there is a sequence 
{(fli(.s), . . . , tfjvCs), xs)}f=l of elements of R^+1 such that msLx{\ak(s)\ : k = 1, 
...9N;s= 1, . . . , m} ^ M9 E?=1\xs\ < d9 the values of {g(ai(s), . . . , 
a^C?), x ^ J ^ a r e either all nonpositive or all nonnegative, and 2^T=1\g(ai(s)9 

. . . , aN(s)9 xs)\ ^ c. It therefore follows by some routine observations that 
for each positive integer p there is a sequence {(ai(p9 s), . . . , aN(p, s)9 

xsO))}fjf of elements of R^+1 such that ma.x{\ak(p9 s)\: k = 1, . . . , N; 
s=l, ..., m(p)} ^ M, E?i?\g(ai(p, s), •>., aN{p9 s), xs(p))\ è e, and such 
t h a t S ^ = 1 S ^ f | x s ( ^ ) | < oo and either the values of {g(ax{p9 s)9 . . .9aN(p9s)9 
xs(p))}7=i a r e aH nonpositive for all/? or are all nonnegative for all p. Now, 
let tl9 . . . , tw9 . . . denote *i(l), . . . , xw(i)(l), ^(2), . . . , xw(2)(2), . . . , and 
for each k = 1, . . . , N9 let Z>*(1), . . . , 6Ä(w), . . . denote ak{\9 1), . . . , 
ak(l, m{\))9 ak(29 1), . . . , ak(29 m(2))9 . . . . From the preceding statements 
we clearly see that 2J£Li|f J < oo and that if each of« and ri is a positive 
integer, then 
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n+nf I n+nf 

Z g(bi(w), . . . , bN(w), tw)\= £ |g(Ò!(w), . . . , bN(w), tw)\ 00 

as n -• oo. 
There is a function h defined on [0; 1] such that A(0) = 0 and if 0 < x ^ 

1, then h(x) = 2 £ U '»» where l/(v + 1) < x ^ 1/v. Clearly h is of 
bounded variation on [0; 1]. For each k = 1, . . . , N9 there is a function 
4* of the subintervals of [0; 1] such that i f / i s a subinterval of [0; 1], then 
Ak(I) = bk(w) when / = [l/(w + 1), 1/w], and Ak(I) = 0 otherwise. 

Suppose k = 1, . . . , N. Let 4̂ denote Ak, We show that J[0;1] A(I)dh 
exists. Suppose 0 < c. There is a positive integer Zsuch that S£=jd'd < 
c/(l + M). Let Z) denote {[0; 1/(Z + 1)], [1/(JT + 1); (1/2)(1/(JT + 1) + 
1/JOl [(1/2)(1/(Z+ 1) + 1/X); 1/Jfl, . . . , [1/2; (1/2X1/2 + 1)], [(1/2) 
(1/2 + 1); 1]}. Suppose E < D. Clearly, if / i s in E and for some positive 
integer u>, / = [l/(w + 1); 1/w], then 1/w ^ 1/(X + 1), so that for £ ' = 
{I:IinE,A(I)*0}, 

I I OO 

S ^(/)JA ^ S |i4(/)||JA| ^ M 2 |*J < Mc/(1 + M)<c. 
E I EP w=X+l 

Therefore J[0;i] A(I)dh exists and is 0. 
Therefore |[0;1] g(Ai(l), . . . , AN(I), dh) exists. However, suppose Z) < 

{[0; 1]} and 0 < P. We shall show that there is E < Z) such that P < 
IZtfgC îCO» . . . , AN(I)9 Ah)\. Because g is continuous, there is S ^ 0 such 
that if (bl9 ...,bNi t) is in R"+1 and maxfléxl, . . . , \bN\} ^ M and \t\ ^ 
1 + Z£=il*J. then |g(èx, . . . , fyy, 01 ^ S. There are / / < D and ? > 0 
such that [0; q] is in / / and q < 1. Let L denote the number of elements in 
H. There is a positive integer v such that 1/v < q. There is a positive integer 
v such that u > v such that 

Ilg(bi(W)9 ...9bN(w)9tw) > (L + l)S + />, 

Let /< denote ( / / - {[0; q]}) U {[0; l/(n + 1)], [l/(n + 1); 1/H], . . . , 
[ l / (v+ 1); 1/v], [1/v; q\). Then 

IÇg^/), ...,^(/),JA)| 

= l*G4i([0; 1/G* + 1)1), . . . , ^ [ 0 ; l/(« +1)]), JA) 

+ t g(MW(w + i); 1/wD, . . . . ^[ i / (w + l); l/w]), JA) 

+ ^ i ( [ l / v ; ? D , . . . , ^ ( [ l / v ; ^ ] ) , J A ) 

+ Z «(^i(/), . . . ,^ ( / ) ,JA) | 
tf-<[0;«]> 

^ - s + 2g(*i(w), . . . ,6w(w), f j - S - (L- l)S 

> -S + (L + l)S + P - S - (L - \)S = P. 
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Therefore J[0;1] g(Ai(I), . . . , AN(I), dh) does not exist, a contradiction. 
Therefore b) of 3) is true. 

We now show that c) of 3) is true. Suppose that the hypothesis is 
satisfied, but that the conclusion is not. Then, if d > 0 and N* is a positive 
integer, there is a positive integer m g: TV* such that for D(m)* = {/: / 
in D(m), v(I) < d}9 

I £ bdnCitiX/), ...,a*(mX/),J/A) 
\DW)* 

- S s(«i(™ + W)> • • •> ^(™ + 1)(/), Ajh)]Wc. 

Now, for each x in [0; 1], let <j>(x) = inf{z: x ^ z, z in W}. In a fashion 
similar to showing that a function having bounded variation on an 
interval is quasi-continuous on that interval, it follows that if x is in 
[0; 1] and <j>(x) is not in W, then there is a number r{<j>(x)) such that h{z) -* 
r((j){x)) as z -> 0(x) for z in W and <f>(x) < z. 

There is a function t from [0; 1] into R such that if x is in [0; 1], then 
t(x) = h{<j>(x)) when 0(JC) is in W, and t(x) = r(^)x)) when 0(x) is not in 
W. 

We shall now show that t has bounded variation on [0; 1], and that 
izp;qi\dt\ - v([p; #1) f° r a^ t/7» #1 s u ch that I/7' #} = w - Suppose D < 
{[0; 1]}. Let Z denote the number of elements of D. Suppose 0 < c. 
Beginning at the right-most interval of Z>, we see that there is a non-
decreasing function ß from \JD{p, q} into W such that if x is in (JD{p, q), 
then x ^ /3(x) and |*(;c) - h(ß(x))\ < c/(2Z), so that 

Ç IK«) - 'QOI = Ç Ute) - A(/3te)) + h(ß(q)) - A(/3(/>)) + h(ß(p)) - /Q,)| 

g Zc/(2Z) + S Wte)) - A09CP»I + Zc/(2Z) 

^ c + v([0;l]). 

Therefore t has bounded variation on [0; 1] and J[0;i]|^| ^ v([0; 1]). 
Since h g t, it follows that v([>; #) ^ J[^;^|A| for all [p; q] such that 
{/?, q} g W. Therefore v([/>; q]) = J ^ J ^ I for all [/?; #] such that {/?, q} 
S W. 

Now, for each [p; q] £ [0; 1], let ^ / J ; #] denote the smallest positive 
integer n such that some interval of D(n) ü [pi q], provided there 
is such; otherwise, let y[p\ q] denote the smallest positive integer > 
i/te-/>). 

For each [p; q] g [0; 1] and k = 1, . . . , N, let 

M[p; q]) = {x:x = { s k t e X / ) f \dt\]}/f |<fr| 

for some n ^ ^[p; #], orx = ak(n)([p; q]) for some n ^ ff/?; #] such that 
[p; q] is in /)(«)}. 
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Suppose k = 1, . . . , N and 0 < c'. Let A denote Ak and a denote ak. 
There is a positive integer T such that 

J=T DU) 
2 \a(j)(I) - au + l)(/)|v(/)l < C' 

There is D < Z>(r) such that the length of each interval of D is less 
than the length of each interval of D(n) for which n ^ T, and such that 
the reciprocal of the length of each interval of D > T. 

Now suppose E < D and for each [p; q] in E, b[p; q] is in A([p; q)]. 
For each [p; q] in E, there is a positive integer «*[/>; #] ^ f[/>; g] > T 
such that either 

b[p;q\ = { E \a(n*[p;qW){ l*ll}/f 1*1. 
or è[/?; #] = <*(«*[/?; ?])([/>; #]) with [/?; q] in Z)(n*Lp; #]); note that in 
either case 

b[p; q]At = 
L.\D(n*\_pu 

m 

L «(»*[/>; «IX/) f l*l}/f 1*1 

Thus, for [r; s] in D(T) and [/?; <?] in £, 

D(T) . I r E \D(T) 

-Ell 2 *(«*[/>;<?])(/)f l*l}/f 1*1 

2]{a(r)([r;^|s- L 17 £ «(»*[/>; ?])(/)• 
ZXD ^ I r SO;«] L l l X » * ^ ] ) 

f i*i}/f i*iVii 
S 2 WW; *]) - pf 2 a(«*b; ?])(/)• 

f \dt\}/\ \dt\Ut\ 

2 Ekw;* ] ) f iAi-{ s «(**[/>; «])«• 

£(T) £0 ; s ] V J lp;ql ^D(n*lp;qì) 

f i*i}}U/f 1*01 
2 2 J 2 WT)([r; s]) - a(n*[p; qW)]-

D(T) Elr;sl KD(n*lp;ql) 

f idt\\Ut/\ \dt\) 

\ât. 

file:///dt/Ut/
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^ E E I 2 [a(mns])-a(n*[p;qW)-{ \dt\\-l 

£ E E E \a(T)([r; s]) - a(n*[p; q](I)\ f \dt\. 
D{T) E[r;sl D(n*lp\ql) J I()tp;ql 

For each positive integer «, we shall let d(n) denote a(n)s (see §2). We 
see that the preceding sum equals 

E E f 1*7%/) - ö(n*[p; qW)\ f \dt\ 

= S f \ö(T)(J) -d(n*[p; q])(J)\ f \dt\ 
EJlp;q] JJ 

â E f E W W ) - d(H + 1)(/)| f \dt\, 
E J lp;q] H=T J J 

where Q = max {n*[p; q], [p; q] in E}, so that the preceding sum equals 

f Z \ö(H)(J) - Ö(H + 1)(J)\ ï \dt\ 
J [0;l] H=T J J 

= E f \ò{H)(I)-5{H+\)(.J)\\\dt\ 
H=T J W;l] J / 

= E El E M W ) - a(H + l)(/)|v(/)l < c ' . 
H=T D(H) LD(H+1)U) J 

Therefore §i0;lìAk(J)dt exists for k = 1, . . . , N. 
Therefore $L0;11 g(Ai(J\ . . . , AN(J), dt) exists. However, suppose H < 

{[0; 1]}. By b) there is d' > 0 such that if {(z^j), . . . , zN(j)9 x/)}jf=i is 
a sequence of elements in R^+1 with max{\zk(j)\ : k = 1, . . . , N;j = 
1, . . . ,«} ^ M and Z%i\xj\ < d\ then 

ÊlsfciC/), ...9zN(j), Xj)\<cl(SW)9 
3=1 

where W equals the number of intervals in H. There are a positive in
teger m, and an / an D(m) such that v(I) < d' and such that D{m)* = 
{/: / in D{m\ v(/) < d% 

Dim)* 
gia^mXI), . . . , aN(m)(I), Afr) 

11 > c. - E Sia^m + 1)(/), . . . , aN(m + 1)(/), J7A) 
Z?(w+1)(/) 

Suppose £>(/w)** = {/ : /in D(m)*, / a subset of no interval of H). Z)(m)** 
contains not more than ^elements. Furthermore, 
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E 
Dim)*' 

gia^mXl), . . . , aN(m)(I\ Afi) 

- E S(ai(m + 1)(/), . . . , aN(m + i)(/), Ajh) 

^ I ] \g(ai(m)(I), . . . , aN(m)(I), Ajh)\ 
D(m)** 

+ 2 2] IsfaO» + Wl . . -, aN(m + 1)(/), Ajh)\ 
Dim)** Dim+l)il) 

^ Wcl(pW) + Wc/(iW) = c/4 . 

Therefore 2)(ra)** is a proper subset of D(m)*. Let E(m)* = Z>(ra)* — 
D(m)**. Then 

I] giajimXn, ...,aN(m)(I),Jjt) 

- E S(ai(« + 1)W. • • •• «wO» + W), àjt) 
D(m+l)U) 

E 
Dim)* L 

gia^mXI), ..., aN{m){I), Jjh) 

- E Siaiim + 1)0/), . . . , aN(m + 1)(/), â,h) 
D(m+l)(J) 

- E 
Dim)*' 

g(fli(iw)(7), . . . , ^ ( m ) ( / ) , ATh) 

- L gfa("t + 1 )0 , • • -, <̂ (™ + OW, àjh) 
Dim+l)il) 

^ c - c/4 = 3c/4 . 

Therefore J[0;1] g04i(/), . . . , AN(J), dt) does not exist, a contradiction. 
Therefore 2) implies 3). 

We now show that 3) implies 1). Suppose 3) is true. Suppose the hypo
thesis of 1) is satisfied, but that jVOK îCO» . . . ccN(I), £(/)) does not exist. 
Then there is c > 0 such that for £><{£/} and K in R there is E < D 
and for k = 1, . . . , TV there is an a^-function ak on E such that 

* - Ç g ( 0 i ( / ) , . . . , * * ( / ) , « / ) ) > a. 

Let 57 = J|Ç|. By Theorem 2.A.1 each of J W / ) ^ / ) , . . . , W W ) 
exists. 

By routine considerations involving common refinements, there is a 
sequence {H(n)}™=1 of subdivisions of U such that if n is a positive integer, 
then 

i') ?(£/) - LtfwieOl < V", 
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ii') if / in E < H(n), then ??(/) - y*(I) < 1/2», and 
iii') if E « D < H(n), and for k = 1, . . . , N, each of b(k) and a(k) is 

an aj-function on D and E respectively, then 

S 2 S W*X*) - <k)(J)\v(J) < 1/2» . 
*=1 D EU) 

By induction there is a sequence {^(n)}^ such that £(1) < #(1), for 
all «, £ ( " + 1) « E(n), E(n + 1) < #(« + 1), and for each A: = 1, . . . , 
N there is an a^-function ak(ri) on ü^/z) such that 

I 2 sfaWO. ...,fljv(»X/),f(/)) 

£(»+l) 

By induction there is a sequence {/>(>i)}£Li of interval subdivisions of 
[0; 1] and a sequence {Xty)}™^ of functions such that for all n, 

i)D(n + 1) < D(n), 
ii) X(n) is a reversible function from D(n) onto 2s(n), and 

iii) for each [p; q] in D(n), {X(n + 1) ([/-; $]): [r; J] in D(n + 1), [r; s] g 
[/>; *]} = {/ : / in £(w + 1), / g *(«)([/?; </])}• 
This implies that 

2 {(*(/! + l)([r; 5])) = £(X(«)([/>; q])) . 

For each positive integer n, [p; q] in D(n) and & = 1, . . . , N, let bk(n) 
d>; ?]) = Û * ( « ) ( ^ ( # ; ?]))• Let ̂  = (x : x in {/?, #} for some [/?; q] in 
Z)(«) for some n). Suppose 0 < x in W. For some w and v, [v; x] is in D(u). 
Suppose n is a positive integer such that for some/?, [p; x] is in D(n). Then 
for some/?*, [/?*; x] is in Z>(« + 1). Now, for each m such that [w; x] is in 
D(m) for some w, let £>(ra)(.x;) denote {[r; s] : [r; s] in D(m), s ^ x}. We see 
that D(n + l)(x) = (Jix»><*> D(n + 1)(/). Therefore 

2 £(*(* + l)([r; 5])) = L 2 £(*(« + l)([r; *])) 
Z?(»+l)(*) D(n)(x) D{n+l)U) 

DinKx) 

It therefore follows that there is a function A defined on W such that 
A(0) = 0, and if 0 < x in W, then h(x) = 2 ö W W ? ( I W ( / ) ) for all m such 
that for some z, [z; x] is is D(m); note that if [r; s] is in Z>(m), then h(s) — 
A(r) = Z(X(m)([n s])). 

Suppose {/?, #]} ü W and p < q. There are positive integers «' and n" 
such that /? is in (J[r ;s] ,-„ D(l|/){r, 5} and # is in U[r;sj*«zwo{>*> 4 - From 
i) it follows that if « is a positive integer greater than or equal to 
max{V, ri'}, then {/?, q) § (J [r;s] ,-„ D(ll) {r, s}. If m is a positive integer 
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and{>, q} g \Jir,sìinDim)fa s}9 we shall let Z)(m)[/?;^] denote {[/-; s]: [r; s] 
in D(m), p û r < s ^ q}. Suppose n is a positive integer, p < q and 
{/>, tf} E Ucr;s] in Din) fa s}. Then 

2 | ^ ) - Ä ( r ) | = 2 |«JT(nX[r;jD)l 

W (J X(«)([r;5]))gl/A2+ 2 k(X(n)([r;s])) 

Furthermore, 

(J X(n + l)([v, w}) = U ^ t o d ^ ' D . 
Z>(»+1)[*;*] !>(»)[/>;?] 

and we note that if z is a positive integer such that V = \J D(mKp;qiX(m) 
([t; u]) for all m ^ z, then 77(F) = v[/?; #] = sup{J]D{m)lp.Jh(s) - A(r)| : m 
a positive integer, {/?, #} g Ucr;*]*.i><*.){r» *}}• 

Now, if « is a positive integer, then 

2 2 2 |a*(«)W«)([/>; g J)) - a,(* + l)(AT(ii + l)([r; *]))|v[r; s] 
k=\ D(.n) D(n+l)ip;ql 

= L L 2 MnXX(n)([p;q})) 
*=1 Z>(») D(»+l)^;«] 

- ak(n + 1)(Z(« + W;sDMX(n + !)([/•;*])) 

= S S S \aJM!) - «*(" + WW-O < 1/2", 
Ä=l £(w) E(n+l)(I) 

which implies that 

N 00 

Z E E E Mn)[p; q] - hin + l)[r; s]\v[n s] < oo . 
k=l n=l D(n) D(n+l)lp;ql 

It follows that there are d > 0 and a positive interger n* such that if 
AW is a positive integer greater than or equal to n* andZ)(m)* = {[/?; q] : 
[p; q] is in D(m), v[p; q] < d}, then 

2 s(*i("OI>; ?]>•••> bN(m)[p; q\h\ ) 
D(m)*\- \ J 1$/ 

- 2 g(*i(™ + l)[r; J], . . .,bN(m + l)[r; 5], A|;)]| < c/4. 
Z>(m+l)[#g] 

so that if E(m)* = {K : V in £(m), 77(F) < </}, then £(m)* = {X(m) 
([pi q] '-[pi <i\ is in JP(W), V(/?; #] < d}, which implies that 

2 \gU(m)(v),..., fl^xn ew) 
:o»)*L \ / 

- S giflant + 1)(/), . . . , aN(m + 1)(/), f ( /))! < c/4. 
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There is a positive integer Tsuch that Td > TJ(JJ). There is d* > 0 such 
that if max{|xx — x[\, . . . , \xN — x'N\, \z — z'\} < d*, then \g(xh . . . , 
xN, z) - g(x[, . . . , xN, z')\< c/(4T). There is d** > 0 such that if 
{(fli(0> • • •> 0JV(O> Z*)}£=I is a sequence such that for each i = 1, . . . , H> 

and k = 1, . . . , N, ak(i) is in the range union of <xk and 2S=ikil < d**, 
then Z?=i|g(<ii(/), • • •> ÖAT(0, **)l < <V(4T). Note that if H g Z> < {£/} 
and 7}{I) è rffor all / in //, then there are not more than Telements in H. 

There is a positive integer Q ^ «* such that 1/2Ö < min{^/*J/4, d/4, 
rf**, rf*}. Let £ ( 0 * = {V : K in £ ( 0 , rj(V) < d). There are not more 
than T elements in E(Q) - E(Q)*. Also, 

d*d/4 > 1/29 > % s r s Mexn - «*(Ô + i)(/)w/) 
*=1 £(C)-£(G)* LE(Q+I)(V0 

and 7?(K) - if(V) < 1/29 for all Fin £ ( 0 . Suppose Fis in E(Q) - £ (0* . 
For some Iv in £(g + 1)(K), 

ifiV) - vVv) ^ ifiV) - V*(*0 < 1/2° • 
This implies that 

d*d/4 > 2 \ak(Q)(V) - ak(Q + IXWAO 

* (s wßxn - «*(Ö + IXA-)IX?»O -1/2°) 
à ( S Ia*(0(^) - ak(Q + l)(Iv)\)(d - d/4), 

so that Zy=1\ak(P)(V) - ak(Q + l)(Iv)\ < d*/3; furthermore, \&V) -
Wv) I è ifiy - fv) = ifiV) - rfilv) < d*, so that |g(fll(ßXF), . . . , 
aN(Q)(V),f(K)) - g(fll(ß + Wv), ...,aN(Q+ 1) (/„),f(/K))| < c/(4J). 
Moreover, 

2 |£(/)| g , ( F - A-) = ^(F) - ,(/„) < d** , 
E(Q+l)(V)-tIv) 

so that 

2 \g(fii(Q + W), •••, aN(Q + 1)(/), ?(/))| < cl(4T) . 
EtQ+l)iV)-Uv) 

Therefore 

£ rA(ßXK), • • -, «*(ßxn f(F)) 
E(Q)L \ 

- L *<«i(ß + !)(/), .. -, a*(Ô + IX/), £(/))] 
E(Q+1)(K) /J 

< c/4 + S [|g(a1(0(F), . . . , aN(Q)(Vl &V)) 
E(Q)-E(Q)* 
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- *fa(ß + 1)(/K), . . . , aN(Q + 1)(/F), £(/F))| 

+ S l*(«i(ß + !)(/), . . . , ^ ( ß + 1)(/), f(/))|] 
£(0+l)(7)-{/ir} 

< c/4 + Tc/(4T) 4- Tc/(4r) < c, 

a contradiction. Therefore 3) implies 1), and therefore 1), 2) and 3) are 
equivalent. 
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