GENERALIZED ALTERNATIVE AND MALCEV ALGEBRAS

I.R. HENTZEL AND H.F. SMITH

1. Introduction. As observed in [1], both alternative algebras and Malcev algebras satisfy the flexible law

$$
\begin{equation*}
(x, y, x)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(z x, x, y)=-x(z, y, x) \tag{2}
\end{equation*}
$$

where the associator $(a, b, c)=(a b) c-a(b c)$. Algebras satisfying in addition to (1) and (2) the identity

$$
\begin{equation*}
(x z, x, y)=-(z, y, x) x \tag{*}
\end{equation*}
$$

were studied initially by Filippov [1], who showed that a prime algebra of this sort (with characteristic $\neq 2,3$) must be either alternative, Malcev, or a Jordan nil-algebra of bounded index 3. In this paper we shall consider algebras (with characteristic $\neq 2,3$) which satisfy only (1) and (2). (Note that algebras opposite to these satisfy instead (1) and (*).) We shall prove that in this variety nil-semisimple algebras are alternative, and that prime algebras are either alternative or nil of bounded index 3 . We shall also establish for finite-dimensional algebras the standard Wedderburn principal theorem.

To begin with, there are some elementary consequences of (1) and (2) which need to be noted. We first set

$$
\begin{aligned}
T(w, x, y, z)= & (w x, y, z)-(w, x y, z)+(w, x, y z) \\
& -w(x, y, z)-(w, x, y) z
\end{aligned}
$$

It can be verified by simply expanding the associators that in any algebra $T(w, x, y, z)=0$. Also, the linearized form of (2) is

$$
(z x, w, y)+(z w, x, y)=-x(z, y, w)-w(z, y, x)
$$

so that

$$
F(z, x, w, y)=(z x, w, y)+(z w, x, y)+x(z, y, w)+w(z, y, x)=0
$$

Then $0=F(x, x, y, x)-T(x, y, x, x)=2\left(x^{2}, y, x\right)$, using repeatedly the flexible law and its linearization $(x, y, z)=-(z, y, x)$. Thus we arrive at

$$
\begin{equation*}
\left(x^{2}, y, x\right)=0 \tag{3}
\end{equation*}
$$

Algebras which satisfy (1) and (3) are called noncommutative Jordan. In particular, provided the characteristic $\neq 2$, such algebras are powerassociative [5], and as in [2] they satisfy the identity

$$
\begin{equation*}
\left(y, x^{2}, z\right)=x \circ(y, x, z) \tag{4}
\end{equation*}
$$

where the symmetric product $a \circ b=a b+b a$.
Next (2) and flexibility imply $\left(x^{2}, x, y\right)=-x(x, y, x)=0$, that is

$$
\begin{equation*}
\left(x^{2}, x, y\right)=0 \tag{5}
\end{equation*}
$$

Then using (3) and flexibility we have $0=T(x, x, y, x)=(x, x, y x)-$ $(x, x, y) x$. Hence flexibility, (2), and (4) give $0=-(y x, x, x)+(y, x$, $x) x=x(y, x, x)+(y, x, x) x=\left(y, x^{2}, x\right)$. Thus we also have

$$
\begin{equation*}
\left(x, x^{2}, y\right)=0 \tag{6}
\end{equation*}
$$

We now use linearizations of (5) and (3) to obtain $\left(x^{2}, y, y\right)=-(x \circ y$, $x, y)=\left(y^{2}, x, x\right)$, so that

$$
\begin{equation*}
\left(x^{2}, y, y\right)=\left(y^{2}, x, x\right) \tag{7}
\end{equation*}
$$

Using linearized (7), we then see $2\left(x^{3}, y, y\right)=\left(x^{2} \circ x, y, y\right)=\left(y^{2}, x^{2}, x\right)+$ $\left(y^{2}, x, x^{2}\right)=0$ by (5), (6), and flexibility. Thus we arrive at

$$
\begin{equation*}
\left(x^{3}, y, y\right)=0 \tag{8}
\end{equation*}
$$

Finally, let A be a noncommutative Jordan algebra (with characteristic $\neq 3$), and let $N(A)$ denote the linear span of the set $\left\{x^{3} \mid x \in A\right\}$. Then as in [1] $N(A)$ is an ideal of A. Hence from (8) actually follows

$$
\begin{equation*}
\left(z x^{3}, y, y\right)=0=\left(x^{3} z, y, y\right) \tag{9}
\end{equation*}
$$

2. Main Section. Let A be an algebra which satisfies (1) and (2), and denote by $B(A)$ the linear span of the set $\{(y, x, x) \mid x, y \in A\}$. We shall now establish two identities that imply $B(A)$ is an ideal of A.

Proposition 1. If A is a flexible algebra (with characteristic $\neq 2$) which satisfies (2), then the following identities hold in A :

$$
\begin{align*}
z(y, x, x)= & -(y z, x, x)-\{(y x, z, x)+(y x, x, z)\} \tag{10}\\
& -\{(z, x, y x)+(z, y x, x)\}+\{(x z, y, x)+(x z, x, y)\} \\
& +\{(x, x z, y)+(x, y, x z)\}+\{(x, x y, z)+(x, z, x y)\}
\end{align*}
$$

$$
\begin{align*}
(z, x, x) y= & 2\{(x, x z, y)+(x, y, x z)\}+2\{(x, x y, z)+(x, z, x y)\} \tag{11}\\
& +\left\{\left(y, z, x^{2}\right)+\left(y, x^{2}, z\right)\right\}-(y z, x, x) \\
& -\{(y x, z, x)+(y x, x, z)\}-\{(z, x, y x)+(z, y x, x)\} \\
& +\{(x z, y, x)+(x z, x, y)\} .
\end{align*}
$$

Proof. First (2) implies $x(y, x, x)=-(y x, x, x)$. Then linearization of this identity gives

$$
\begin{align*}
z(y, x, x)= & -(y z, x, x)-\{(y x, z, x)+(y x, x, z)\} \tag{i}\\
& -\{x(y, z, x)+x(y, x, z)\}
\end{align*}
$$

Next using (2) and flexibility we obtain $0=x(y, z, x)+(y x, x, z)-$ $T(x, y, x, z)=\{x(y, z, x)+x(y, x, z)\}+\{(y x, x, z)+(x, y x, z)\}-$ $(x y, x, z)+(x z, y, x)$. From this by flexibility one has

$$
\begin{align*}
0= & \{x(y, z, x)+x(y, x, z)\}-\{(z, x, y x)+(z, y x, x)\} \tag{ii}\\
& +\{(x z, y, x)+(x z, x, y)\}-(x z, x, y)-(x y, x, z) .
\end{align*}
$$

Now by flexibility $0=T(x, y, x, y)=(x y, x, y)-(x, y x, y)+(x, y$, $x y)=(x y, x, y)-(x, y \circ x, y)+\{(x, x y, y)+(x, y, x y)\}$. But $0=(y$, $\left.x^{2}, y\right)=-(x, y \circ x, y)$ by flexibility and linearized (6). Substituting this in the preceding equation, we have

$$
0=(x y, x, y)+\{(x, x y, y)+(x, y, x y)\} .
$$

Linearization of this last identity gives

$$
\begin{align*}
0= & (x z, x, y)+(x y, x, z)+\{(x, x z, y)+(x, y, x z)\} \tag{iii}\\
& +\{(x, x y, z)+(x, z, x y)\} .
\end{align*}
$$

If we now add equations (i)-(iii), we arrive at (10).
To prove (11), we first use linearized (1) repeatedly to show

$$
\begin{aligned}
(z, x, x) y= & (z, x, x) y+T(z, x, x, y) \\
= & (z x, x, y)-\left(z, x^{2}, y\right)-(x y, x, z)+z(y, x, x) \\
= & (z x, x, y)+\left(x^{2}, z, y\right)-(x y, x, z) \\
& -\left\{\left(x^{2}, z, y\right)+\left(z, x^{2}, y\right)\right\}+z(y, x, x) \\
= & (z x, x, y)+\left(x^{2}, z, y\right)-(x y, x, z) \\
& +\left\{\left(y, z, x^{2}\right)+\left(y, x^{2}, z\right)\right\}+z(y, x, x) .
\end{aligned}
$$

Now by linearized (5) $(z x, x, y)+\left(x^{2}, z, y\right)=-(x z, x, y)$. Substituting this in the preceding equation gives

$$
\begin{align*}
(z, x, x) y= & -(x z, x, y)-(x y, x, z) \tag{iv}\\
& +\left\{\left(y, z, x^{2}\right)+\left(y, x^{2}, z\right)\right\}+z(y, x, x) .
\end{align*}
$$

Then adding equations (iii) and (iv) we obtain

$$
\text { (v) } \begin{aligned}
(z, x, x) y= & \{(x, x z, y)+(x, y, x z)\}+\{(x, x y, z)+(x, z, x y)\} \\
& +\left\{\left(y, z, x^{2}\right)+\left(y, x^{2}, z\right)\right\}+z(y, x, x) .
\end{aligned}
$$

If we now use the already established (10) to substitute for $z(y, x, x)$ in (v), we arrive at (11).

Corollary. If A is a flexible algebra (with characteristic $\neq 2$) which satisfies (2), then $B(A)$ is an ideal of A.

Proof. This follows immediately from (10) and (11), since

$$
\{(a, b, c)+(a, c, b)\}=(a, b+c, b+c)-(a, b, b)-(a, c, c)
$$

Proposition 2. If A is a flexible algebra (with characteristic $\neq 2,3$) which satisfies (2), then the following identity holds in A :

$$
\begin{equation*}
y^{3} \circ(z, x, x)=0 \tag{12}
\end{equation*}
$$

Proof. To facilitate notation let us set $t=y^{3}$. We shall now proceed to justify a series of equations whose sum will imply (12). First, from (11) we have

$$
\text { (vi) } \begin{aligned}
-(z, x, x) t= & -2\{(x, x z, t)+(x, t, x z)\}-2\{(x, x t, z)+(x, z, x t)\} \\
& -\left\{\left(t, z, x^{2}\right)+\left(t, x^{2}, z\right)\right\}+(t z, x, x) \\
& +\{(t x, z, x)+(t x, x, z)\}+\{(z, x, t x)+(z, t x, x)\} \\
& -\{(x z, t, x)+(x z, x, t)\} .
\end{aligned}
$$

We also need
(vii) $0=F(z, t, x, x)-T(x, x, t, z)$

$$
\begin{aligned}
= & (z t, x, x)+(z x, t, x)+t(z, x, x)+x(z, x, t) \\
& -\left(x^{2}, t, z\right)+(x, x t, z)-(x, x, t z)+x(x, t, z)+(x, x, t) z
\end{aligned}
$$

By (2) one has
(viii) $\quad 0=\{(z x, x, t)+x(z, t, x)\}-\{(t x, x, z)+x(t, z, x)\}$.

From linearized (3) we obtain

$$
\begin{align*}
0= & -\left\{\left(x^{2}, t, z\right)+(x z, t, x)+(z x, t, x)\right\} \tag{ix}\\
& -2\left\{\left(x^{2}, z, t\right)+(x t, z, x)+(t x, z, x)\right\}
\end{align*}
$$

and from linearized (6)

$$
\begin{align*}
0= & \left\{\left(t, x^{2}, z\right)+(x, t x, z)+(x, x t, z)\right\} \tag{x}\\
& +\left\{\left(z, x^{2}, t\right)+(x, z x, t)+(x, x z, t)\right\} .
\end{align*}
$$

Linearized (7) implies

$$
\begin{equation*}
0=2\left\{\left(x^{2}, z, t\right)+\left(x^{2}, t, z\right)-(t z, x, x)-(z t, x, x)\right\} . \tag{xi}
\end{equation*}
$$

Since $t=y^{3}$, from (8) and its linearization we have

$$
\begin{align*}
0= & (t, x, x) z+\{(t, x, z x)+(t, z x, x)\} \tag{xii}\\
& +\{x(t, x, z)+x(t, z, x)\}-\{(t, x, x z)+(t, x z, x)\} \\
& +\left\{\left(t, x^{2}, z\right)+\left(t, z, x^{2}\right)\right\}
\end{align*}
$$

Analogously from (9) follows

$$
\begin{equation*}
0=(z t, x, x)+\{(t x, x, z)+(t x, z, x)\} . \tag{xiii}
\end{equation*}
$$

If we now add equations (vi)-(xiii) and use the linearized flexible law to make repeated cancellations in addition to immediate ones, we arrive at $-(z, x, x) t=t(z, x, x)$ which is (12).

Corollary. If A is a flexible algebra (with characteristic $\neq 2,3$) which satisfies (2), then $B(A)$ is a nil ideal of bounded index 4.

Proof. Of course $B(A)$ is an ideal by the corollary to Proposition 1. Let

$$
a=\sum_{i=1}^{n} \alpha_{i}\left(y_{i}, x_{i}, x_{i}\right) \in B(A) .
$$

Then

$$
2 a^{4}=a^{3} \circ a=a^{3} \circ \sum_{i=1}^{n} \alpha_{i}\left(y_{i}, x_{i}, x_{i}\right)=\sum_{i=1}^{n} \alpha_{i}\left(a^{3} \circ\left(y_{i}, x_{i}, x_{i}\right)\right)=0
$$

by (12), whence $a^{4}=0$.
We can now prove the following theorems.
Theorem 1. Let A be an algebra (with characteristic $\neq 2,3$) which satisfies (1) and (2). If A is without nonzero nil ideals, then A is alternative.

Proof. Since by the preceding corollary $B(A)$ is a nil ideal of $A, B(A)=$ (0) by our assumption. Hence $(y, x, x)=0=(x, x, y)$ using flexibility, and such an algebra is alternative by definition.

Theorem 2. Let A be an algebra (with characteristic $\neq 2,3$) which satisfies (1) and (2). If A is prime, then A is either alternative or nil of bounded index 3.

Proof. First let C be any ideal such that $(C, y, y)=0$ for all $y \in A$. Linearizing this identity, for any ideal D one has

$$
\begin{equation*}
(c d) a=-(c a) d+c(a \circ d) \tag{xiv}
\end{equation*}
$$

where $c \in C, d \in D, a \in A$. This shows $C D$ is a right ideal of A. Since also (y, y, C) $=0$ by flexibility, analogously $D C$ is a left ideal. In particular, by (8) we can let $C=N(A)$ and $D=B(A)$. Then since by Proposition 2 the elements of $N(A)$ and $B(A)$ anti-commute, it follows that $K=$ $N(A) B(A)$ is an ideal of A.

Now $K \subseteq N(A)$, so also $(K, y, y)=0$ for all $y \in A$. Thus likewise K^{2} is an ideal of A. Furthermore, the elements of K also anti-commute. Thus if $c, d, a \in K$, then $(c d) a=-(c a) d$ by (xiv). In particular, $(d c) a=$ $-(c d) a=(c a) d=-d(c a)$, which shows the elements of K anti-associate. But then for $x, y, z, w \in K$ we have

$$
\begin{aligned}
(x y)(z w) & =-x[y(z w)]=x[(y z) w] \\
& =-[x(y z)] w=[(x y) z] w=-(x y)(z w)
\end{aligned}
$$

Hence it follows that K^{2} is an ideal which squares to zero. Since A is prime, this means $K^{2}=(0)$, and so in turn $K=(0)$. Thus either $B(A)=(0)$ or $N(A)=(0)$, which completes the proof of the theorem.

Theorem 3 (Wedderburn principal theorem). Let a be a finitedimensional algebra which satisfies (1) and (2) over a field with characteristic $\neq 2,3$; and let N be the nil radical of A. If A / N is separable, then $A=$ $S+N$ (vector space direct sum) where S is a subalgebra of A such that $S \cong A / N$.

Proof. If A is without nonzero nil ideals, then by Theorem $1 A$ is alternative. Thus for such a nil-semisimple A we know $A=A_{1} \oplus \cdots$ $\oplus A_{n}$, where each A_{i} is simple with an identity element [6]. Also, since A is noncommutative Jordan, from [3] we know that if e is an idempotent in A then $A_{e}(i) A_{e}(i) \subseteq A_{e}(i)$ for $i=0$, 1. This means that by [4] we can now reduce consideration to the case when A itself has an identity element 1. But then $0=F(1, x, x, y)=2(x, x, y)$, whence $(x, x, y)=0=(y, x, x)$. Thus A is alternative, and so the result follows in this case from [6].

The authors would like to thank the referee for pointing out Theorem 2. They would also like to express appreciation to their colleague Leslie Hogben, who helped design and implement a computer program utilized in this work.

Acknowledgement. This research was partially supported by the Iowa State University Sciences and Humanities Research Institute.

References

1. V.T. Filippov, On a generalization of alternative algebras and Malcev algebras (Russian), Algebra i Logika 17 (1978), 102-117.
2. F.G. Florey, A generalization of noncommutative Jordan algebras, J. Algebra 23 (1972), 502-518.
3. K. McCrimmon, Structure and representations of noncommutative Jordan algebras, Trans. Amer. Math. Soc. 121 (1966), 187-199.
4. D.J. Rodabaugh, On the Wedderburn principal theorem, Trans. Amer. Math. Soc. 138 (1969), 343-361.
5. R.D. Schafer, Noncommutative Jordan algebras of characteristic O, Proc. Amer. Math. Soc. 6 (1955), 472-475.
6. -_, An Introduction to Nonassociative Algebras, Pure and Appl. Math., 22, Academic Press, New York, 1966.

Department of Mathematics, Iowa State University, Ames, IA 50011

