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GENERALIZED ALTERNATIVE AND MALCEV ALGEBRAS 

I.R. HENTZEL AND H.F. SMITH 

1. Introduction. As observed in [1], both alternative algebras and Malcev 
algebras satisfy the flexible law 

(1) (*, y, x) = 0, 

and 

(2) (zx, x,y) = -x(z, y, x), 

where the associator (a, b, e) = (ab)c — a(bc). Algebras satisfying in 
addition to (1) and (2) the identity 

(*) (xz, x,y) = ~(z,y, x)x 

were studied initially by Filippov [1], who showed that a prime algebra of 
this sort (with characteristic ^ 2, 3) must be either alternative, Malcev, 
or a Jordan nil-algebra of bounded index 3. In this paper we shall consider 
algebras (with characteristic ^ 2, 3) which satisfy only (1) and (2). (Note 
that algebras opposite to these satisfy instead (1) and (*).) We shall prove 
that in this variety nil-semisimple algebras are alternative, and that prime 
algebras are either alternative or nil of bounded index 3. We shall also 
establish for finite-dimensional algebras the standard Wedderburn princi
pal theorem. 

To begin with, there are some elementary consequences of (1) and (2) 
which need to be noted. We first set 

T(w, x, y, z) = (wx, y, z) - (w, xy, z) + (w, x, yz) 

- w(x, y, z) - (w, x9 y)z. 

It can be verified by simply expanding the associators that in any algebra 
T(w, x, yy z) = 0. Also, the linearized form of (2) is 

(2') (zx, w, y) + {zw, x, y) = -x(z, y, w) - w(z, y, x), 

so that 

F(z, x, w, y) = (zx, w, y) + (zw, x, y) + x(z, y, w) + w(z, y, x) = 0. 
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Then 0 = F(x, x, y, x) — T(x, y, x, x) = 2(x2, y, x), using repeatedly the 
flexible law and its linearization (x, y, z) = — (z, y, x). Thus we arrive at 

(3) (x2, y, x) = 0. 

Algebras which satisfy (1) and (3) are called noncommutative Jordan. 
In particular, provided the characteristic ^ 2, such algebras are power-
associative [5], and as in [2] they satisfy the identity 

(4) (y, x2, z) = x o (y, x, z), 

where the symmetric product aob = ab + ba. 
Next (2) and flexibility imply (x2, x, y) = — x(x, y, x) = 0, that is 

(5) (x2, x, y) = 0. 

Then using (3) and flexibility we have 0 = T(x, x, y, x) = (x, x, yx) — 
(x, x, y)x. Hence flexibility, (2), and (4) give 0 = — (yx, x, x) + (y, x, 
x)x = x(y, x, x) + ( j , x, x)x = (y, x2, x). Thus we also have 

(6) (x, x2, y) = 0. 

We now use linearizations of (5) and (3) to obtain (x2, y, y) = — (xoj, 
x> y) = (y2> x> x)i s ° t n a t 

(7) (x2, y, y) = (y2, x, x). 

Using linearized (7), we then see 2(x3, y9 y) = (x2 o x, y, y) = (y2, x2, x) + 
(y2, x, x2) = 0 by (5), (6), and flexibility. Thus we arrive at 

(8) (x3, y, y) = 0. 

Finally, let A be a noncommutative Jordan algebra (with characteristic 
7* 3), and let N(A) denote the linear span of the set {x3 \x e A}. Then as 
in [1] N(A) is an ideal of A. Hence from (8) actually follows 

(9) (zx3, y9 y) = 0 = (x3z, y, y). 

2. Main Section. Let A be an algebra which satisfies (1) and (2), and 
denote by B(A) the linear span of the set {(y, x, x) | x, y e A}. We shall 
now establish two identities that imply B(A) is an ideal of A. 

PROPOSITION I. If A is a flexible algebra (with characteristic i=- 2) which 
satisfies (2), then the following identities hold in A : 

(10) z(y, x, x) = - (yz, x, x) - {(yx9 z, x) + (yx, x, z)} 

- {(z, x, yx) + (z, yx, x)} + {(xz, y, x) + (xz, x, y)} 

+ {(x, xz, y) +(x, y, xz)} + {(x, xy, z) + (x, z, xy)}, 
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(11) (z, x, x)y = 2{(x, xz, y) + (x, y, xz)} 4- 2{(x, xy, z) + (x, z, xy)} 

+ {(y, z, x2) 4- (y, x2, z)} - (yz, x, x) 

- {(.yx, z, x) + (yx, x, z)} - {(z, x, yx) + (z, .yx, x)} 

4- {(xz, y, x) + (xz, x, y)}. 

PROOF. First (2) implies x(y, x, x) = — (yx, x, x). Then linearization of 
this identity gives 

(i) z(y, x, x) = - (yz, x, x) - {(yx, z, x) + (yx, x, z)} 

- {x(y, z, x) + x(y, x, z)}. 

Next using (2) and flexibility we obtain 0 = x(y, z, x) 4- (yx, x, z) — 
T(x, y, x, z) = {x(y, z, x) + x(y, x, z)} 4- {(yx, x, z) + (x, yx, z)} -
(xy, x, z) 4- (xz, y, x). From this by flexibility one has 

(ii) 0 = {x(y, z, x) 4- x(y, x, z)} - {(z, x, yx) + (z, yx, x)} 

4- {(xz, y, x) 4- (xz, x, y)} - (xz, x, y) - (xy, x, z). 

Now by flexibility 0 = T(x, y, x, y) = (xy, x, y) — (x, yx, y) + (x, y, 
xy) = (xy, x, y) - (x, y o x, y) 4- {(x, xy, y) 4- (x, y, xy)}. But 0 = (y, 
*2> y) = — (*> J7 ° *> JO by flexibility and linearized (6). Substituting this 
in the preceding equation, we have 

0 = (xy, x, y) 4- {(x, xy, y) + (x, y, xy)}. 

Linearization of this last identity gives 

(iii) 0 = (xz, x, y) 4- (xy, x, z) 4- {(x, xz, y) + (x, y, xz)} 

+ {(x, xy, z) 4- (x, z, xy)}. 

If we now add equations (i)-(iii), we arrive at (10). 
To prove (11), we first use linearized (1) repeatedly to show 

(z, x, x)y = (z, x, x)y 4- T(z, x, x, y) 

= (zx, x, y) - (z, x2, y) - (xy, x, z) 4- z(y, x, x) 

= (zx, x, y) 4- (x2, z, y) - (xy, x, z) 

- {(x2, z, y) 4- (z, x2, y)} 4- z(y, x, x) 

= (zx, x, y) 4- (x2, z, y) - (xy, x, z) 

4- {(y, z, x2) 4- (y, x2, z)} 4- z(y, x, x). 

Now by linearized (5) (zx, x, y) 4- (x2, z, y) = - (xz, x, y). Substituting 
this in the preceding equation gives 

(iv) (z, x, x)y = -(xz, x, y) - (xy, x, z) 

4- {(y, z, x2) 4- (y, x2, z)} + z(y, x, x). 
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Then adding equations (iii) and (iv) we obtain 

(v) (z, *, x)y = {(x9 xz9 y) + (x, y9 xz)} + {(*, xy, z) 4- (x, z, xy)} 

+ {(y9 z, x2) + (y9 x2, z)} + z(y9 x, x). 

If we now use the already established (10) to substitute for z(y9 x9 x) in 
(v), we arrive at (11). 

COROLLARY. If A is a flexible algebra (with characteristic ^ 2) which 
satisfies (2). then B(A) is an ideal of A. 

PROOF. This follows immediately from (10) and (11), since 

{(a, b9 c) + (a9 c9 b)} = (a9 b 4- c9 b 4- c) — (a, b9 b) — (a, c, c). 

PROPOSITION 2. If A is a flexible algebra (with characteristic ^ 2, 3) 
which satisfies (2), then the following identity holds in A : 

(12) y*o(z, x, x) = 0. 

PROOF. TO facilitate notation let us set t = y3. We shall now proceed to 
justify a series of equations whose sum will imply (12). First, from (11) 
we have 

(vi) - (z, x9 x)t = - 2{(x9 xz9 t) + (x9 t, xz)} - 2{(x, xt9 z) 4- (x9 z, xt)} 

- {(t9 z, x2) + (t9 x
2
9 z)} + (tz9 x9 x) 

+ {(tx9 z, x) + (tx9 x9 z)} + {(z, x9 tx) + (z, tx9 x)} 

— {(xz9 t9 x) + (xz, x9 t)}. 

We also need 

(vii) 0 = F(z, t9 x9 x) — T(x9 x, t9 z) 

= (zt9 x9 x) -h (zx9 t9 x) + t(z9 x9 x) 4* x(z9 x9 t) 

— (x2
9 t9 z) + (x9 xt9 z) — (x9 x9 tz) + x(x9 t9 z) + (x9 x9 t)z. 

By (2) one has 

(viii) 0 = {(zx9 x9 t) + x(z9 t9 x)} — {(tx9 x9 z) + x(t9 z, x)}. 

From linearized (3) we obtain 

(ix) 0 = - {(x2, t9 z) + (xz9 t9 x) 4- (zx9 t9 x)} 

-2{(x2, z, t) + (xt, z, x) 4- (tx, z, x)}, 

and from linearized (6) 

(x) 0 = {(t9 x
2
9 z) 4- (x9 tx9 z) 4- (x9 xt9 z)} 

+ {(z, x2
9 t) 4- (JC, zx9 t) 4- (x9 xz, t)}. 
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Linearized (7) implies 

(xi) 0 = 2{(x2, z, t) + (x2, t, z) - (tz, x, x) - {zt, x, x)}. 

Since t = y3, from (8) and its linearization we have 

(xii) 0 = {t, x, x)z + {(t, x, zx) + {t, zx, x)} 

4- {x(t, x, z) + x{t, z, x)} - {(/, x, xz) + {t, xz, x)} 

+ {(*, x\ z) + {t, z, x2)}. 

Analogously from (9) follows 

(xiii) 0 = {zt, x, x) + {{tx, x, z) + {tx, z, x)}. 

If we now add equations (vi)-(xiii) and use the linearized flexible law to 
make repeated cancellations in addition to immediate ones, we arrive 
at — (z, x, x)t = t{z, x, x) which is (12). 

COROLLARY. If A is a flexible algebra {with characteristic ^ 2,3) which 
satisfies (2), then B{A) is a nil ideal of bounded index 4. 

PROOF. Of course B{A) is an ideal by the corollary to Proposition 1. 
Let 

n 

1=1 

Then 
n n 

2a* = a3oa = a3° 2] <xt(yi9 xh xt) = 2] at-(a
3o{y.9 xh xt)) = 0 

i=i i=i 

by (12), whence aA = 0. 

We can now prove the following theorems. 

THEOREM 1. Let A be an algebra {with characteristic ^ 2, 3) which 
satisfies {1) and (2). If A is without nonzero nil ideals, then A is alternative. 

PROOF. Since by the preceding corollary B{A) is a nil ideal of A, B{A) = 
(0) by our assumption. Hence {y, x, x) = 0 = (x, x, y) using flexibility, 
and such an algebra is alternative by definition. 

THEOREM 2. Let A be an algebra {with characteristic # 2, 3) which 
satisfies (/) and (2). If A is prime, then A is either alternative or nil of 
bounded index 3. 

PROOF. First let C be any ideal such that (C, y, y) = 0 for all y e A. 
Linearizing this identity, for any ideal D one has 

(xiv) {cd)a = — {cd)d + c{a o d), 
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where ceC,deD,atA. This shows CD is a right ideal of A. Since also 
(>>, y, C) = 0 by flexibility, analogously DC is a left ideal. In particular, 
by (8) we can let C = N(A) and D = B(A), Then since by Proposition 
2 the elements of N(A) and B(A) anti-commute, it follows that K = 
N(A)B(A) is an ideal of A. 

Now K g N(A), so also (K, y, y) = 0 for all j ; e ,4. Thus likewise K2 

is an ideal of A. Furthermore, the elements of K also anti-commute. 
Thus if e, d, a e K, then (cd)a = — (ca)d by (xiv). In particular, (dc)a = 
— (cd)a = (ca)d = — d(ca), which shows the elements of K anti-associate. 
But then for x, y, z, w e K we have 

(xy)(zw) = -x[y(zw)] = x[(yz)w] 

= - M » ] w = K*y)z]w = -(xy)(zw). 

Hence it follows that K2 is an ideal which squares to zero. Since A is prime, 
this means K2 = (0), and so in turn K = (0). Thus either B(A) = (0) or 
N(A) = (0), which completes the proof of the theorem. 

THEOREM 3 (WEDDERBURN PRINCIPAL THEOREM). Let A be a finite-
dimensional algebra which satisfies (1) and (2) over afield with characteristic 
^ 2, 3; and let N be the nil radical of A. If A/N is separable, then A = 
S + N (vector space direct sum) where S is a subalgebra of A such that 
S £ A/N. 

PROOF. If A is without nonzero nil ideals, then by Theorem 1 A is 
alternative. Thus for such a nil-semisimple A we know A = Ax © • • • 
®An, where each A{ is simple with an identity element [6]. Also, since 
A is noncommutative Jordan, from [3] we know that if e is an idempotent 
in A then ^4^(0^/0 = ^«(0 f° r *' = 0, 1. This means that by [4] we can 
now reduce consideration to the case when A itself has an identity element 
1. But then 0 = F(l, JC, x, y) = 2(x, x, j ) , whence (x, x, y) = 0 = (y, JC, x). 
Thus A is alternative, and so the result follows in this case from [6]. 
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2. They would also like to express appreciation to their colleague Leslie 
Hogben, who helped design and implement a computer program utilized 
in this work. 
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