OSCILLATION PROPERTIES OF FORCED THIRD ORDER DIFFERENTIAL EQUATIONS

W.E. TAYLOR, JR.

Introduction. A great deal of literature exists on the oscillation and nonoscillation of the equation

$$
\begin{equation*}
y^{\prime \prime \prime}+q(t) y=0 \tag{1}
\end{equation*}
$$

where $q(t)$ is a positive continuous function defined on $[0, \infty)$. However, little seems to be known about equations of the type

$$
\begin{equation*}
y^{\prime \prime \prime}+q(t) y=f(t) \tag{2}
\end{equation*}
$$

where $f(t)$ is continuous and changes sign arbitrarily on $[0, \infty)$. The asymptotic properties of

$$
\begin{equation*}
y^{\prime \prime}+q(t) y=f(t) \tag{3}
\end{equation*}
$$

have been studied in several works, some which include the investigations of Burton and Grimmer [1], Keener [3] and Hammett [2]. Hammett, in particular, has given conditions under which the nonoscillatory solutions of (3) tend to zero. The main purpose of this work is to carry out a similar study for (2). The techniques used herein are patterned after those in [6] in which Singh concentrated on equations with retarded arguments.

Recall that a solution of (1) or (2) is called oscillatory if it has arbitrarily large zeros and nonoscillatory otherwise. A solution y is termed quickly oscillatory if there exists an increasing sequence of zeros of $y,\left\{t_{i}\right\}_{i=1}^{\infty}$ with the property that $\lim _{i \rightarrow \infty}\left(t_{i+1}-t_{i}\right)=0$. The concept of quickly oscillatory solutions is also considered in other works, see [4] and [7].

Main result. It is well-known that if z is a nontrivial solution of $z^{\prime \prime}+$ $q(t) z=0$ having at least two zeros on [$c, d]$, then $(d-c) \int_{c}^{d} q(t) d t>4$. This inequality is sometimes called Lyapunov's inequality. Lovelady in [5] recently obtained analogous results for (1),

THEOREM 1. If u is a nontrivial solution of (1) satisfying $u(a)=u(b)=0$, and $u(x) \neq 0$ on (a, b), then

$$
\begin{equation*}
(b-a)^{2} \int_{a}^{b} q(t) d t>8 \tag{4}
\end{equation*}
$$

This result is significant because it yields necessary conditions for (1) to have quickly oscillatory solutions.

ThEOREM 2. If equation (1) has a quickly oscillatory solution, then

$$
\begin{equation*}
\int_{0}^{\infty} q(t) d t=\infty \tag{5}
\end{equation*}
$$

and $\lim \sup _{t \rightarrow \infty} q(t)=\infty$.
Proof. Consider a pair of consecutive zeros $t_{n+1}>t_{n}$ of a quickly oscillatory solution of (1). Using (4) we obtain

$$
\int_{0}^{\infty} q(t) d t>\int_{t_{n}}^{t_{n+1}} q(t) d t>8 /\left(t_{n+1}-t_{n}\right)^{2} \rightarrow \infty
$$

as $n \rightarrow \infty$. Hence (5) holds.
Applying the mean-value theorem for integrals we obtain

$$
\int_{t_{n}}^{t_{n+1}} q(t) d t=q\left(c_{n}\right)\left(t_{n+1}-t_{n}\right)>8 /\left(t_{n+1}-t_{n}\right)^{2}
$$

where $t_{n}<c_{n}<t_{n+1}$, and it follows that $\lim \sup _{t \rightarrow \infty} q(t)=\infty$ and the proof is complete.

We now investigate the asymptotic behavior of certain solutions of (2).
Theorem 3. Suppose $h>0$ is such that $\lim \inf _{t \rightarrow \infty} \int_{t}^{t+h} q(t) d t \geqq \varepsilon>0$ and $\int_{0}^{\infty}|f(t)| d t<\infty$. If y is a nonoscillatory solution of (2) such that $y(t)$ $\rightarrow 0$ as $t \rightarrow \infty$, then $y^{\prime}(t) \rightarrow 0$ as $t \rightarrow \infty$.

Proof. We assume without loss of generality that $y(t)>0$ on some ray $\left[t_{1}, \infty\right)$. Integrating equation (2) from t_{1} to t we have

$$
\begin{equation*}
y^{\prime \prime}(t)-y^{\prime \prime}\left(t_{1}\right)+\int_{t_{1}}^{t} q(s) y(s) d s \leqq \int_{t_{1}}^{t}|f(t)| d t . \tag{6}
\end{equation*}
$$

As $t \rightarrow \infty$, the right side of (6) remains bounded. Also, either

$$
\begin{equation*}
\int_{t_{1}}^{\infty} q(t) y(t) d t=\infty \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{t_{1}}^{\infty} q(t) y(t) d t<\infty \tag{8}
\end{equation*}
$$

If (7) holds, then $y^{\prime \prime}(t) \rightarrow-\infty$ as $t \rightarrow \infty$, a contradiction, since $y(t)>$ 0 for $t>t_{1}$. Thus (8) holds. Since $\int_{t_{1}}^{\infty} q(t) d t=\infty$, it follows that
(9)

$$
\lim _{t \rightarrow \infty} \inf y(t)=0
$$

If $y^{\prime}(t)$ is nonoscillatory, or if $y^{\prime}(t)$ is oscillatory but does not change sign on $\left[t_{1}, \infty\right)$, then $y(t)$ is monotonic and we have (in view of (9)) that $y(t) \rightarrow 0$ as $t \rightarrow \infty$, a contradiction to our hypothesis. Therefore we assume $y^{\prime}(t)$ is oscillatory and changes sign for arbitrarily large values of t. Then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \inf \left|y^{\prime}(t)\right|=0 \tag{10}
\end{equation*}
$$

If $\lim \sup _{t \rightarrow \infty}\left|y^{\prime}(t)\right| \neq 0$, then there is a number $d>0$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \left|y^{\prime}(t)\right|>d>0 \tag{11}
\end{equation*}
$$

From (10) and (11) we can obtain increasing sequences $\left\{T_{n}\right\}_{n=0}^{\infty}$ and $\left\{d_{n}\right\}_{n=1}^{\infty}$ such that
(i) $T_{n} \rightarrow \infty$ as $n \rightarrow \infty, T_{n}>t_{1}$ for $n \geqq 0$,
(ii) $\left|y^{\prime}\left(T_{n}\right)\right|<d / 4$ for $n \geqq 0$,
(iii) $d_{n} \geqq 3 / 4 d$, where d_{n} is the absolute maxium of $\left|y^{\prime}(t)\right|$ on $\left[T_{n-1}, T_{n}\right]$. Let $\left\{z_{n}\right\}$ be such that $\left|y^{\prime}\left(z_{n}\right)\right|=d_{n}$ and $z_{n} \varepsilon\left[T_{n-1}, T_{n}\right]$. Also let $\left(a_{n}, b_{n}\right)$ be the largest open interval containing z_{n} such that $\left|y^{\prime}(t)\right|>d_{n} / 2$ for all t in this interval. Note that $\left|y^{\prime}\left(a_{n}\right)\right|=\left|y^{\prime}\left(b_{n}\right)\right|=d_{n} / 2$ and

$$
\begin{equation*}
d_{n} \geqq\left|y^{\prime}(t)\right|>d_{n} / 2, \text { where } a_{n}<t<b_{n} \tag{12}
\end{equation*}
$$

Since

$$
y^{\prime}\left(z_{n}\right)=y^{\prime}\left(a_{n}\right)+\int_{a_{n}}^{z_{n}} y^{\prime \prime}(t) d t
$$

we have

$$
\begin{equation*}
\left|y^{\prime}\left(z_{n}\right)\right| \leqq\left|y^{\prime}\left(a_{n}\right)\right|+\int_{a_{n}}^{z_{n}}\left|y^{\prime \prime}(t)\right| d t \tag{13}
\end{equation*}
$$

consequently

$$
d_{n} \leqq d_{n} / 2+\int_{a_{n}}^{z_{n}}\left|y^{\prime \prime}(t)\right| d t
$$

or

$$
\begin{equation*}
d_{n} / 2 \leqq \int_{a_{n}}^{z_{n}}\left|y^{\prime \prime}(t)\right| d t \tag{14}
\end{equation*}
$$

It is also true that

$$
\begin{equation*}
d_{n} / 2 \leqq \int_{z_{n}}^{b_{n}}\left|y^{\prime \prime}(t)\right| d t \tag{15}
\end{equation*}
$$

Adding (14) and (15) we have

$$
\begin{equation*}
d_{n} \leqq \int_{a_{n}}^{b_{n}}\left|y^{\prime \prime}(t)\right| d t \tag{16}
\end{equation*}
$$

Applying the Schwartz inequality

$$
\begin{aligned}
d_{n}^{2} \leqq\left[\int_{a_{n}}^{b_{n}}\left|y^{\prime \prime}(t)\right| d t\right]^{2} & \leqq \int_{a_{n}}^{b_{n}} d t \int_{a_{n}}^{b_{n}} y^{\prime \prime 2}(t) d t \\
& =\left(b_{n}-a_{n}\right) \int_{a_{n}}^{b_{n}} y^{\prime \prime 2}(t) d t
\end{aligned}
$$

Integrating $\int_{a_{n}}^{b_{n}} y^{\prime \prime 2}(t) d t$ by parts we obtain

$$
\begin{aligned}
d_{n}^{2} /\left(b_{n}-a_{n}\right) \leqq & y^{\prime}\left(b_{n}\right) y^{\prime \prime}\left(b_{n}\right)-y^{\prime}\left(a_{n}\right) y^{\prime \prime}\left(a_{n}\right)-\int_{a_{n}}^{b_{n}} y^{\prime \prime \prime}(t) y^{\prime}(t) d t \\
= & y^{\prime}\left(b_{n}\right) y^{\prime \prime}\left(b_{n}\right)-y^{\prime}\left(a_{n}\right) y^{\prime \prime}\left(a_{n}\right) \\
& +\int_{a_{n}}^{b_{n}} q(t) y(t) y^{\prime}(t) d t-\int_{a_{n}}^{b_{n}} y^{\prime}(t) f(t) d t \\
\leqq & K+\int_{a_{n}}^{b_{n}} q(t) y(t)\left|y^{\prime}(t)\right| d t+\int_{a_{n}}^{b_{n}}\left|y^{\prime}(t)\right||f(t)| d t
\end{aligned}
$$

where $K=y^{\prime}\left(b_{n}\right) y^{\prime \prime}\left(b_{n}\right)-y^{\prime}\left(a_{n}\right) y^{\prime \prime}\left(a_{n}\right)$. From our choice of a_{n} and b_{n} it follows that $K \leqq 0$.

Thus

$$
\begin{aligned}
d_{n}^{2} /\left(b_{n}-a_{n}\right) & \leqq \int_{a_{n}}^{b_{n}}\left|y^{\prime}(t)\right| q(t) y(t) d t+\int_{a_{n}}^{b_{n}}\left|y^{\prime}(t)\right||f(t)| d t \\
& \leqq d_{n} \int_{a_{n}}^{b_{n}} q(t) y(t) d t+d_{n} \int_{a_{n}}^{b_{n}}|f(t)| d t
\end{aligned}
$$

After dividing both sides by d_{n} we get

$$
\begin{equation*}
d_{n} /\left(b_{n}-a_{n}\right) \leqq \int_{a_{n}}^{b_{n}} q(t) y(t) d t+\int_{a_{n}}^{b_{n}}|f(t)| d t \tag{17}
\end{equation*}
$$

In view of (8), the right side of (17) approaches zero as $n \rightarrow \infty$. Consequently

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=\infty \tag{18}
\end{equation*}
$$

Let N be a positive integer so that $\left|y^{\prime}(t)\right| \geqq 0$ on $\left[a_{N}, b_{N}\right], t_{1}<a_{N}$ and

$$
\begin{equation*}
\int_{a_{N}}^{b_{N}} q(t) y(t) d t<1 \tag{19}
\end{equation*}
$$

If $y^{\prime}(t) \geqq 0$ on $\left[a_{N}, b_{N}\right.$], then from our hypothesis and (18) we can choose N to also satisfy

$$
\int_{1+a_{N}}^{b_{N}} q(t) d t>8 / 3 d
$$

Applying the mean-value theorem to $y(t)$ over $\left[a_{N}, t\right], a_{N} \leqq t \leqq b_{N}$ we have

$$
\begin{equation*}
y(t)=y\left(a_{N}\right)+y^{\prime}(\beta)\left(t-a_{N}\right), a_{N}<\beta<t, \tag{20}
\end{equation*}
$$

so

$$
\begin{aligned}
\int_{a_{N}}^{b_{N}} q(t) y(t) d t & \geqq \int_{a_{N}}^{b_{N}}\left(t-a_{N}\right) q(t) y^{\prime}(\beta) d t \geqq\left(d_{N} / 2\right) \int_{a_{N}}^{b_{N}}\left(t-a_{N}\right) q(t) d t \\
& \geqq(3 / 8) d \int_{a_{N}}^{b_{N}}\left(t-a_{N}\right) q(t) d t \geqq(3 / 8) d \int_{1+a_{N}}^{b_{N}}\left(t-a_{N}\right) q(t) d t \\
& \geqq(3 / 8) d \int_{1+a_{N}}^{b_{N}} q(t) d t>1 .
\end{aligned}
$$

But this contradicts (19). Hence, $d=0$ and $\lim _{t \rightarrow \infty} y^{\prime}(t)=0$. If $y^{\prime}(t)<0$ on $\left[a_{N}, b_{N}\right]$, then instead of (20) we would use

$$
y(t)=y\left(b_{N}\right)+y^{\prime}(\beta)\left(t-b_{N}\right), t<\beta<b_{N}
$$

and the interval $\left[a_{N}+1, b_{N}\right]$ above would be replaced by the interval $\left[a_{N},-1+b_{N}\right]$, after which the same conclusion is obtained.
Now for our main results.
Theorem 4. Suppose $\lim \inf _{t \rightarrow \infty} \int_{t_{t}^{t h}} q(t) d t \geqq \varepsilon>0$ for some $h>0$ and $\int_{0}^{\infty}|f(t)| d t<\infty$. Then every nonoscillatory solution of (2) tends to zero as $t \rightarrow \infty$.

Proof. Let $y(t)$ be a positive nonoscillatory solution of (2) and suppose $y(t) \neq 0$ on $[a, \infty)$. If $y(t) \leftrightarrow 0$ as $t \rightarrow \infty$, then by Theorem 3, $y^{\prime}(t) \rightarrow 0$ as $t \rightarrow \infty$. And we know from the proof of Theorem 3 that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \inf y(t)=0 . \tag{21}
\end{equation*}
$$

Suppose

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup y(t)>c>0 . \tag{22}
\end{equation*}
$$

Then in view of (21) and (22) there exists a sequence $\left\{p_{n}\right\}, n \geqq 0$ with the following properties:
(i) $p_{n} \rightarrow \infty$ as $n \rightarrow \infty, p_{n} \geqq a$ for all n,
(ii) $y\left(p_{n}\right)>c$,
(iii) For each $n \geqq 1$, there is number p_{n}^{\prime} such that $p_{n-1}<p_{n}^{\prime}<p_{n}$ and $y\left(p_{n}^{\prime}\right)<c / 2$.
For $n \geqq 1$, let α_{n} be the largest number less than p_{n} such that $y\left(\alpha_{n}\right)=c / 2$ and β_{n} be the smallest number greater than p_{n} such that $y\left(\beta_{n}\right)=c / 2$.
Applying the mean-value theorem in the interval $\left[\alpha_{n}, p_{n}\right]$, there exists a number t_{n} such that $\alpha_{n}<t_{n}<p_{n}$ and

$$
\begin{equation*}
y^{\prime}\left(t_{n}\right)=\left(y\left(p_{n}\right)-y\left(\alpha_{n}\right)\right) /\left(p_{n}-\alpha_{n}\right)>c / 2\left(\beta_{n}-\alpha_{n}\right) . \tag{23}
\end{equation*}
$$

From Theorem 3, $y^{\prime}\left(t_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Therefore it follows from (23) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\beta_{n}-\alpha_{n}\right)=\infty \tag{24}
\end{equation*}
$$

Moreover from our choice of α_{n} and $\beta_{n}, y(t) \geqq c / 2$ on $\left[\alpha_{n}, \beta_{n}\right.$]. By our previous Theorem we know that $\int_{a}^{\infty} q(t) y(t) d t<\infty$, but

$$
\int_{a}^{\infty} q(t) y(t) d t>\sum_{n=1}^{\infty} \int_{\alpha_{n}}^{\beta_{n}} q(t) y(t) d t \geqq(c / 2) \sum_{n=1}^{\infty} \int_{\alpha_{n}}^{\beta_{n}} q(t) d t \rightarrow \infty \text { as } n \rightarrow \infty
$$

a contradiction, so $\lim _{t \rightarrow \infty} y(t)=0$, and our proof is complete.
Finally we examine some oscillatory solutions of (2).
Theorem 5. Suppose $\int_{0}^{\infty} q(t) d t<\infty$ and $\int|f(t)| d t<\infty$ and let y be a bounded solution of (2). If y is quickly oscillatory and y^{\prime} bounded, then $y \rightarrow 0$.

Proof. Suppose $y \nrightarrow 0$ as $t \rightarrow \infty$. Then $\lim \sup |y(t)|>d>0$ for some constant d. Proceeding in a manner similar to Hammett [2] we have a sequence. t_{n} such that
(i) $t_{n} \rightarrow \infty$ as $n \rightarrow \infty$ for each $n \geqq 1$;
(ii) for each $n \geqq 1,\left|y\left(t_{n}\right)\right|>d$;
(iii) for each $n \geqq 2$, there exist m_{n} such that $t_{n-1}<m_{n}<t_{n}$ and $\left|y\left(m_{n}\right)\right|$ $<d / 2$.
Let $\left[p_{n}, q_{n}\right.$] be the smallest closed interval containing t_{n} such that $\left|y\left(p_{n}\right)\right|=$ $\left|y\left(q_{n}\right)\right|=d / 2$ for $n \geqq 2$. In the interval $\left(p_{n}, t_{n}\right)$ there exist r_{n} such that $y^{\prime}\left(r_{n}\right)=\left(y\left(t_{n}\right)-y\left(p_{n}\right)\right) /\left(t_{n}-p_{n}\right)$ which gives

$$
\begin{aligned}
\left|y^{\prime}\left(r_{n}\right)\right|=\left|y\left(t_{n}\right)-y\left(p_{n}\right)\right| /\left(t_{n}-p_{n}\right) & \geqq\left\|y\left(t_{n}\right)|-| y\left(p_{n}\right)\right\| /\left(t_{n}-p_{n}\right) \\
& >d / 2\left(q_{n}-p_{n}\right)
\end{aligned}
$$

Since $|y(t)|>0$ for $t \in\left(p_{n}, q_{n}\right)$ for each $n \geqq 2$, the pair $\left(p_{n}, q_{n}\right)$ must lie between two consecutive zeros of $y(t)$. Hence $q_{n}-p_{n} \rightarrow 0$ as $n \rightarrow \infty$, consequently $\lim \sup _{n \rightarrow \infty}\left|y^{\prime}\left(r_{n}\right)\right|=\infty$, a contradiction.

References

1. T. Burton and R. Grimmer, on the asymptotic behavior of solutions of $x^{\prime \prime}(t)+$ $a(t) f(x(t))=e(t)$, Pacific J. Math. 41 (1972), 77-88.
2. M.E. Hammett, Nonoscillation properties of a nonlinear differential equation, Proc. Amer. Math. Soc. 30 (1971), 92-96.
3. M.S. Keener, On the solutions of certain linear nonhomogeneous second order differential equations. Appl. Anal. 1 (1971), 57-63.
4. A. Lasota and S.R. Bernfield, Quickly oscillating solutions of autonomous ordinary differential equations. Proc. AMS 30 (1971), 519-526.
5. D.L. Lovelady, The structure of the oscillatory solutions of third order linear differential equations, preprint.
6. B. Singh, Nonoscillation of forced fourth order retarded equations, SIAM J. Appl. Math 28 (1975), 265-269.
7. -, Comparative Study of asymptotic nonoscillation and quick oscillation of second order linear differential equations, J. Math. Phy. Sci. 8 (1974), 363-376.

Department of Mathematics, Texas Southern University, Houston, TX 77004

