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OSCILLATION PROPERTIES OF 
FORCED THIRD ORDER 

DIFFERENTIAL EQUATIONS 

W.E. TAYLOR, JR. 

Introduction. A great deal of literature exists on the oscillation and 
nonoscillation of the equation 

(1) / " + q(t)y = 0 

where q(t) is a positive continuous function defined on [0, oo). However, 
little seems to be known about equations of the type 

(2) / " + q(t)y=f(t) 

where f(t) is continuous and changes sign arbitrarily on [0, oo). The 
asymptotic properties of 

(3) ? + my=M 
have been studied in several works, some which include the investigations 
of Burton and Grimmer [1], Keener [3] and Hammett [2]. Hammett, in 
particular, has given conditions under which the nonoscillatory solutions 
of (3) tend to zero. The main purpose of this work is to carry out a similar 
study for (2). The techniques used herein are patterned after those in [6] 
in which Singh concentrated on equations with retarded arguments. 

Recall that a solution of (1) or (2) is called oscillatory if it has arbitrarily 
large zeros and nonoscillatory otherwise. A solution y is termed quickly 
oscillatory if there exists an increasing sequence of zeros of y, {f,-}^ 
with the property that lim,_+00(rl+1 — /,•) = 0. The concept of quickly 
oscillatory solutions is also considered in other works, see [4] and [7]. 

Main result. It is well-known that if z is a nontrivial solution of z" + 
q(t)z = 0 having at least two zeros on [c, d], then (d — c) Ĵ  q(f)dt > 4. 
This inequality is sometimes called Lyapunov's inequality. Lovelady 
in [5] recently obtained analogous results for (1), 

THEOREM l.Ifuisa nontrivial solution of{\) satisfying u(a) = u(b) = 0, 
andu(x) # 0 on (a, b), then 
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(4) (6-f l )2J%(0*>8, 

This result is significant because it yields necessary conditions for (1) 
to have quickly oscillatory solutions. 

THEOREM 2. If equation (1) has a quickly oscillatory solution, then 

(5) ^q{f)dt = °° 

andlim sup,_*œq(t) = oo. 

PROOF. Consider a pair of consecutive zeros tn+1 > tn of a quickly 
oscillatory solution of (1). Using (4) we obtain 

Jo q(t)dt > J q(t)dt > 8/(fn+1-f„)2 _ oo 

as n -» oo. Hence (5) holds. 
Applying the mean-value theorem for integrals we obtain 

[tn+1q(t)dt = q(cn)(tn+l - tn) > S/(tn+1 - tny 
Jt„ 

where tn < cn < tn+\, and it follows that lim sup^oo q(t) = oo and the 
proof is complete. 

We now investigate the asymptotic behavior of certain solutions of (2). 

THEOREM 3. Suppose h > 0 is such that lim inf,.^ J^A q(t)dt ^ e > 0 
and Jo5\f(t)\dt < °o- Jfy is a nonoscillatory solution of (2) such that y(t) 
•*+ 0 as t -* oo, fAe« / ( f ) -> 0 as t -» oo. 

PROOF. We assume without loss of generality that y{t) > 0 on some ray 
[ti, oo). Integrating equation (2) from ti to t we have 

(6) /'(') - y'Vi) + f q(s)y(s)ds è P 1/(01 dt. 

As t -> oo, the right side of (6) remains bounded. Also, eithei 

(7) q(t)y(t)dt = oo 

or 

(8) I"q(t)y(t)dt < œ. 
J h 

If (7) holds, then y"(t) -* — oo as / -» oo, a contradiction, since j ( 0 > 
0 for f > rlB Thus (8) holds. Since fä q(t)dt = oo, it follows that 
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(9) liminfj<0 = 0. 
t—»oo 

If / ( 0 is nonoscillatory, or if / ( 0 is oscillatory but does not change 
sign on [ti, oo), then y(t) is monotonie and we have (in view of (9)) that 
y(t) -* 0 as t -+ oo, a contradiction to our hypothesis. Therefore we assume 
/ ( 0 is oscillatory and changes sign for arbitrarily large values of /. 
Then 

(10) lim inf | / ( 0 | = 0. 

f-»oo 

If lim sup^oo | / ( 0 | i=- 0, then there is a number d > 0 such that 

(11) lim sup | / (0l > d > 0. 
f->oo 

From (10) and (11) we can obtain increasing sequences {Tn}^Q and 
{<U*~i such that 

(i) Tn -» oo as n -* oo, Tn > tx for n ^ 0, 
(ii) \y\Tn)\< df/4forn^0, 

(iii) dn ^ 3/4rf, where dn is the absolute maxium of | / ( / ) | on [Tn_l9 Tn]. 
Let {zn} be such that \y\zn)\ = dn and zn e [Tn_h Tn]. Also let (a„ bn) 
be the largest open interval containing zn such that | /(0I > dn/2 for all 
tin this interval. Note that \y'(a„)\ = |/(èw)| = djland 

(12) </„ ̂  | / ( 0 | > dJ2, where a„ < t < bn. 

Since 

/(z„)=/(<o + r v « * 
Jtf„ 

we have 

(13) \y\zn)\^\y\an)\+ P V ( 0 l * 

consequently 

dn£dn/2 + P" \y"(t)\dt, 
J a„ 

or 

(14) 4,/2g p |/(0I^, 

It is also true that 

(15) dJ2£ P" | / (0 |Ä, 

Adding (14) and (15) we have 
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(16) dn^Ç"\y"(t)\dt. 
Ja» 

Applying the Schwartz inequality 

di srfV(oi*T£ \""dt f V w 
LJ a» J Ja» Ja» 

= (bn - an) \b"y"Kt)dt. 
Ja» 

Integrating JJj» y"\t)dt by parts we obtain 

dH(bn - an) ^ y'(bn)y"{bn) - y'{an)y"{an)- V"y'"(t)y'(t)dt 
Ja» fa» 

= y\h)y\bn) - y'(.an)y"(an) 

+ 

< 

P' q(tMt)y'(t)dt - {"" y'(t)f(t)dt 
J an Ja» 

K+ ( % ( 0 J ( 0 1/(01* + r 1/(011/(01*. 
J a„ J a» 

where K = y'(bn)y(bn) ~ y'(an)y"(fl»)- From our choice of an and 6n it 
follows that K g 0. 

Thus 

£0/(6. - *„) ̂  fV(0l*('M0* + P 1/(011/101* 
J a» J a„ 

Û dAb"q{t)y{t)dt + dAbn\f{t)\dt. 
J a„ Ja» 

After dividing both sides by dn we get 

(17) dj(bn - an) è \K q{t)y(t)dt + V* \f{t)\dt. 
Ja» Ja» 

In view of (8), the right side of (17) approaches zero asn-> oo. Conse
quently 

(18) lim (bn - an) = oo. 
»- •oo 

Let AT be a positive integer so that | / ( 0 I ^ 0 on [aN, bN], tx < aN and 

(19) \bN q{t)y(t)dt < 1. 
J ON 

I f / ( 0 è 0 on [aN, bN], then from our hypothesis and (18) we can choose 
N to also satisfy 

f" q{t)dt>%ßdy 
Jl+ON 
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Applying the mean-value theorem to y(t) over [aN9 t], aN ^ t ^ bN we 
have 

(20) y(t) = y(aN) + y'(ß)(t - aN)9 aN < ß < t, 

so 

[bN q{t)y{t)dt i> ib\t - aN)q(t)/(ß)dt ^ (dN/2) f"(f - aN)q(t)dt 

è (3/8)rf f" (t - aN)q(t)dt è (3/8)rf f" (f - awM0<& 

£(3/8)rff'" ^ ( 0 ^ > 1. 
J l+ßtf 

But this contradicts (19). Hence, d = 0 and l i m ^ / O ) = 0. If y'(t) < 0 
on [aN9 bN]9 then instead of (20) we would use 

(20') jit) = y(bN) + /(/3)(f - bN)9 t<ß<bN 

and the interval [aN -h 1, è#] above would be replaced by the interval 
[aN, — 1 + éjv], after which the same conclusion is obtained. 

Now for our main results. 

THEOREM 4. Suppose lim inf^«, \t+
t
h q(t)dt ^ e > Ofor some A > 0 and 

Jo* \f(t)\dt <oo. TÂ w every nonoscillatory solution of (2) tends to zero as 
t -» oo. 

Proof. Let y(t) be a positive nonoscillatory solution of (2) and suppose 
y{t) ^ 0 on [a, cx)). If j (0 •* 0 as f -» oo, then by Theorem 3, /(*) -» 0 
as f -> oo. And we know from the proof of Theorem 3 that 

(21) liminfX0 = 0. 
f->oo 

Suppose 

(22) lim sup y(t) > c > 0. 
t-+oo 

Then in view of (21) and (22) there exists a sequence {p„}> n ^ 0 with 
the following properties: 

0) Pn •* °° a s n -* °°> P» ^ a f°r all «, 
(ii) Xpn) > c9 

(iii) For each n ^ 1, there is number /?̂  such that /?„_! < p'n < pn and 
y{p'n) < c/2. 

For w ^ 1, let a„ be the largest number less than/?w such that X<*») = cß 
and /3„ be the smallest number greater than pn such that y(ßn) = c/2. 

Applying the mean-value theorem in the interval [an9 pn]9 there exists 
a number tn such that an < tn < pn and 



20 W.E. TAYLOR 

(23) y'(t„) = (y(pn) - yia„))/(pn - <*„) > c/2(/3„ - ccn). 

From Theorem 3, y'(tn) -• 0 as n -• oo. Therefore it follows from (23) 
that 

(24) lim (ft, - crj = oo. 
«-•oo 

Moreover from our choice of an and ft,, XO ^ c/2 on [an, /3J. By our 
previous Theorem we know that J~ q(t)y(t)dt < oo, but 

I q(t)y(t)dt > 2 q(t)y(t)dt ^ (c/2) 2 I « ( 0 * -> oo as n -> oo, 

a contradiction, so lim,-*«, y{t) = 0, and our proof is complete. 

Finally we examine some oscillatory solutions of (2). 

THEOREM 5. Suppose Jg° q(t)dt < oo and J \f(t)\dt < oo and let y be a 
bounded solution of (2). If y is quickly oscillatory and y' bounded, then 

PROOF. Suppose y +* 0 as t -> oo. Then lim sup \y(t)\ > d > 0 for some 
constant d. Proceeding in a manner similar to Hammett [2] we have a 
sequence. tn such that 

(i) tn -> oo as n -• oo for each « ^ 1 ; 
(ii) for each » ^ 1, |X*»)I > à\ 

(iii) for each /z ^ 2, there exist ww such that tn_i < mn < t„ and \y(mn)\ 
< d/2. 

Let [pn, q„] be the smallest closed interval containing tn such that \y(pn)\ = 
\y(qn)\ = d/2 for « ^ 2. In the interval (pn, t„) there exist rn such that 
/(>*») = (A*H) - y(Pn)Wn - Pn) which gives 

l /(Ol = IK'*) - y(Pn)Wn - A) ^ II KOI - iX/V>ll/('n - Pn) 
> d/2(qn - pn\ 

Since |X*)| > 0 for t e (/?„, #w) for each n ^ 2, the pair (/?„, #„) must lie 
between two consecutive zeros of XO- Hence qn — pn -* 0 as n -> oo, 
consequently lim supn_oo | / ( O I = oo, a contradiction. 
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