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PIECEWISE LINEAR APPROXIMATE FIBRATIONS 

R. E. GOAD 

ABSTRACT. A pi map is an approximate fibration if and only if 
all the maps of any iterated mapping cylinder decomposition are 
homotopy equivalences. This leads to a classifying space. 

In this paper we provide a local characterization for piecewise linear 
maps which are also approximate fibrations. We use the approach taken 
by A. E. Hatcher in [5] to apply his higher simple homotopy theory to the 
classification of PL fibrations. This leads to a classifying space for PL 
approximate fibrations. All of the proofs are elementary but, hopefully, 
the results have sufficient intrinsic interest to justify themselves. 

I. Local characterization. We begin with a few basic definitions and 
assumptions. All metric spaces will be equipped with a fixed metric, 
denoted by d(a, b). In the case of the unit interval, / = [0, 1], the metric 
is the usual absolute value of a — b. 

DEFINITION 1.1. (See [1].) A proper surjection p: E -» B of metric 
spaces is an approximate fibration if, for every metric space D, every 
lifting problem 

D x {0} <—> D x I-

has an approximate solution 

Dx {0} 

+B- *(0, oo) 

(0,oo) 
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That is to say, given maps H0, h, and e with the indicated domains and 
ranges such that hi = pH0, there is a homotopy H: D x I -> E such that 

1) Hi = H0 and 
2) d(pH(d, t\ h(d,t)) < eh(dj) for every (d, t)eD x /. (This will be 

denoted briefly as d(pH, h) < e.) 
Note that if B (and hence E) is compact, we may take e to be constant. 

Theorem 2.6 of [2] permits us to replace "any metric space" with "any 
disc" in the choice of D. This theorem, together with the simplicial 
approximation theorem, shows that a PL map which is an approximate 
fibration must be an "approximate fibration in the PL category", and 
conversely. That is, we may require D to be a PL space and h, H0 and 
H to be PL maps as suits our needs. This, of course, is subject to the 
obvious restriction that if H is to be PL, / /0 must be PL also. 

An apparently weaker condition, that of being completely movable, 
has been shown by Coram and Duvall [2] to be equivalent provided that 
E and B are locally compact, separable, metric ANRs. An apparently 
stronger condition, local homotopy product structure, has been shown 
by the author [4] to be equivalent provided, in addition, the fiber has the 
shape of a compact ANR. We shall need the definition of complete 
movability. 

DEFINITION 1.2. [See [2].) A proper map p: E -» B is a completely 
movable map provided that for each be B and each neighborhood U of 
the fiber Fb there is a neighborhood V of Fb in U such that if Fc is any 
fiber in Fand Wis any neighborhood of Fc in V, then there is a homotopy 
H: V x I-> U such that H(x, 0) = x and H(x, \)eWfor each x in V 
and H(x, t) = x for each x in Fc and each t in /. 

PROPOSITION 1.3. Let p: E -> B be a proper surjection of locally compact 
separable metric ANRs. Then p is an approximate fibration if and only if 
p is completely movable. 

PROOF. This is Proposition 3.6 of [2]. 
We shall also need a construction described by Hatcher [5]. 

DEFINITION 1.4. Let 

be a chain of PL maps. The iterated mapping cylinder, ime, M ( / 1 ? . . . ,/*) 
is defined inductively as follows: 

1. M(f) is the mapping cylinder of fl9 and 
2. M(/ l9 . . . ,fk) is the mapping cylinder of the composition 

M(fl9 . . . , /*- i ) — L * - ! - ^ * 
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where P is the projection of the previously defined (iterated) mapping 
cylinder to its image. Thus M(fx,f2) is the mapping cylinder of 

MC/Ì) >LX-^L2 

and so on. 

1.5. Note that there is a canonical projection of M(fl9 . . .,fk) to Jk, 
which can be obtained by iterating the canonical projection of M(fi) to 
/ = J1 . This projection is easier to visualize if one views Ak as the iterated 
mapping cylinder of * - > * . . . - • * , where * denotes any singleton 
space. The projection is then obtained by ignoring the Lt and projecting 
onto the / "factors" of the iterated mapping cylinder. 

DEFINITION 1.6. An iterated mapping cylinder decomposition, imcd, 
of p: E -» B is a triangulation T of B such that, for each simplex a of 
T, p~l(a) is given as M(/f, f% . . . , fa

k) where k = dim a and p : p"\a) -> a 
is the canonical projection. Moreover, these identifications are to be 
compatible with passage to faces of a. 

Hatcher shows [5] that any PL map admits an iterated mapping cylinder 
decomposition. Briefly, one first chooses triangulations of E and B such 
that p is simplicial and then chooses barycentric subdivisions of these 
triangulations such that p is still simplicial. To define the />, one looks 
at a simplex 7* = <£, â\9 02, . . . , ök) spanned by barycenters 07 of sim-
plices Oj such that 07+1 is a face of Oj for each/ If zj is a barycenter such 
that P(TJ) = ôj, then zj maps to <jj and zj fl P~K^j) is a face zJ+i of ry, 
which maps to 07+1. The maps/J are obtained by sending each zj to ?/+i 
and extending linearly. (See [5, p. 105]). 

Hatcher shows that, for PL fibrations, the/^ are always PL contractible 
maps. We show that for PL approximate fibrations they are always 
homotopy equivalences, but first we need a lemma which permits passage 
to subcomplexes. 

LEMMA 1.7. Ifp: E -> B is Û PL approximate fibration, and C is a finite 
subcomplex of B, then p\ : p~\C) -* C is also an approximate fibration. 

PROOF. The approximate homotopy lifting property is almost hereditary 
in that approximate liftings of homotopies in C take values in neighbor
hoods of p~l(C). If e' is chosen carefully, the lifting can be pushed into 
p~l(C) (using a regular neighborhood) in such a way that the total error 
at C is less than e. 

We note in passing that the lemma is also true for an arbitrary sub-
complex C. We shall only use the lemma in the case C = A1. 

PROPOSITION 1.8. If p: E -* B is a PL approximate fibration, then the 
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maps in any iterated mapping cylinder decomposition of p are homotopy 
equivalences. 

PROOF. Let / be such a map and restrict attention to p: p~\I) -• / 
where p~\I) = Mf. According to Lemma 1.7, p is still an approximate 
fibration. For nomenclature, let / = [0, 1], L0 = /^(O), L1 = />-1(l) and 
/ : LQ -• L\. We apply the approximate homotopy lifting property to the 
following lifting problem: 

Mf x {0} c_> Mf x / - * - [0, 1] e = 1/2 

where h(x, s, t) = min(^, 1 — 0 if (x, s)eL0 x / and h(y, t) = 1 — Mf 

Thus we obtain H : M/ x / -» M/ which deforms M/ into L0 x [0, 1/2], 
keeping LQ x {0} in L0 x [0, 1/2]. This can easily be improved to a 
strong deformation retraction of Mf to L0. Thus / i s a homotopy equiv
alence. 

A converse holds. 

PROPOSITION 1.9. Letp: E -> Bbe a PL /wop. 7/7Ae WÛ/?J Ï/Î jowe iterated 
mapping cylinder decomposition for p are all homotopy equivalences, thenp 
is an approximate fibration. 

PROOF. We will show that p is completely movable. From the proof of 
Proposition 1.8 we see that the proposition holds for the special case of 
p: Mf -> /, where/ is a homotopy equivalence from L0 to Z,1# For if in 
Definition 1.2 we take V to be the inverse image of a small open set, we 
have that V is either the cartesian product of L0 with an interval or a copy 
of the open mapping cylinder of / In either case, since/is a homotopy 
equivalence, V will strong deformation retract to any Fc in V. 

For the general case, we reduce to the special case as follows. Let b 
and U be given and choose V = p~l{V) where V is a neighborhood of 
b chosen so that 

1) V intersects each simplex in either an empty or a convex set, 
2) p-\V') g U (p is proper), and 
3) V E [J{à: b e a} \J {b}. Here a represents a simplex of the iterated 

mapping cylinder decomposition of p. For instance, take V to be the 
open star of b in some small triangulation. 

Now, let e e V and p~l{c) E W E V be given. We must show that 
p~~l(V) will deform through C/into W fixing p~l(c). In fact, we show/7-1(F') 
will strong deformation retract to /?_1(c). This is done in separate stages. 
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Stage 1. Let a be the simplex of lowest dimension containing both b 
and c. By downward induction, we may strong deformation retract V 
to p~\a\ using the mapping cylinders. Thus, without loss of generality, 
we may assume that B is a single simplex a and E is a single iterated 
mapping cylinder. 

Stage 2. Join b and c by an interval I. Note that, by convexity, / E V. 
There are four possible cases. 

Case a. b and c are both in à. In this case, V E a, p~l(I) = L0 x I 
and V = p~~l(V') = LQ x V. In this case we can cross a strong deforma
tion retraction of V to c with the identity on L0 to complete the strong 
deformation retraction of V to p~\c). 

Case b. bea and e e da. This case does not occur, by construction of 
V (condition 3). 

Case c. be da and e e da. In this case, by construction of V again, b 
and c must be in a common face z of a. This violates minimality of a and 
so this case does not occur. 

Case d. be da and ce a. In this case, p~\I) is a copy of a mapping 
cylinder from LQ = p~x{c) to Lx — p~~l(b). Now, K' f| 3^ is contained in 
a single face r of da and so, as in Case a, K' f| 9Ö" will strong deformation 
retract to b. This will extend to a strong deformation retraction of V 
to / which is covered by a strong deformation retraction of V to p~Kl). 
Now, since p~l{I) = M/ and / is a homotopy equivalence, the special 
case completes Case d. Thus, in any case, V will strong deformation retract 
to p~l(c). This completes the proof of proposition 1.9. 

COROLLARY 1.10. Letf: E -> B be a PL map. There is a triangulation of 
Bsuch that fis an approximate fibration if and only iff\f~l{Bl):f~l(Bl) -+ 
Bl is an approximate fibration. 

II. The classifying space. In this part we provide some of the basic struc
ture and definitions for working with approximate fibrations in the PL 
category. In this category, the situation is considerably improved over 
the more customary setting in the category of ANRs. For instance, pull-
backs of PL approximate fibrations by PL maps are PL approximate 
fibrations. 

To establish notation, if C is a topological category, the associated 
semi-simplicial set is denoted NC and the geometric realization of NC 
is denoted BC. (See [13].) The associated homotopy category is denoted 
C, that is, the objects of C are those of C, but the morphisms are homo
topy classes of those of C. We shall work with the category H of finite 
simplicial complexes and pi maps, with a full subcategory H(K) with 
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only one object K, and with a full subcategory HK whose objects are all 
homotopy equivalent to K. 

An imcd T of a pi approximate fibration p: E -> B determines a map 
Cp:B-*BH as follows. For any simplex a of T consider p~l{a) — 
m(fi> • • • > fk)- Define Cp{a) to be the image in BH of the simplex 

T fl T fk T 

LQ > L x • . . > L k 

of NH. For each triangulation T of B the assignment /? -> C^ is clearly 
a bijection between the set of ime decompositions of pi approximate fibra-
tions over Tand semisimplicial maps of B to NH. We shall also refer to 
the map B -> NH as Cp. Indeed, all of our results could have been done 
using NH, but we prefer to use the concrete world of spaces and maps 
when possible. We first show that the homotopy class [Cp] in [B, BH] 
is independent of the choices of triangulation T and the maps of the 
decomposition f . . . fk. 

LEMMA ILL Let p: E -> B have imeds for the triangulation T of B whose 
maps are denoted/f and g? respectively for each simplex a of T. The cor
responding classifying maps Cp and Cp are homotopic. 

PROOF. Note that, for each / and a, m(ff) ^ p~l{al) = m(g?) where 
GÌ is the edge of a covered by/?: m(/f) -• a. We thus have 

A - i c — p-Hßd^Li 

and 

Li-i c—+ P~K(Jt) - ^ L{ 

where rf and rg are mapping cylinder contractions and the compositions 
are / ? and gf, respectively. Since each of rf and rg is a homotopy equiv
alence, we have that / a n d g are homotopic. (In fact, more is true, but 
this is all we need.) 

Let hi be a homotopy from/f to g? for each a and /. Now define Ic?: 
L,_! x / -> L,- x /by fc//, 0 = (Ä?(/ , r), r). 

Now, for each a, note that E° = m(/^, . . . , kï) maps to a x / in an 
obvious way. In fact, since each ka

( restricts to a homotopy equivalence 
of Lf_! x {?} to L,- x {t} at each stage, JË'̂  is a parameterized family of pi 
approximate fibrations. It is easily shown by methods similar to those 
of Proposition 1.9 that Ê" -> a x / is a pi approximate fibration and that 
the union of these projections over all a in Tis a pi approximate fibration 
E over B x I. We can easily choose a triangulation of B x I extending 
T on each end so that the projection is simplicial and admits an imcd 
extending the given ones on each end. The map Cp which classifies p: 
Ë -+ B x / is thus a homotopy of Cp to C'p. 
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LEMMA II.2. Let p: E -» B be a PL approximate fibration with a given 
imcd for a triangulation T of B. If T is any subdivision of T, then the 
classifying maps Cpfor T and C'pfor 7" are homotopic. 

PROOF. Consider the PL approximate fibration px\;ExI-+Bx 
L Note that C = {a x {0}, a x {1}; a e T} is a cell decomposition of 
B x di. By 1.4 of [6], choose a simiplicial subdivision of B x /wi th no 
new vertices. Now, consider the subcomplex B x {0, 1} which is now 
triangulated by T on each end. We subdivide B x {0, 1} by retaining T 
on B x {0} and using T on B x {1}. This subdivision of B x {0, 1} 
extends to a subdivision of B x I. Performing a relative subdivision of 
(B x I, B x {0, 1}) if necessary, we obtain an imcd of B x /which agrees 
on each end with that determined by T and T'. The classifying map of 
this imcd is a homotopy from Cp to Cp. This completes the lemma. 

COROLLARY II.3. A PL approximate fibration p: E -* B uniquely de
termines a homotopy class [Cp] in [B, BH], 

The converse to this corollary is false as can be seen from the following 
simple example. Let i: {0} -• [0, 1] be the inclusion and let j : {0} -* {0} 
be the identity. Both maps are homotopy equivalences and so p{: m(i) -• 
I and pji m(j) -+ /a re approximate fibrations. 

Pi \Pj 

They are quite distinct since they have distinct total spaces; however, 
their classifying maps are homotopic via the classifying map for the 
following PL approximate fibration : 

/ ~J lxlx{0} U { 0 } x { 0 } x / 

/ 7 '«' 
This example and the proof of the lemma suggest the following definition. 

DEFINITION I IA Two PL approximate fibrations p: E -> B and p': 
E' -* B are ,4-equivalent if there is a PL approximate fibration p: Ë -> 
B x /suchthat 
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1) p~\B x {0}) is PL homeomorphic to E9 

2) p~\B x {1}) is PL homeomorphic to E\ and 
3) Under these identifications, P = p over B x {0} and P = p' over 

B x {1}. 

Note that ^-equivalence is an equivalence relation on the class of 
PL approximate fibrations. To verify transitivity one will have to show 
that Pi U P2-ËI U Ê2 -+ (B x [0, 1]) U (B x [1, 2]) is a PL approximate 
fibration. This is most easily done using the local characterization of Part 
I. The reflexive and symmetric properties are trivially satisfied. 

Note that the proofs of the two preceeding lemmas actually prove that 
changing a triangulation of B within its equivalence class or changing 
the maps / ? within their homotopy classes yields approximate fibrations 
which are ,4-equivalent. 

DEFINITION II.5. If c: B -• NH is a simplicial map (for a triangulation, 
T of B)9 the induced PL approximate fibration c* : Ec -• B is constructed 
using c a s a blueprint as follows. For each 1-simplex T of T, choose a 
homotopy equivalence fT out of c{z) which is a homotopy class of homo
topy equivalences. This induces a lifting also denoted c: B -> NH. Ec 

is the union of iterated mapping cylinders so that c*~l{a) = m{c{a)). 
These mapping cylinders intersect according to the incidence relations 
of T. That is, if <j\ and a2 share a common face r, then m{c{z)) g m{c{zi)) 
and m(c(z)) E ^(^C^)) a r e identified. Since c is well defined, the pro
jections of m{c{a{)) and m(c(a2)) agree on m(c(z)). Note that by construc
tion c* has an imcd using homotopy equivalences and that Cc* = c. 
Note also that altering our selection of these homotopy equivalences 
within homotopy class will only alter Ec within its ^-equivalence class. 

LEMMA II.6. If c: B -> NH and d: B -> NH are homotopic {via h), then 
c* and d* are A-equivalent. 

PROOF. Via h*. 

LEMMA II.7. If p: E -> B and p': E' -+ B are A-equivalent PL approxi
mate fibrations {via P), then Cp and Cp, are homotopic. 

PROOF. Via Cp. 

If we let [AF{B)] be the set of ^-equivalence classes of pi approximate 
fibrations over B, we obtain maps 6 : [AF{B)] -• [B, NH] and W : [B, NH] -> 
[AF{B)] by setting 8{p) = Cp and W{c) = c*. 

The two preceding lemmas show that 6 and W are well-defined. By 
construction, we have the following proposition. 

PROPOSITION II.8. The following diagram commutes for each pi space B. 
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[AF(B)] AB, NH] 

^ [ £ , NH] 

COROLLARY II.9. Each of the above maps is a bijection. 

COROLLARY 11.10. NH and NH are {weakly) homotopy equivalent semi-
simplicial sets. 

COROLLARY 11.11. There is a bijection between [B, NHK] and the set of 
A-equivalence classes ö/pl approximate fibrations overB with fibre homo-
topy equivalent to K, [AF^B)]. 

PL fibrations and quasi-fibrations. According to A. E. Hatcher [5], 
the space SK of PL contractible maps of spaces simply equivalent to K 
classifies PL fibrations in just the same way as we have done for PL ap
proximate fibrations. We thus obtain a commuting diagram. 

[FK(B)] >[B,SK] 

i i 
[AFK(B)] >[B,NHK] 

Here, [FK(B)] is the set of fiber homotopy equivalence classes of PL 
fibrations over B with homotopy fibre K. Hatcher uses quasi-fibrations 
(QF) (see [3]) to obtain his exact sequence by mapping SK to BGK. It 
would be of interest to compare NH of NH with BGK. The following 
examples may provide some insight. 

EXAMPLE 11.12. Let E be the union of Mt and Mj, where i: {0} -» [0, 1] 
andy: {1} -+ [0, 1] are inclusions. Let E = Mt \J Mj where the intersec
tion is along [0, 1]. Note that both i and j are elementary expansions 
and so they are homotopy equivalences (in fact, simple equivalences). 
The union of the mapping cylinder projections thus provides a PL ap
proximate fibration p: E -+ I = [0, 1]. 

p 

We note that P is not a quasi-fibration. Let h: {*} x / -> / be given by 
#((*> 0) = t. Note that h has unique liftings when restricted to {*} x 
[0, 1/2] and {*} x [1/2, 1], but these do not agree at (*, 1/2). Thus there 
is no lifting. Since p is 1 — 1 over 0, any quasi-lifting (permitting an 
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initial vertical homotopy) would also be a lifting. Thus there is no quasi-
lifting. 

The following example, due to John Walsh, shows that simple equiva
lences may not yield quasi-fibrations even for a single mapping cylinder 
projection. 

EXAMPLE 11.13. Let /be the exponential map wrapping the unit interval 
once around the boundary of the unit disk D. Note t h a t / i s a (simple) 
homotopy equivalence since both / and D are contractible. Thus p: 
Mf -> / is an approximate fibration. 

V 

One can also show that p is not a quasi-fibration by considering a homo
topy of the projection of the I v i which occurs as the mapping cylinder 
restricted to {0, 1} at the top of the diagram. The projection maps each 
copy of Ito I by the identity. We follow this by the homotopy (downstairs) 
h(s, t) = min(.s, 1 — t). It is easily seen that any vertical homotopy of 
the initial inclusion must fix the wedge point, by continuity, so that any 
quasi-lifting would imply a lifting. Again, there is clearly no lifting. 

EXAMPLE 11.14. Le t / : K -+ L be any pi homotopy equivalence and let 
j : K -+ Mf be inclusion. Note that j is contractible over its image and 
that Mf will strong deformation retract to the image of j . Consider p: 
Mf -+ I given by p{k, t) = t for (k, t) e K x / £ Mj and p(m) = 1 for 
m e Mf E Mj. 

\L 

\Mf 

p 

Note that Mj will fibre deformation retract to K x /, a fibration. Thus 
Mj is fibre homotopy equivalent to a fibration and so it is a quasi-fibration 
[3]. Note that / a n d j have the same Whitehead torsion. 

The question of quasi-fibrations now raises some interesting problems. 
Clearly F g QF E AF. One would expect a classifying space somewhere 
between HK and SK to identify the maps in the imcd of a quasi-fibration. 
Our second example shows that a space containing even the simple 
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equivalences is too large. Our first example is, over each half of its range, 
a quasi-fibration. Thus one would expect to find, in addition to some 
possible restriction on the maps, a restriction on the intersection of 
adjacent iterated mapping cylinders. 

Our third example shows that there are quasi-fibrations whose imcd 
maps are not simple. Joint work (unpublished) with John Walsh gener
alizes Example 3 to identify a class of maps which can be used in imcd 
to yield a projection which, over each simplex, is a quasi-fibration. 
Unfortunately it is not known that an arbitrary pi quasi-fibration yields 
maps in this class. Our first example is the limit of PL fibrations. (One 
can simply tilt E a little before projecting.) It is also easily seen that it 
is ^-equivalent to a fibration (hence to a quasi-fibration). 

REMARK II. 15. I propose the following questions. 
1. Is there a quasi-fibration which is not a limit of fibrations? 
2. Is there a PL approximate fibration which is not ,4-equivalent to a 

quasi-fibration? 
3. What class of homotopy equivalences is used in the iterated mapping 

cylinder decomposition of quasi-fibrations? 
4. What conditions are imposed on the intersections? 
Frank Quinn has shown that, provided Wh(ic\{K) © Z>) = 0 for all j , 

an approximate fibration of high dimensional generalized manifolds may 
be approximated by a block bundle projection. See [12] for a precise 
statement of results. A negative answer to questions 1 or 2 would provide 
interesting insight at a fairly accessible level to this very deep work of 
Quinn. 

In view of this apparent scarcity of information about the local topo
logical structure of quasi-fibrations, the following result is perhaps of 
interest, since NH(K) classifies pi quasi-fibrations up to fibre homotopy 
equivalence [14]. 

PROPOSITION 11.16. The inclusion functor I: H(K) -» HK induces a {weak) 
homotopy equivalence NH(K) -» NHK. 

PROOF. The following diagram of categories and functors commutes. 

# * — # * 

Thus, the corresponding diagram of semi-simplicial sets and maps com
mutes. 
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NHK • NHK 

NI 

NH(K)-^NH(K) 

Now, we have shown that NR is a weak homotopy equivalence. / is 
the inclusion of a monoid H(K) into a category HK in which every object 
is isomorphic to every other, thus / is a natural equivalence of categories 
[9, p. 52 and p. 61]. Thus Nlis a weak homotopy equivalence. 

To show that NS is a weak homotopy equivalence, we use the same 
method as for NR. That is to say, we must find something to classify. 
To do this let AF(B, K) be the pi approximate fibrations over B with fibre 
K. Let two such maps be ^-equivalent if they are ^-equivalent by Ë such 
that Ë is in AF(B x /, K). All of the results of the previous section have 
direct analogs in this setting. In particular, NS is a weak homotopy 
equivalence. This completes the proposition. 

COROLLARY II.7. Each pi approximate fibration is A-equivalent to one 
with fixed fibre. 

COROLLARY 11.18. There are bijections between the sets of 
1) A-equivalence classes of pi approximate fibrations, 
2) B-equivalence classes of pi approximate fibrations with fibre K, and 
3) fibre homotopy equivalence classes of pi quasi-fibrations. 

COROLLARY 11.19. There are pi approximate fibrations (over spheres) 
which are not A-equivalent to pi fibrations [5], 

COROLLARY 11.20. The classifying map SK -+ BGK in Hatcher's sequence 
is induced from the inclusion functor of the category of pi contractible maps 
into the category of pi homotopy equivalences. 

Fullbacks. 

DEFINITION 11.21. Given a diagram 

E 

\P 

B'—t+B 

we can extend it to a pullback diagram 

f*(E) — E 

P*\ \P 

B' -J~* B 

NI 
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as follows. Define f*(E) = {(è\ e) G B' X E: f(b') = p(e)}. The maps p* 
and / * are simply restrictions of the projections of B' x £. /?* is called 
the pullback of/? by/ . 

The pullback of an approximate fibration is not, generally, an ap
proximate fibration. However, we do have the following result. 

PROPOSITION 11.22. If p: E -> B is a PL approximate fibration and if 
f:B'-+B is a PL map, then />* : f*(E) -> B' is a PL approximate fibration. 

PROOF: Triangulate E, B, and B' so that all maps are simplicial and 
p has an iterated mapping cylinder decomposition. We shall identify the 
spaces E, B, and B' with these simplicial complexes and we shall show 
that p* admits an imcd with homotopy equivalences. To this end, let a 
be a simplex of B' and suppose f(o) = z. Order the vertices of z con
sistently with the chain of maps 

A fi 
LQ • Li > • • • > Lk 

which describes p~l(z). Thus z = (zi, . . . , rw> and Zj = p(Lj). Now, 
order the vertices of a consistently with the vertices of z: a = <<7i, . . . , 
^„>. We do this for each simplex a of JS' respecting incidence relations. 
That is, the ordering induced on a common face by two simplices is the 
same. This is forced by the corresponding property in B except for vertices 
which have the same image under / . These may be ordered arbitrarily 
with the provision that the same ordering is retained when the same 
vertices are reconsidered as vertices of another simplex. 

We are now ready to identify />*-1(cr) as an ime. First, observe that 
P*~\oj) = P~Kf(^j)) = P~K^k) = Lk for some k. We define the maps gf: 
/?*(ö-y_i) -> p*-K<7j) as follows. If /(<7y_i) = f(ffj) = zk, then gj = 1 : 
Lk -+ Lk. If fiaj-x) = Tk-i and f(aj) = zk9 then gj = /Ä: L M -> LÄ. By 
construction of the pullback p*~x(a) = w(gi, . •., gn). This decomposition 
is consistent with restriction to faces because this was true of the decom
position of p and since we have ordered the vertices of B' consistently 
with those of B. Thus we obtain an imcd for p*. Note that all maps are 
either the identity or maps appearing in the imcd of p. In either case, 
they are homotopy equivalences. Thus, p* is an approximate fibration. 
This concludes Proposition 11.22. 

COROLLARY 11.23. Classifying maps are natural. That is, if p* is the 
pullback by f of a PL approximate fibration p, then [Cp of] = [C^]. 

COROLLARY 11.24. Iff g\ B' -+ B are homotopic andp: E-^BisaFL 
approximate fibration, then the pullbacks by fand g are A-equivalent. 

Larry Husch has pointed out that the theorem on pullbacks is already 
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known; since for PL maps the notions of shape fibration ([10] and [11]) 
and approximate fibration coincide and shape fibrations admit pullbacks 
([7] and [8]). 
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