CONDITIONS FOR COUNTABILITY OF THE SPECTRUM OF A SEPARABLE C*-ALGEBRA

CHARLES A. AKEMANN*

Most of the notation will be taken from [4]. A will always denote a separable C^* -algebra with spectrum \hat{A} [4; p. 9]. We shall characterize those A with countable spectrum. Other characterizations can be found in [1; p. 292] and [7]. The theorem in this paper answers a question raised by Vaughn Jones.

If f is any state of A, we may define a semi-norm $\|\cdot\|_f$ on A by $\|a\|_f$ $= f(a^*a)^{1/2}$. The state f is faithful exactly when $\|\cdot\|_f$ is a norm. For each equivalence class $\{\phi\}$ in \hat{A} we select a representative ϕ and let H_{ϕ} be the representation space of ϕ . Since A is separable, so is H_{ϕ} . Let $\{\eta_{\phi n}\}_{n=1}^{\infty}$ be an orthonormal basis in H_{ϕ} . There is a unique, minimal central projection x_{ϕ} in the second dual A" of A such that $x_{\phi}A$ " is isomorphic to the weak closure $\phi(A)''$ of $\phi(A)$ on the space H_{ϕ} [4; sect. 3.8]. Let Q denote the quasistate space of A [4; p. 44] and P the set of pure states of A [4; p. 69]. Q is compact, convex and metrizable with the weak* topology, and $P \cup \{0\}$ is the set of extreme points of Q. By Choquet's theorem [5; p. 19], for each $f \in Q$ there is a representing measure m on the Borel subsets of Q, supported within P, such that for any $a \in A$, $\int_Q g(a) dm(g) = f(a)$. For any central projection x_{ϕ} as above let $P_{\phi} = \{g \in P : g(x_{\phi}) = 1\}$. For any unit vector $\eta \in H_{\phi}$, the pure state $g_{\phi\eta}$ on A given by $g_{\phi\eta}(a) = \langle \phi(a)\eta, \eta \rangle$ has a support projection [6; p. 31] $p_{\phi\eta} \leq x_{\phi}$ which is a 1-dimensional projection in A" [4; 3.13.6]. By [4; 3.11.9] there is a sequence $\{a_n\} \subset A$ such that $||a_n||$ ≤ 1 and $a_n \rightarrow (1 - p_{\phi \eta})$ strongly in A". Since each a_n , considered as a function on Q (see [4; p. 69]), is continuous, hence measurable, $p_{\phi\eta}$ is also measurable. Since the series $\sum_{n=1}^{\infty} p_{\phi n}$ converges pointwise on Q to the function represented by x_{ϕ} , then x_{ϕ} is also a measurable function on Q. Consequently P_{ϕ} is a measurable set for every $\phi \in \hat{A}$.

THEOREM. The following are equivalent.

(1) \hat{A} is countable.

(2) There is a faithful state f on A such that, for any proper C^* -subalgebra B of A, the $\|\cdot\|_f$ closure of any bounded ball in B does not contain the unit ball of A.

Copyright © 1982 Rocky Mountain Mathematics Consortium

^{*} Partially supported by NSF Grant funds.

Received by the editors on December 12, 1980.

(3) There is a faithful state fon A such that, for any maximal proper hereditary (see [4; p.14]) C*-subalgebra B of A, the unit ball of B is not dense in the unit ball of A for $\|\cdot\|_{f}$.

PROOF. First assume (1) holds. Then \hat{A} is countable, and the pure states $\{g_{\phi\eta}: \phi \in \hat{A} \text{ and } n = 1, 2, \ldots\}$ can be arranged in a sequence $\{g_k\}_{k=1}^{\infty}$. Set $f = \sum_{k=1}^{\infty} 2^{-k}g_k$. Then f is a faithful state on A'' by [1; p. 292], hence by [2; ch. I, §4, Prop. 5], $\|\cdot\|_f$ gives the strong operator topology on bounded balls of A''. Thus if the $\|\cdot\|_f$ closure of a bounded ball of a C^* -subalgebra B of A contains the unit ball of A, then B is strongly dense in A''. In particular, B separates the points of Q and so B is not a proper subalgebra of A [3; 11.3.2.]. Thus (1) \Rightarrow (2), and (2) \Rightarrow (3) is trivial.

Assume (3) and assume that \hat{A} is uncountable. If f is the faithful state promised by (3), then let m denote the representing measure for f which was described before the statement of the Theorem. Since \hat{A} is uncountable and P_{ϕ} is measurable for each $\phi \in \hat{A}$, we may fix some $\phi \in \hat{A}$ such that $m(P_{\phi}) = 0$. Fix a unit vector $\eta \in H_{\phi}$, and let B be the maximal, hereditary C^* -subalgebra of A defined by $B = \{a \in A : \phi(b)\eta = \phi(b^*)\eta = 0\}$ [4; 3.13.6, 3.10.7, and 1.5.2]. Let $p = p_{\phi\eta}$ be the support projection of $g_{\phi\eta}$ and $\{a_n\}_{n=1}^{\infty}$ be a countable approximate unit for B [4; p.11]. Then $a_n \to (1-p)$ strongly in A'' [4; 3.11.9]. Thus $(1 - x_{\phi})(a_naa_n - a)^*(a_naa_n - a) \to 0$ strongly in A''' since $(1 - x_{\phi}) \leq (1 - p)$.

Thus $g((a_naa_n - a)^*(a_naa_n - a)) \to 0$ for all g in $P \setminus P_{\phi}$, so, as a function on Q, $(a_naa_n - a)^*(a_naa_n - a) \to 0$ almost everywhere with respect to m. By Lebesgue's dominated convergence theorem,

$$||a_n a a_n - a||_f^2 = \int_Q g((a_n a a_n - a)^*(a_n a a_n - a)) dm(g) \to 0.$$

Since B is hereditary and $0 \le a_n a a_n \le ||a|| \ a_n^2 \in B$, then $a_n a a_n \in B$ and $||a_n a a_n|| \le ||a||$. This shows that the unit ball of B is dense in the unit ball of A for $||\cdot||_{\ell_1}$ contradicting (3).

REFERENCES

1. C.A. Akemann, The general Stone-Weierstrass problem, J. Functional Analysis 4(2) (1969), 277-294.

2. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.

3. ——, Les C*-algèbres et leurs representations, Gauthier-Villars, Paris, 1964.

4. G.K. Pedersen, C*-algebras and their Automorphism Groups, LMS Monograph No. 14, Academic Press, London, 1979.

5. R.R. Phelps, Lectures on Choquet's Theorem, Van Nostrand, New York, 1966.

6. S. Sakai, C*-algebras and W*-aglebras, Springer-Verlag, Berlin, 1971.

7. J. Tomiyama, A characterization of C*-algebras whose conjugate spaces are separable, Tohoku Math. J. 15 (1963), 96–102.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CA 93106