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ANALOGOUS FUNCTION THEORIES FOR THE HEAT, 
WAVE, AND LAPLACE EQUATIONS 

L.R. BRAGG AND J.W. DETTMAN 

ABSTRACT. Transmutation operators are used to establish analog­
ous function theories for standard and radial versions of the heat, 
wave, and Laplace equation. Under these transformations cor­
respondences are established relating fundamental solutions, poly­
nomial solutions, associated functions, generating functions, 
Fourier transform criteria, and expansion theorems. In some cases, 
the transmutation operators must be interpreted in the generalized 
sense as acting on distributions. 

1. Introduction. In 1966, D.V. Widder [11] pointed out numerous an­
alogies between classical function theory and representation theory for 
solutions of the heat equation. He did this by comparing a table of prop­
erties for representations of analytic functions to a corresponding table 
of properties for representations of heat functions. This work did not 
directly connect the results in the two tables by means of constructive 
isomorphisms. One of the purposes of this paper is to indicate how the 
results in related partial differential equations can be used to accomplish 
this. 

In a series of papers, [4-9] the authors have shown how various elliptic, 
parabolic, and hyperbolic partial differential equations can be related 
through transmutation operators. In particular, [8] we have shown that 
various polynomial solutions of elliptic and hyperbolic equations can be 
obtained from the heat polynomials and radial heat polynomials, and 
how these in turn can be used to represent solutions of problems involving 
these equations. In many cases, the transmutation operators do not exist 
in the classical sense and therefore must be interpreted in a generalized 
sense as acting on distributions. Once this is done, it is possible to show 
that classical analytic function theory can be obtained directly from the 
representation theory for heat functions. In this case, representation of 
heat functions in a strip in terms of heat polynomials [10] corresponds to 
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representation of analytic functions inside a circle. Associated heat func­
tions (Appell transforms of heat polynomials) are transformed by the same 
transmutations into reciprocal solutions of Laplace's equation. In this 
case, expansion of heat functions in a half-plane in terms of associated 
heat functions corresponds to representation of analytic functions outside 
a circle using reciprocal powers of a complex variable. 

In the case of the wave equation, the heat polynomials transform into 
basic polynomial solutions which can be used for expansions of solutions 
of the wave equation, which converge inside squares bounded by char­
acteristic lines. The associated heat functions transform into distributions 
which can be used to expand generalized solutions of the wave equation. 

The analogies between these various function theories reveal many 
other striking similarities. In fact, under the relevant transmutation opera­
tors, fundamental solutions (Green's functions) correspond to fundament­
al solutions, generating functions correspond to generating functions, 
and many basic properties of solutions also correspond. There is also a 
similar Fourier transform criterion for expansion in terms of associated 
functions in each case. 

Clearly, these same ideas can be used to develop analogies between 
solutions of other partial differential equations. The same t>ansmutation 
operators mentioned above carry solutions of the radial heat equation 
into solutions of the radial Laplace equation and the radial wave equation. 
In this case, one starts with the radial heat polynomials [2] and associated 
functions and transforms them into corresponding solutions of the Laplace 
and wave equations, for which corresponding expansion theorems are 
developed. These results will be mentioned in this paper. It is well known 
[12] that there are multinomial versions of the heat polynomials and as­
sociated heat functions. These can be used to develop analogous theories 
for the higher dimensional Laplace and wave equations. Other transmuta­
tion operators are available to set the correspondences between the heat 
equation and the equation of generalized axially symmetric potential 
theory (GASPT) and the Euler-Poisson-Darboux equation (EPD), [4, 7]. 
These equations will be treated in a separate paper. 

The plan of this paper is as follows: A summary of all the transforma­
tions needed will be given in section two. Section three will be devoted to 
a review of all the relevant material for the standard heat equation. 
Section four will give the analogous function theory for Laplace's equa­
tion and related analytic functions. The function theory for the wave 
equation will be given in section five, and the analogous results for the 
radial versions of the wave and Laplace equations will be sketched in 
section six. 

2. Transformations. In this section, we summarize the properties of the 
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basic transformations needed later. We begin with the Appell transform 
[1]. If u(x, t) is a solution of the heat equation, 

(2.1) ut(x9 t) = uxx(x9 t), 

then the Appell transform of u(x, t)9 defined by 

(2.2) A{u(x, t)} = k(x, t)u(x/t9 -lit), 

is also a solution of (2.1), where 

(2.3) k(x, t) = (4*r0-1/2e-*2/4< 

is the fundamental solution of (2.1). 
Similarly, if w(r, t) is a solution of the radial heat equation, 

(2.4) ut(r9 0 = urr(r9 t) + (^ - 1) r~i ur(r, t) 

for r > 0, then the generalized Appell transform, defined by 

(2.5) AM{u(r9 0} = kjir, t)u(r\t9 - 1 / 0 , 

also satisfies (2.4), where 

(2.6) ^(r, 0 = (47r0-"/2*-r2/4' 

is the fundamental source solution of (2.4). 
Let h(x91) be a solution of (2.1) for - oo < x < oo, t > 0, with A(x, 0) 

= <j>(x). Then under appropriate assumptions on <j>(x\ according to [9], 

u(x9 y) = -I? f °°s~^e-y2^h{x, s) ds 
\<*% Jo 

(2.7) = -y^se.w-™Kx, W W 
== T&X, t) 

is a solution of the Dirichlet problem: 

(2.8) Uyy(x, y) + w**(*> j) = 0, — oo < x < oo, y > 0, w(x, 0) = <f>(x) . 

In the definition of Tl9 the notation <£a {- • • J^^ refers to Laplace trans­
formation with respect to a, with the variable of the transform y2. If the 
first integral does not exist, as for example, if h(x91) has polynomial growth 
in t, we shall take the transform in the generalized sense as defined 
in Zemanian [13]. All of the functions we wish to transform in this paper 
have Laplace transforms either in the conventional or generalized sense. 
Similarly, if h(x91) is defined as above, 
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v(x, y) = —jL f ° V 1 / 2 e~y2/4s A(x, 5) <fc 

(2.9) = - - ^ ^{^-3/2A(x, l/4a)},_*y2 

= r2Ä(x, /) 

is a solution of the Neumann problem: 

(2.10) vyy(x, y) + vxx(x, j>) = 0, - o o < x < o o , j > > 0 , vy(x, 0) = <f>(x). 

Again referring to the same A(x, t) above, we have according to [5, 6], 

h(x, t) = —JL- f °° er*'*w(xf s) ds , 
Vict Jo 

where w(x, t) is a solution of the Cauchy problem : 

Wtt(x, t) = WXX(X, t)9 -CO < X <CO, - 00 < f < OO , 

w(x, 0) = <j>{x\ wt(x, 0) = 0 . 

Inverting this transform, we have 

(2 12) W{X' ° = tSWs&{(r1'2 h^ 1 / 4 ^ ) } ^ 2 

= r3A(x, 0 

in which «SfJ1!' • -}^/2 denotes the inverse Laplace transform with t2 the 
variable of inversion. 

Similarly, we have 

h(x, t) = - 7 J L = [*s<r*'«Mpc,s)ds 
\/£\7Zt6 JO 

(2.13) w(x, t) = ^ - / r J27 1 {*- 3 / 2 *(*> 1/4(7)W 

= r4A(x, r) 

where w(x, 0 is a solution of the Cauchy problem: 

y>tt(x, t) = wxx(x, t), - oo < x < oo, - oo < t < oo, 

#(JC, 0) = 0, wt(x, 0) = 0(x) . 

3. Heat equation. In this section, we shall recall some of the results of 
Rosenbloom and Widder [10] pertaining to representation of solutions of 
the heat question. A solution h(x, t) of (2.1) satisfying h(x, 0) = xn, n 
a nonnegative integer, is called a heat polynomial of degree n. We denote 
these polynomials by hn(x, t), n = 0, 1, 2, . . . . The heat polynomials 
can be defined in various ways : 
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hn(x, t) = - * f °° k(x - & t)$" dÇ 

(3.1) = k(x, t)*xn 

En/2] 

= » ! 2 * - * / / / ( n - 2 j ) ! y ! , 

or by the generating function 
CO 

(3.2) 2 Ä»(*' 0 ö?Yw! = e°x+a2t • 

We also note the recurrence relation 

(3.3) dhjdx = «ÄW_! . 

An associated heat function, Hn(x, t), is a solution of (2.1) given by the 
Appell transform of Hn(x, t). 

(3.4) HJLx, t) = A{hn(x, 0 } = {-2Yfrk(x, 0 /3*- . 

i/n(*> 0 can also be defined by the generating function 

(3.5) 2 #»(*> 0*V»î = Kx - 2a, *) . 

There is also a bilateral generating function connecting the heat polyno­
mials and the associated functions 

(3.6) £ /*„(*, t)Hn(y, s)/2"nl = k(x - y, t + s), \t\ < s. 

DEFINITION 3.1. An entire function <f>(x) = J^=oanxn is of growth 
(p, T), if and only if 

(3.7) lim sup(n/ep)\an\P/n ^ z. 

We denote this class of growth (p, T) by 9I(p, z) and note that 9[(p', ?) c 
* (p ,r ) i fp '<p . 

We are now in a position to state some of the Rosenbloom-Widder 
results which will be used later, (see also [12]). 

THEOREM 3.1. Let h(x, t) be a solution of (2.1) corresponding to h(x, 0) = 
0(*) = 2J^=O arPçn e 81(2, ?)- If(?-T) holds with equality then the series 

CO 

(3.8) £ aX(x, t) 
n=0 

converges absolutely to h(x, t) in the time strip \t\< l/4r, but does not 
converge everywhere in any including strip. Conversely, if the series (3.8) 
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converges for \t\ < l/4r, then the function h(x, t) defined by (3.8) satisfies 
(2.1) andh(x, 0) is an entire function in S((2, r). 

THEOREM 3.2. If "lim sup^oo (2n/e)\bn\
2/n = <r, then the series 

CO 

(3.9) S M«*> 0 

converges absolutely for t > a to a solution o/(2.1), òwf *foe.y 720/ converge 
everywhere for t > a — e, e > 0. 

THEOREM 3.3. The series (3.9) converges for t > a > 0 if and only if 

(3.10) £ *„#„(*, 0 = 4 r J" é"-*<fa) ds 

wAen? 0(JC) e «(2, a) andbn = 0<»>(O)/[/i! ( -2 / )*] . 

Depending on the entireness properties of 0(JC), a solution of (2.1) 
corresponding to h(x, 0) = <j>{x) may have representations in terms of only 
one of the set {hn(x, t)} and {Hn{x, t)} or in terms of both sets. However, 
both representations cannot exist in the same time strip. In order to obtain 
some criterion for which representation holds, it is useful to obtain a 
relationship between (f>(x) and the function (jj(x) in the integral representa­
tion (3.10). Using the Poisson integral representation along with (3.10). 
it follows that <j>(x) and cjj{x) define the same solution h(x, t) of (2.1) if 

(3.11) _ * _ j°° e-(*-£)2/4* jfâjç = JL f °° eixs-ts2 ^ ds m 

If we assume, for the moment, that <f>(x) e L^ — 00, 00), it is not difficult 
to show that 

(3.12) <fi(x)= f°° #£)e-**</Ç, 
j —00 

i.e., that <p is a Fourier transform of <f>. (See [3] for analogous results for 
the radial heat equation). Similarly, 

(3.13) <j>(x) = JL J % - ^ ( - 5 ) * . 

To the authors' knowledge, the class of entire functions which have 
Fourier transforms which are also entire has not been characterized. How­
ever, the following results provide information about certain subclasses 
of entire functions. 

THEOREM 3.4. Let <j>(x) = £]£Lo anx
n e St(p, a), p < 2, and let h(x, t) 

be a solution of (2.1) corresponding to h(x, 0) = 0(x). Then the series (3.8) 
converges for 0 ^ t < 00. 
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PROOF. Since <f>(x) e 9f(p, a), it follows by Definition 3.1 that for every 
e > 0, there is a positive N such that n ^ N implies \an\ < [(a + e)ep/n]n/P. 
From Theorem 3.4 of [10], we have for — oo < x < oo, 0 ^ t < oo, 
0 < d < oo, n = 1, 2, 3, . . . , 

|AW(*> 01 ^ (1 + t/ö)1/2[2n(t + d)le]»'2e*2/40. 

Using these estimates, we have 

2 w i«,, oi * (i + ̂ v - 1 1 «L^Y'jw±m-. 
n=N «=iVU- « J > € ) 

An application of the ratio test to the last series shows that the dominating 
series converges for 0 g t < oo. 

COROLLARY 3.1. If <f>(x) eß(p, a), p < 2, fAen fAe solution h(x, t) of 
(2.1) corresponding to h(x, 0) = ^(x) cannot be represented in terms of the 
associated functions Hn(x, t). 

If we consider the last result with Theorem 3.3, it follows that, if <j)(x) e 
3f(/0, a), p < 2, there cannot exist a function (j)(x) e %(p\ z), p' ^ 2, z > 0, 
corresponding to 0(x). We need the following definition. 

DEFINITION 3.2. An entire function ^(JC) is said to be of strict class (p, a) 
if <j>(x) e 3f(/0, a) but <f>(x) $ 3f(|o', a), p < p. We denote this class by 

It follows that <f>(x) can give rise to an entire function ^{x) of appro­
priate class only if <f>(x) e 3(S(2, a) for some a > 0. Similarly, ^(x) can give 
rise to an appropriate <f>(x) only if ^(x) e 9(s(2, (7) for some a > 0. Of 
course, the corresponding ^(x), if it exists, must be in 2(5(2, z) for some 
T > 0, An example of a pair of such functions is (j>{x) = e~ax2, a > 0, 
0(x) = V7c/ae~*2/4a. The first gives rise to an expansion (3.8) for |r| < 
l/4tf, while the second an expansion (3.9) for t > l/4a. 

4. Laplace's equation. In developing the analogy between the Rosen-
bloom-Widder theory and analytic function theory, we first note that the 
fundamental solutions for the Dirichlet and Neumann problems corres­
pond to k(x91) under the transformations Ti and T2: 

(4.1) K(x, y) = TMx, t) = (l/tf)(>>/(*2 + y*)) 9 

(4.2) L(x, y) = TJdx, t) = (1/2*) log (** + y*) . 

The first exists in the ordinary sense, while the second is the transform of 
a distribution. 

Taking transforms of the heat polynomials in the generalized sense, we 
have 
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"»(*, y) = Tih„(x, t) 

^W ^<\n- & (n-2k)\k\ (4,7)* W 

= « ! - f e - E ,„ *;,.r.,».. ^{*-1/2_*}„ 
_ 7 ^ *«-2* 7X1/2-fc) 

"• V ^ £o (" - 2Jfc)!4»Jfc! y1"2* 

(4.3) - " ' ^ T g (n-2A:)!4*Â:! v , ^ 

ln/21 

= »! S (-l)*x»-2*j2*/(« - 2A:)!(2fc)! 
*=o 

= Re(z»), n = 0, 1, 2, . . . . 

v„(x, j ) = r2A„(x, 0 
_ - « [ /tffi x"-2* g-3/2 \ 
" V4z^'\h(n-2k)\k\ (4a)"J, < r - ^ 

r _ _ ^ ^ *"-2* A-i/2-t) 
^ ; ~ V% Éo (» - 2*)! 4**! y~l~2k 

ln/21 

= i ! 2 (-l)^w"2^2*+1/(« - 2Jfc)!(2Jfc + 1)! 

= Im(z«+i)/(«.+ 1), n = 0, 1,2, . . . . 
The following recurrence relations follow immediately from the cor­

responding one for the heat polynomials 

(4.5) dun(x, y)/dx = nun_x(x, y), dvn(x, y)/dx = nvn^(x9 y) . 

For the expansion theorems we shall need the obvious bounds 

(4.6) \un(x, y)\ ^ |z|», |vw(x, y)\ ^ |z|-+i/(» + 1) . 

Next we show that the generating functions correspond under the trans­
formations Ti and T2. For the set {un(x, y)}, we have 

(4.7) G(x, y, a) = Txe«** = -2*L Se^tr"****}^. 

Let a = £ 4- f̂ , then 

G(x, * a) = - ^ ^ { ^ % « H ^ ^ ) / 4 - } ^ 

which is analytic for Re(a2) < 0, i.e., £2 < ^2. If we let £ = 0 

G(x,y,irj) = - ^ ^ , { , - 1 / 2 ^ / 4 ^ 

= eixve~vy = e{x+iy)iv . 
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By analytic continuation, we have G(x, y, a) = eixHy)a. Actually, what we 
want is Re G(x, y, a) when a is real. Therefore, our generating function is 

(4.8) (eixHy)a + £?(*-ÔO«)/2 = eax cos ay . 

By a similar argument we can show that the generating function for the set 
K(x, y)} is 

oo 

(4.9) 2] vn(*> y)an\n\ = (eax sin ay)\a . 

For the associated functions, we make use of the identity Hn(x, t) = 
(~2)ndnk(x, t)/dxn. Hence, 

UJLx, y) = TiHJix, t) 

= _^ .^{ ( 7 - i /2 ( _2)«3^(x , ll4a)ld#}r+ 

= ( - 2 ) ^ ^ ( ^ - 1 / 2 ^ , l/4<r)},_y2 

2"nl Im(l/z»+i) = - ^ I m ( ^ + V M 2 * + 2 ) 

2»n\ 
Im(z*+1/|z|2»+2), n = 0, 1,2, 

For the other set of associated functions corresponding to the Neumann 
problem, we first note from (4.2) that T2H0 = (27T)-1 log (x2 + y2\ Since 
we do not want this singular function to enter the expansion theorems, 
we begin the transformation of the associated heat functions starting with 
n = 1. For n ^ 1, H„(x, t) = (-2)^1(3"~1/9*,,~1)s(*» 0 where g(x, t) = 
(x/t)k(x, t). Then 

Vn(x, y) = T2Hn(x, t) 

= "^S'1 ^T^{^~^k(x, Wo)W 

>TT a v * - i ^ ie >*-*y2 
% dx» 

(4M) (-2)* d»-1 (. x \ 

- ^ " I P r * * / * ) = - ^ ( » - l)! RcKl/z-) 

-2*-(>z - 1)! Re(z"/|z|*), « = 1, 2, 3, . . . . 
# 
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For the expansion theorems we will need the obvious bounds : 

(4.12) \UJLx9 y)\ è ( 2 ^ ! / * ) | Z | - < ^ D , \Vn(x, y)\ ^ (2-(n - l ) ! /* ) | z | -» . 

For the generating functions, we make use of equation (3.5) and the 
fact that the fundamental solutions correspond under the transformations 
7 \ and T2. 

oo 

(4.13) 2 U„(x, y)a»/n ! = (l/*)j/((* - a? + y*). 
n=0 

oo 

(4.14) 2 V„(x, y)a»ln\ = (l/2*r)log[((x - 2a)2 + fflipfi + y*)}. 
n=l 

These series converge for \2a\ < \z\. 
The result analogous to (3.6) is 

oo 

(4.15) T>un{x, y)U„tf, y)ß»n] 

= (l/2)[tf(x -ç,v + y) + K(x-Ç,v- y)], 

which converges for \z\ < \Q, £ = £ + irj. This is proved as follows 

oo -I oo 

2 un(x, y)Un(£, 7])ßnn\ = J _ 2 (r/p)» cos nO sin(n + 1)0 , 
»=o p# »=o 

where z = r(cos 0 + / sin 0), £ = p(cos ^ + / sin $). The series converges 
for r < p. Furthermore, 

oo 

L ^ > J ' ) ^ . ) ? ) / 2 » " ! 

1 °° 
= — 2 J (rlp)n c o s «ö[sin it(f> cos ^ + cos n<j) sin $ 

p ^ »=o 
i °° 

= V — S cos <ß[(r/p)n sin «(0 + <j>) + (r/p)* sin «(0 - 0)] 

+ -J—JZ sin 0[(r/p)» cos «(0 - <f>) + (r/p)" cos «(0 - 0 ) ] . 
^pflT n=o 

The terms in brackets can be expressed as real or imaginary parts of power 
series. After some elementary manipulations the result (4.15) follows. 

Next we turn to some expansion theorems. 

THEOREM 4 .1. Let an and cn be real, n = 0 , 1 , 2 , . . . , and lim s u p ^ o d a j 1 ' » 
= lim s u p ^ o o l c j 1 ^ = 1/<J. Then the series 

OO / OO \ 

(4.16) u{x, y) = T> a»un(x, y) = R e { 2 a„z«) 
«=o \«=o / 
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OO / OO \ 

(4.17) v(x, y) = £ c„vn(x, y) = I m ( £ c^/(n + 1)) 
»=o Wo / 

converge to solutions of Laplace's equation for \z\ < o, but do not converge 
everywhere in any including disk. Furthermore, u(x, 0) = <j>(x) = 2 £ L 0

 anxn 

and vy(x, 0) = <fi(x) = 2]^L0
 cnx" are analytic for \x\ < a. Conversely, if 

(4.16) and (4.11) converge for \z\ < o', <j>(x) and cj)(x) are analytic for\x\ < o 
and lim s u p ^ ^ a J1/w ^ \\o, lim sup^oolcj17" g \\a. 

This theorem is the counterpart of Theorem 3.1. The proof should be 
obvious from analytic function theory. Function theory in the complex 
plane can be obtained from these series. Let cn_i = nan, n = 1, 2, 3, . . . , 
an real. Then if/(z) = EZ^oj", Re/(z) = Z^anun(x, JO, and Im/(z) = 
Il"=i(cn-ih)lrci(zn) = £™=0cnvn(x, y), a n d / ( z ) is analytic for \z\ < o. An 
obvious modification will take care of the case where an is complex. 

THEOREM 4.2. If lim s u p ^ ^ 2n\bn\
l/nle = a, then the series 

OO OO 

(4.18) U(x,y) = ZbnU„(x,y), V(x, y) = 2>„FB(x, y) 
«=0 n-\ 

converge absolutely for \z\ > a to solutions of Laplace's equation, but do 
not converge everywhere for \z\ > o — e, e > 0. 

PROOF. Using Stirling's formula for nl, it is easy to show that 
l i m s u p ^ o o ^ r t ì l ò j ) 1 ^ = a. Then using the estimates (4.12) one can show 
that the series (4.18) converge for \z\ > o. The first series diverges for 
x = 0, \z\ < a, while the second series diverges for y = 0, \z\ < o. 

Let bn be real and lim sup„_,002«|ôw|1/w/e = o, then 

OO .. OO 

V(x, y) = (1/2) Z b„Vtt+i(x, y) = -±Z 2»«!è„Re(l/z»+i) 
«=0 w=0 

OO i OO 

£/(*, jO = L b„U„(x, y) = -1- E 2»«!è„Im(l/z»+i) 

/ ( z ) = F(x, y) + /£/(*, j ) = - ^ £ 2*«!Z>„z-<»+i> . »=o 

Obviously the radius of convergence is a and the funct ion/(z) is analytic 
for \z\ > G, so the stated convergence criteria for the series (4.18) cor­
responds to analyticity in the complex plane outside a disk of radius a. 

There is also a theorem analogous to Theorem 3.3. 

THEOREM 4.3. The series J^^0bnUn(x, y) converges for y > o ^ 0, / / 
and only if 
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(4.19) f b„U„(x, y) = - i - f" eW^s) ds , 

where 0(z) e «(1, a) and bn = p*>(p)/[nl(-2i)"]. 

PROOF. If the series converges, lim supn_+002n|èn|
1/»/e ^ #, which implies 

that (])(z) e 21(1, #•). Conversely, since 

£/*(*, >0 = (-2)» ̂ g ^ = - ^ J~J-2w)V^- '^ <fc . 

Then 

2 bnUn(x, y) = J - S ( - 2ö)"V*v-'"» * 
w=0 z " J - o o w = o 

= -J- 1 °° ^^- | 5 | ^(5) <fc 
2.1Z J -TO 

provided the term-by-term integration is valid. It will be if ^(.s)e2l(l, a) 
and y > a. 

Finally, we wish to investigate the question of when a series of heat 
polynomials or associated heat functions can be transformed by T\ or 
T2 term-by-term to obtain corresponding solutions of Laplace's equation. 

THEOREM 4.4. Suppose the series (3.8) converges for \t\ < l/4r to a 
solution 0/(2.1) corresponding to the initial data function <j>(x) = E%Loflnxn-
Then the series 

CO 

(4.20) u(x,y) = ZanTMx,t) 
»=0 

oo 

(4.21) v(x, y) = 2 anT2hn(x9 t) 
n=Q 

converge to solutions of Laplace's equation for \z\ < oo, with u(x9 0) = 
<j>(x) and vy(x, 0) = <j>(x). 

PROOF. By Theorem 3.1, <f>(x) e 31(2, z) and (3.7) holds. Therefore, <f>(x) 
is entire and (4.16) and (4.17) converge for \z\ < oo to harmonic functions 
satisfying the boundary conditions. 

THEOREM 4.5. Suppose the series (3.9) converges for 0 < t < oo, where 
bn corresponds to an entire function ^(x)e2((l, o) as in Theorem 3.3. 
Then the series (4.18) converge to solutions of Laplace's equation for \z\ > o. 

PROOF. By Definition 3.1, lim s u p ^ ^ l ^ l 1 ^ ^ ^ a, where an = 
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( — 2i)nbn. Then using Stirling's formula, it is easy to show that 
lim sup^ooflflj«!)1'» ^ a. The results follow from Theorem 4.2. 

THEOREM 4.6. Suppose the series (3.9) converges for 0 < t < oo, where 
bn corresponds to an entire function <J)(x) e 2f(p, a\ p < 1, as in Theorem 
3.3. Then the series (4.18) converge to solutions of Laplace*s equation for 
\z\ > 0. 

PROOF. By Definition 3.1, lim supn_>oo n\an\p/n/pe ^ a, where an = 
(~2i)nbn. Given e > 0, there is an JV, such that for n ^ N, n2p\bn\p/n/pe g 
(7 + e or |6J ^ 2~n[pe(a + e)//!]*''. Therefore, 

CO I OO 

S 6„t/„(*, ^ 2 (2-«!M)|6fl||z|-'»+i) 

^ i f ; [ ^ + e)/n]''/<'«!/|z|». 
# l z l n=N 

Applying the ratio test to this last series, we can show that 
H%=QbnUn(x9 y) converges for \z\ > 0. A similar argument applies to 
the other series in (4.18). 

THEOREM 4.7. Suppose that the series (3.9) converges for 0 < t < oo, 
where bn is real and corresponds to an entire function </>(x) e 9f(p, a\ p < 1, 
as in Theorem 3.3. Then the function 

oo ^ oo 

/(*) - L ^ z - c + i ' = _ 1 22««!6„z-<»+i) 
n=0 »=0 

= YL KV^iix, y) + iZ bnUn(x, y) 
* »=0 n=0 

is an entire function of l/z of growth (pj(\ — p), (1 — p) (cr^)1^1"^) 

PROOF. AS in Theorem 4.6, for n > N, \bn\ ^ 2-w[^(<7 + e)/n]n/p. Using 
Stirling's formula, 

\cn\ ~ V2/^" w ' f l / 2 ^~ w [^ + e)/«]w/>. 

Now consider (n/ep')\c„\p'/n with p' = p/(l - p). Then 

However, pip - p' - 1 = 0. Hence, 

(n/epllcni"* è (Hicy^lçf'tPnP'^io + e/^/p' 

for n > N. Since £ is arbitrary, 
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lim sup {nj€p')\cn\p
,/n = {apY/plp' = 0 - pfaffi)1"1'*» . 

n-+oo 

Therefore, /(1/z) e «(p/(l - p), (1 - pfo^y/a-t). 

5. Wave equation. In this section, we develop the analogous results for 
the one-dimensional wave equation 

(5.1) wtt(x, t) = wxx(x, t) 

using the transmutation operators r3(2.12) and r4(2.13). When we apply 
these operators to the heat polynomials, the transforms exist in the 
conventional sense. However, when applied to the associated heat func­
tions, they must be considered in the generalized sense and the results 
are distributions. We begin by noting that the fundamental solutions 
correspond under the transformations T3 and T ,̂ i.e., 

D(x, t) = T3k(x, t) = t <fWSfr{<ry2k{x, W W 

= tSKl{e-**}r* = 0/2)P(* + 0 + S{x - t)], 

where ö is the Dirac distribution. In the other case, 

(5.3) 
E(x, t) = TAk(x, t) = ^-^{a-^k(x, l/4a)}^ 

= \s£-\o-^e-*°}a^ = (lßMx + /) - d(x - t)], 

where 0 is the Heaviside distribution. 
When we apply the transformations T3 and T4 to the heat polynomials, 

we have the following sets of polynomials: for n = 0, 1, 2, 

(5.4) 

( in/21 \ 

wn(x, t) = t<s/~K<£-x\n\ S X«-2*/22*Ä;!(H - 2k)\ok+V2\ 
V k=0 )a 

ln/21 

n\ 2 xr-tot**l(n - 2k)\(2k)\ = ((* + 0* + (x - 0w)/2 

C«/2] 

*=0 

t f C«/2] A 

(5.5) C»/2] 

= *!• S x»-2kt2^/(n - 2Jfc)!(2* + 1)! 

= ((JC + 0W+1 - (* - 0w+1)/2(« + 1). 

The following recurrence relations follow directly from (3.3): 

(5.6) dwjdx = «w„_!, dwjdx = nwn^ . 

For the associated functions, we have from (3.4) 
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WJix, t) = TiffJLx, t) - (-2)*{d»ldx»)D(x, t) 

= (~2)»(d<»>(jc + 0 + dM(x - r))/2, n = 0, 1, 2, . . . . 

r„(x, 0 = T4Hn(x, t) == (-2)«0»/3x-)£(x, 0 
(5.8) = ( -2K*^D( X + ,) - jc»-i)(* - ,))/2, „ = 1,2,3, . . . , 

JF0(*, 0 = E(x, t) . 

The generating functions correspond under the transformations Ts and 
r4 as well. For the polynomials (5.4), we have 

2 w*(*> 0*"/*! = T3e
ax+a2t 

n=0 
(5 .9) = / V^^J1^-1^^2^}^ 

= eö*cosh a f. 

For the polynomials (5.5), we have 

2 #„(*, 0an/«! = Tteax+a2t 

(5< 10) = -J- ^/~7f^-l{a-^e^2^}^ 

= (eax/a) sinh af. 

For the associated functions, we make use of the fact that the Dirac 
distribution is a tempered distribution and therefore an ultradistribution 
[13]. Hence, it has a Taylor series expansion, and 

(5.11) 2 wfk*> Olirti = T3k(x - 2a, t) = D(x - 2a, t) 
n=0 

(5.12) 2 J^,(;t, t)a»\n\ = T4A:(x - 2a, 0 = E(x - 2a, *). 
»=o 

Corresponding to (3.6), we have the bilateral generating function 

(5.13) 2 "»(*> t)Wn(y, s)l2*nl - (1/2)[Z)(* - y, s + t) 
»=o 

4- D(x - y, s - t)]. 

Next we consider some expansion theorems. 

THEOREM 5.1. Let lim sup^oolaj1'» = I/a. Then the series 
oo 

(5.14) w(x, 0 = 2 a„w„(x, t) 

converges absolutely for \x\ + \t\ < a and does not converge everywhere 
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for \x\ + |*| < o + e, e > 0. Furthermore, w(x9 t) is a solution of (5.1) 
with w(x, 0) = (fac) = H™=oa„xn

9 analytic for \x\ < o, wt(x, 0) = 0. 
Conversely, if the series (5 A4) converges for \x\ + \t\ < a, then the func­
tion w(x, t) satisfies (5.1) and w(x, 0) is analytic for \x\ < a. 

PROOF. A simple geometric argument shows that the region described 
by \x\ + \t\ < a is the region bounded by the lines x + t = G, JC — t = G, 
t — x = o, and — t — x = a, and in this region \x + t\ < a and 
\x — t\ < o. Since lim sup^oolaj17» == i/o, for every e > 0 there is an 
N such that n ^ N implies \an\

1/n g \\G + e. Let |JC + * | ^ p < <7 and 
|x - f| ^ p < o, then 

^f l ­
an«* + 0" + (x - 0w)/2 ^ 2 ( 1 + aeyipla)». 

Since e is arbitrary and p < a, the comparison series converges, showing 
that the series (5.14) converges absolutely for |x| + \t\ < a and uniformly 
in \x\ + \t\ ^ p < a. A similar argument holds for the second partial 
derivatives with respect to x and t. Therefore, the series (5.14) can be 
differentiated twice with respect to x and t, showing that equation (5.1) 
and the initial conditions are satisfied. At t = 0, the series ££LotfwxM 

diverges if \x\ > G. Conversely, if (5.14) converges for |*| + |f| < G, 
then Tk™=Qanxn — w(x> 0) converges for \x\ < G where w(x, 0) is analytic. 

THEOREM 5.2. Let lim sup^oolaj17* = 1/G. Then the series 
oo 

(5.15) w(x,t) = Ea„w„(x,t) 
n=Q 

converges absolutely for \x\ + \t\ < G and does not converge everywhere 
for \x\ + \t\ < G + e, € > 0. Furthermore, w(x, t) is a solution of (5A) 
with w{x, 0) = 0, wt(x, 0) = <ß{x) = ££Lotf„xw, analytic for \x\ < G. 
Conversely, if the series (5.14) converges for \x\ + \t\ < o, then w(x, t) 
satisfies (5.1) and wt(x, 0) is analytic for \x\ < G. 

PROOF. The proof is very similar to the proof of Theorem 5.1. 

THEOREM 5.3. Suppose the series (3.8) converges for \t\ < 1/4? to a 
solution of (2.1) corresponding to the initial data function <f>(x) = 
J^^L0anx

n. Then the series 
oo 

(5.16) w(x, 0 = S a„T3h„(x, t) 
»=o 

(5.17) iv(x, 0 = 2 anTMx, 0 
n-0 

converge to solutions of (5.1) for \x\ -h \t\ < oo, with w(x, 0) = <j>(x), 
Wt(x, 0) = 0, w{x, 0) = 0, wt(x, 0) = <j>(x). 
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PROOF. By Theorem 3.1, <j>{x) e 2t(2, T) and (3.7) holds. Therefore, ÇJ(JC) 

is entire and (5.14) and (5.15) converge for \x\ + \t\ < oo to solutions 
of the wave equation (5.1) satisfying the stated initial conditions. 

THEOREM 5.4. If lim &\ipn^00(n/ep)\bn\p
/" ^ T, p > 0, then 

(5.18) ZbnWn(x,t), ZbnWn(x,t) 
n=Q n=Q 

converge for all t9 in the topology of ultradistributions [13], to generalized 
solutions of (5A). 

PROOF. We give the proof for the first series. The argument for the 
second will be similar. For any fixed t0 

(5.19) f bnWn(x, t0) « \ £ bn(-2)"[ö^(x.+ t0) + £<»>(* - t0)]. 

We shall show that this series converges in the space of ultradistributions 
Z'. Let <f>(x) be any testing function in Z. Then (Jj e 21(1, a) for some # > 
0, and for every s > 0 there is an N such that n ^ N implies 

\<!>{n){±to)ln\\ ±? [e(a + e)/n]»9 \bn\ ̂  [pe(z + e)/n]»<P. 

Let m > n ^ N, and </(*), ^K*)) denote the continuous linear functional 
fo r / eZ ' . Then 

= 4 - i ; ^2* [^ ) ( - . r o )+^>( /o ) ] , 

W ^ - ^ + ^Oo) ] ! 
1 w 

m 
g 2 2** ![<*(*• +.e)lkY'f[e(a + e)/Jk]*. 

*=* 
A ratio test now shows that the last sum is a Cauchy sequence as n9m -* 
oo. Therefore, since Z' is closed under convergence the series (5.19) 
converges for each f0. 

THEOREM 5.5. The series 2£L0 bnWn(x, t) converges in Z', if and only if 

(5.20) 2 W ( * > 0 = i r ^ ) [ ^ , G r H ) + e-*<*-«>] <fc 

vt>Am? 0(s) » £^=o(2w)w*„ & ö distribution in 3)'. 
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PROOF. Since D(x9 t) = (l/2)[ö(x + t) + ö(x - t)] e Z', it is a Fourier 
transform, i.e., 

D(x9 t) = (l/2)[d(x, +t)+ ö(x - 0] = ^{(l/2^)cos ts} 
1 foo 

= -f— I (eits + e-its)e-txs ds 

where the integral is taken in the generalized sense. Now 

and 
oo 1 f o o ° ° 

»=o ^ J —°° »=o 

provided the term-by-term integration is justified. It is by the continuity 
of the Fourier transform in Z'. 

6. Radial equations. In this section, we shall sketch the analogous results 
for the radial versions of the heat, Laplace, and wave equations. The 
radial heat equation is equation (2.4). The radial heat polynomials are 
given by 

(6.1) BfHr9 t) = nl(4t)"I#>{-r*l4t) 

n = 0, 1, 2, . . . , a = /i/2 - 1, and Ln
a) denotes the generalized Laguerre 

polynomial of degree n and index a. R&r, t) satisfies (2.4) and R%(r9 0) = 
r2n. The associated radial heat functions are defined as generalized Appell 
transforms of radial heat polynomials, 

(6.2) R%{r9 t) = A^Rfrr, t)} = t-**kfa t)Rf£r9 - f ) 

t > 0, n = 0, 1, 2, . . . . They satisfy equation (2.4) for 0 < t < oo. There 
are generating functions for the radial heat polynomials and associated 
functions as follows: 

oo 

(6.3) £ R&r9 t)a»\n\ = ^/a-4-o/( i _ 4aty\ 1 - Aat > 0 
n=0 

oo 

(6.4) 2] RSir, i)a»\n\ = k^r, t + 4a), t + 4a ^ 0 . 

From [2], we state the following expansion theorems for the radial 
heat equation. 
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THEOREM 6.1. Let lim supw_>oo bn\a$-,n\e = \\o < oo. Then the series 

oo 

(6.5) JtfrO-EMfifoO 

converges absolutely in the time strip \t\ < a and not everywhere in any 
including stip. Furthermore, R(r, t) is a solution of (2.4) with R(r, 0) = 
25£=o*y2w. Conversely, if (6.5) converges for \t\ < a, it satisfies (2.4) and 
R(r, 0) = 0(r2) = En^nr2n and<f>(z) e »(1, 1/4*). 

THEOREM 6.2. 7/* lim sup^«, 4n\b„\1/n/e = * < oo, rAew fAe series 

(6.6) tf(r, 0 = 1; Mßfo 0 
n=0 

converges absolutely to a solution of (2 A) for t > a and not everywhere for 
t > a - e9 e > 0. 

The radial Laplace equation for u(r, y) is 

(6.7) uyy + urr + Qi - l)(l/r)nr = 0 , 

r > 0, fi > 1. We can obtain polynomial solutions of (6.7) by applying 
the transformation 7\ to the radial heat polynomials: 

Kir, y) = T^i&r, t) = - ^ ^ { « r ^ Z j f t - rV)W 
(6.8) V * 

= ( - l ) ^ ! A l / 2 ) , - r2)wp c ^ - i - W ^ - r a x 
r(n + 1/2) ^ + r ' ^ » \y2 + r2)> 

where the transform is interpreted in the generalized sense. Here Pn
{a^(z) 

is the Jacobi polynomial of degree n. The polynomials (6.8) satisfy the 
boundary conditions, 

(6.9) Ufa, 0) = #•* dK(r, 0)/dy = 0 . 

Another set of polynomial solutions of (6.7) can be obtained by trans­
forming with T2: 

v%(r>y) = T2RZ(r,t) = - ( / i ! / V 4 ^ ) ^ t f ^ - w - 3 / 2 4 a ) ( - ^ V ) } ^ 2 

(6.10) _ (-l)»n\rOI2) ( 2 2)np ^ W J 2 - / ^ 
" A n + 3/2) W + r ^ » " V^ + r 2 / ' 

where the transform again is in the generalized sense. The polynomials 
(6.10) satisfy the boundary conditions, 

(6.11) vS(r, 0) = 0, (dvS/dy)(r, 0) = r2» . 

Associated functions can be obtained by transforming the associated 
heat functions : 
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(6.12) = ^JSSP ^{^ / 2-1 /2^^(^V)}^2 

= ( -16)^! yf(n + p\l 4- 1/2) piu/2-lfl/2)( y2 - r*\ 
fffi/2+1/2 (y2 + r2\n+(jL/2+V2 n \ y2 4 . r2 J > 

V&r, y) = T2RH(r, t) 

(6.13) 2^/2+1/2 ^<*\y e ^n V 0)}a-+yt 

-(-16)»„1 7X* + fl/2-l/2)p ( l ^ i , - W ^ - r 2 \ 
2^/2+1/2 ^ 2 + ^+^/2-1/2 » ^ 2 + ^ y -

There are various generating functions for the Jacobi polynomials, but 
the one which serves our purposes best is 

S ((1 + a + /3)„/(l + a)„)Ptß\x)a" 
n=0 

( 6 . 1 4 ) = (1 - &)--*-hFi(ïfi + ß + D/2, (a + ß + 2)/2; 

1 + a; 2(x - l)a/(l - dp), 

where (c)„ is the factorial function 

(c)„ = c(c + l)(c + 2) • • • (c + n - 1) = T(c + n)/r(c) 

and 2 ^ is a hypergeometric function. Using (6.14) it can easily be shown 
that 

| j fin + 1/2) ma - D/2 + n) 
(615) ^ Hl / 'W2 + ») aU<kr'y) 

B r(i/2)f({M - p/2) 2Ft((^ - l)/4,Qi + l)/4;^2;4flr8/JP) 

A/^/2) Ä/-/2-1/2 

where J? = 1 + ay2 + ar2. Similarly, 

V A " + 3/2) /X(/*+l)/2 + n) 
J* »! r(ft/2 + n) av»V>y> 

( 6 - 1 6 ) yrmrOfi + D/2) ^ ( f c + l)/4,fr + 2)/4;^2;4ar2IR2) 
r(jlß) RK'2+V2 

For the associated functions, we have the generating functions 

E^-U^yWifi/l + n) 
(6.17) "=° "" 

_ yf((ß + D/2) 2Fx{{ß + 1)/4>QI + 2)/4; ßß; (Aar2\?) 
r(fii2)7cf/2+i/2 pp/2+1/2 
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where p = 16a + y2 + r2, and 

(6.18) "=° "' 
_ -/X(/< - l)/2) 2F!((// - l)/4, Qi + l)/4; /z/2; 6 4 a r y ) 
~ 2/ ,( /z/2)jT" / 2 + 1 / 2 p^/2-1/2 

Next we state, without proofs, some expansion theorems involving the 
polynomials(6.8) and (6.10), and the associated functions (6.12) and(6.13). 

THEOREM 6.3. Let lim supll_+o0|a),|
1/" = l/ff < oo. Then the series 

oo 

(6.19) <r,y) = Z"Mr,y) 

converges absolutely for r2 + y2 < o2 and diverges for r2 + y2 > o2. Fur­
thermore, u(r, y) is a solution of (6.1) with u(r, 0) = ££Lotf,/2w, uy(r, 0) = 0. 
Conversely, if (6.19) converges for y2 + r2 < o2, then lim sup^oolaj17* ^ 
i/a. 

THEOREM 6.4. Lef lim sup^^ool^l17» = \ja < oo. TAe« fAe series 

oo 

(6.20) v(r,y) = 2fl„vg(r,j) 

converges absolutely for r2+ y2 < o2 and diverges for r2 •¥ y2 > a2 when 
y ^ 0. Furthermore, v(r, y) is a solution of (6.1) with v(r, 0) = 0, vy(r, 0) = 
2J£LO*V2W» Conversely, if (6.20) converges for y2 + r2 < a2, then 
lim sup^oolaj1 '* ^ l/<r. 

THEOREM 6.5. Let lim supw_>oo 4n\bn\
1/2n/e = # < oo. TAe« fAe sene? 

oo 

(6.21) t/(»-,j) = i ;è„£/g(r, j) 
w=0 

converges to a solution of (6.1) for y2 + r2 > <72 a« J diverges for y2 + r2 < 
<72 wAe/î 7 ^ 0 . 

THEOREM 6.6. Lef lim supw_>oo An\bn\
V2nje = a < oo. TAefl fAe renes 

(6.22) ^ , 7 ) = 2 è / i ? ( ^ ) 
w=0 

converges to a solution of(6.1) for y2 + r2 > a2 and diverges for y2 + r2 < 
<72. 

The radial wave equation for w(r, r) is 

(6.23) w„ = wrr + -^—— wr, 
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r > 0, (i > 1. We can obtain polynomial solutions of (6.23) by applying 
the transforms T3 to the radial heat polynomials : 

wftr, t) = T*R{fr91)= n\ t^^{a-n-V2L%\-r*c)}^fi 

(6-24) n i r m r*YPw-i,-m)(tl±J*\ 

r(n+ 1/2) U } n \t2-r2j' 

These polynomials satsify the initial conditions 

(6.25) wg(r, 0) = r**9 dw%(r9 0)/dt = 0 . 
Another set of polynomial solutions of (6.23) can be obtained by trans­
forming with r4 : 

w&r, t) = TiRZ(r, t) = n\ /7(3/2)^i{^-3/2 JL^(-r%)}^2 

(6.26) _ nxrcß) r W W W i ^ \ 
" A«+ 3/2) lKl )r» \t2-r*)' 

These polynomials satisfy the initial conditions 

(6.27) w£(r, 0) = 0, dwn(r9 0)/dt = r*» . 

Using the generating relation (6.14), we can obtain the generating func­
tions: 

Ä f(n + 1/2) r(n + (M - l)/2) 

(6 28) ^ " ' /7(" + ^/2) 
_ A1/2)A(^ - l)/2) aFiCQi - l)/4, (// + l)/4; ̂ 2 ; 4ar»AR«) 

rifili) iJ^/2-1/2 

where /? = 1 — at2 + ar2, and 

(6.29) Ä=0 nl n" + M,2) 

_ trOIPrjiii + l)/2 2F!((^ + l)/4, fr + 2)/4, ^2 ,4ar ' / ^ ) 
/ fyß) £„/2+l/2 

We have the following expansion theorems involving the polynomials 
(6.24) and (6.26). 

THEOREM 6.7. Let lim sup„^0O|a„|1/" = 1/<T < oo. TAcn the series 

(6.30) w(r, /) - £ anw&r, t) 

converges absolutely for \r\ + \t\ < a anddiverges for \r\ + \t\ > a. Further 
more, w(r, t) is a solution of (6.23) with w(r, 0) = Tt^fiJ2"' wt(r> 0) = 0. 
Conversely, if (6.30) converges for \r\ + \t\ < a, then lim sup„_>00|a„|1/» ^ 
\\c. 
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THEOREM 6.8. Let lim sup^oolflj17* = ila < oo. Then the series 

(6.31) w(r, t) = L aMir, t) 
w=0 

converges absolutely for \r\ + \t\ < a and diverges for \r\ + \t\ > a 
when t ^ 0. Furthermore, w(r, t) is a solution of (6.23) with w(r, 0) = 0, 
#*(r> 0) = £JS=o<V2w- Conversely, if (6.31) converges for \r\ + \t\ < a 
then lim sup^oolûj1'* g 1/tf. 

The associated functions are obtained by transforming the associated 
radial heat functions with the transformations T3 and T4; 

W&r, t) = TMr, t) 

.-u/2-1/2 
(6.32) * 

_ ta!(-16)" 1_ 
pw-i,im(ll±jl\ 

\fi-fi) j^/2-1/2 • / - (1 /2 _ ^ / 2 - n) (*2 - r2)B+„/2+l/2 ' 

t > r, n not an odd integer. Here the transform is taken is the generalized 
sense and the functions are treated as pseudo functions at t = r. 

W&r, t) = TtR&r, t) 

(6.33) L% 

_ »!(-16)» 
p(u/2-i.-m)(t2 + r2\ 

2^/2-1/2 • f(2/2 - ft/2 - n) ' (fi - r^y+^-vz 

t > r, fi not an odd integer. The transform is again taken in the gener­
alized sense and the functions are treated as pseudo functions at t = r. 

In the case where [i is an odd integer, the associated functions involve 
delta functions and derivatives of delta functions. We present, as illustra­
tion, the case ß = 3. 

(6.34) Wlir, t) = <w! (~16) ' ' S??{o*ntr*I#*(r*o)}r+. 

If we use the fact that certain heat polynomials can be expressed in terms 
of Laguerre polynomials as follows: hlnjrl{x, i) = n\(4t)nL£/2)(--x2l4t), 
and the result in equation (5.7), we obtain the transform 

tjn-^{o-vW2n+l(x, l/4<7)},->,2 

= (-1)«4*»+W tx^{on+le-x2ffL^2\x2a)}a^ 

= (-2)2«+i 3(2w+1)(* + 0 + Ô^Kx - Q B 
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Using this in (6.34), we have 

(6.35) Wlir, t) = ( - 4 ^ + 1 g(2"+1)^ + 0 + ô ^ r - 0 . 

Similarly, we obtain 

(6.36) Wl(r, t) = ( - ^ + 1 W r + 0 - 8°*lr - 0 

If ^ is an odd integer greater than three, the situation is much more com­
plicated. In this case, we can reduce it to consideration of ju = 3 using 
the relation 
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