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GENERALIZED ALTERNATIVE AND MALCEV ALGEBRAS 

I.R. HENTZEL AND H.F. SMITH 

1. Introduction. As observed in [1], both alternative algebras and Malcev 
algebras satisfy the flexible law 

(1) (*, y, x) = 0, 

and 

(2) (zx, x,y) = -x(z, y, x), 

where the associator (a, b, e) = (ab)c — a(bc). Algebras satisfying in 
addition to (1) and (2) the identity 

(*) (xz, x,y) = ~(z,y, x)x 

were studied initially by Filippov [1], who showed that a prime algebra of 
this sort (with characteristic ^ 2, 3) must be either alternative, Malcev, 
or a Jordan nil-algebra of bounded index 3. In this paper we shall consider 
algebras (with characteristic ^ 2, 3) which satisfy only (1) and (2). (Note 
that algebras opposite to these satisfy instead (1) and (*).) We shall prove 
that in this variety nil-semisimple algebras are alternative, and that prime 
algebras are either alternative or nil of bounded index 3. We shall also 
establish for finite-dimensional algebras the standard Wedderburn princi­
pal theorem. 

To begin with, there are some elementary consequences of (1) and (2) 
which need to be noted. We first set 

T(w, x, y, z) = (wx, y, z) - (w, xy, z) + (w, x, yz) 

- w(x, y, z) - (w, x9 y)z. 

It can be verified by simply expanding the associators that in any algebra 
T(w, x, yy z) = 0. Also, the linearized form of (2) is 

(2') (zx, w, y) + {zw, x, y) = -x(z, y, w) - w(z, y, x), 

so that 

F(z, x, w, y) = (zx, w, y) + (zw, x, y) + x(z, y, w) + w(z, y, x) = 0. 
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Then 0 = F(x, x, y, x) — T(x, y, x, x) = 2(x2, y, x), using repeatedly the 
flexible law and its linearization (x, y, z) = — (z, y, x). Thus we arrive at 

(3) (x2, y, x) = 0. 

Algebras which satisfy (1) and (3) are called noncommutative Jordan. 
In particular, provided the characteristic ^ 2, such algebras are power-
associative [5], and as in [2] they satisfy the identity 

(4) (y, x2, z) = x o (y, x, z), 

where the symmetric product aob = ab + ba. 
Next (2) and flexibility imply (x2, x, y) = — x(x, y, x) = 0, that is 

(5) (x2, x, y) = 0. 

Then using (3) and flexibility we have 0 = T(x, x, y, x) = (x, x, yx) — 
(x, x, y)x. Hence flexibility, (2), and (4) give 0 = — (yx, x, x) + (y, x, 
x)x = x(y, x, x) + ( j , x, x)x = (y, x2, x). Thus we also have 

(6) (x, x2, y) = 0. 

We now use linearizations of (5) and (3) to obtain (x2, y, y) = — (xoj, 
x> y) = (y2> x> x)i s ° t n a t 

(7) (x2, y, y) = (y2, x, x). 

Using linearized (7), we then see 2(x3, y9 y) = (x2 o x, y, y) = (y2, x2, x) + 
(y2, x, x2) = 0 by (5), (6), and flexibility. Thus we arrive at 

(8) (x3, y, y) = 0. 

Finally, let A be a noncommutative Jordan algebra (with characteristic 
7* 3), and let N(A) denote the linear span of the set {x3 \x e A}. Then as 
in [1] N(A) is an ideal of A. Hence from (8) actually follows 

(9) (zx3, y9 y) = 0 = (x3z, y, y). 

2. Main Section. Let A be an algebra which satisfies (1) and (2), and 
denote by B(A) the linear span of the set {(y, x, x) | x, y e A}. We shall 
now establish two identities that imply B(A) is an ideal of A. 

PROPOSITION I. If A is a flexible algebra (with characteristic i=- 2) which 
satisfies (2), then the following identities hold in A : 

(10) z(y, x, x) = - (yz, x, x) - {(yx9 z, x) + (yx, x, z)} 

- {(z, x, yx) + (z, yx, x)} + {(xz, y, x) + (xz, x, y)} 

+ {(x, xz, y) +(x, y, xz)} + {(x, xy, z) + (x, z, xy)}, 
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(11) (z, x, x)y = 2{(x, xz, y) + (x, y, xz)} 4- 2{(x, xy, z) + (x, z, xy)} 

+ {(y, z, x2) 4- (y, x2, z)} - (yz, x, x) 

- {(.yx, z, x) + (yx, x, z)} - {(z, x, yx) + (z, .yx, x)} 

4- {(xz, y, x) + (xz, x, y)}. 

PROOF. First (2) implies x(y, x, x) = — (yx, x, x). Then linearization of 
this identity gives 

(i) z(y, x, x) = - (yz, x, x) - {(yx, z, x) + (yx, x, z)} 

- {x(y, z, x) + x(y, x, z)}. 

Next using (2) and flexibility we obtain 0 = x(y, z, x) 4- (yx, x, z) — 
T(x, y, x, z) = {x(y, z, x) + x(y, x, z)} 4- {(yx, x, z) + (x, yx, z)} -
(xy, x, z) 4- (xz, y, x). From this by flexibility one has 

(ii) 0 = {x(y, z, x) 4- x(y, x, z)} - {(z, x, yx) + (z, yx, x)} 

4- {(xz, y, x) 4- (xz, x, y)} - (xz, x, y) - (xy, x, z). 

Now by flexibility 0 = T(x, y, x, y) = (xy, x, y) — (x, yx, y) + (x, y, 
xy) = (xy, x, y) - (x, y o x, y) 4- {(x, xy, y) 4- (x, y, xy)}. But 0 = (y, 
*2> y) = — (*> J7 ° *> JO by flexibility and linearized (6). Substituting this 
in the preceding equation, we have 

0 = (xy, x, y) 4- {(x, xy, y) + (x, y, xy)}. 

Linearization of this last identity gives 

(iii) 0 = (xz, x, y) 4- (xy, x, z) 4- {(x, xz, y) + (x, y, xz)} 

+ {(x, xy, z) 4- (x, z, xy)}. 

If we now add equations (i)-(iii), we arrive at (10). 
To prove (11), we first use linearized (1) repeatedly to show 

(z, x, x)y = (z, x, x)y 4- T(z, x, x, y) 

= (zx, x, y) - (z, x2, y) - (xy, x, z) 4- z(y, x, x) 

= (zx, x, y) 4- (x2, z, y) - (xy, x, z) 

- {(x2, z, y) 4- (z, x2, y)} 4- z(y, x, x) 

= (zx, x, y) 4- (x2, z, y) - (xy, x, z) 

4- {(y, z, x2) 4- (y, x2, z)} 4- z(y, x, x). 

Now by linearized (5) (zx, x, y) 4- (x2, z, y) = - (xz, x, y). Substituting 
this in the preceding equation gives 

(iv) (z, x, x)y = -(xz, x, y) - (xy, x, z) 

4- {(y, z, x2) 4- (y, x2, z)} + z(y, x, x). 
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Then adding equations (iii) and (iv) we obtain 

(v) (z, *, x)y = {(x9 xz9 y) + (x, y9 xz)} + {(*, xy, z) 4- (x, z, xy)} 

+ {(y9 z, x2) + (y9 x2, z)} + z(y9 x, x). 

If we now use the already established (10) to substitute for z(y9 x9 x) in 
(v), we arrive at (11). 

COROLLARY. If A is a flexible algebra (with characteristic ^ 2) which 
satisfies (2). then B(A) is an ideal of A. 

PROOF. This follows immediately from (10) and (11), since 

{(a, b9 c) + (a9 c9 b)} = (a9 b 4- c9 b 4- c) — (a, b9 b) — (a, c, c). 

PROPOSITION 2. If A is a flexible algebra (with characteristic ^ 2, 3) 
which satisfies (2), then the following identity holds in A : 

(12) y*o(z, x, x) = 0. 

PROOF. TO facilitate notation let us set t = y3. We shall now proceed to 
justify a series of equations whose sum will imply (12). First, from (11) 
we have 

(vi) - (z, x9 x)t = - 2{(x9 xz9 t) + (x9 t, xz)} - 2{(x, xt9 z) 4- (x9 z, xt)} 

- {(t9 z, x2) + (t9 x
2
9 z)} + (tz9 x9 x) 

+ {(tx9 z, x) + (tx9 x9 z)} + {(z, x9 tx) + (z, tx9 x)} 

— {(xz9 t9 x) + (xz, x9 t)}. 

We also need 

(vii) 0 = F(z, t9 x9 x) — T(x9 x, t9 z) 

= (zt9 x9 x) -h (zx9 t9 x) + t(z9 x9 x) 4* x(z9 x9 t) 

— (x2
9 t9 z) + (x9 xt9 z) — (x9 x9 tz) + x(x9 t9 z) + (x9 x9 t)z. 

By (2) one has 

(viii) 0 = {(zx9 x9 t) + x(z9 t9 x)} — {(tx9 x9 z) + x(t9 z, x)}. 

From linearized (3) we obtain 

(ix) 0 = - {(x2, t9 z) + (xz9 t9 x) 4- (zx9 t9 x)} 

-2{(x2, z, t) + (xt, z, x) 4- (tx, z, x)}, 

and from linearized (6) 

(x) 0 = {(t9 x
2
9 z) 4- (x9 tx9 z) 4- (x9 xt9 z)} 

+ {(z, x2
9 t) 4- (JC, zx9 t) 4- (x9 xz, t)}. 
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Linearized (7) implies 

(xi) 0 = 2{(x2, z, t) + (x2, t, z) - (tz, x, x) - {zt, x, x)}. 

Since t = y3, from (8) and its linearization we have 

(xii) 0 = {t, x, x)z + {(t, x, zx) + {t, zx, x)} 

4- {x(t, x, z) + x{t, z, x)} - {(/, x, xz) + {t, xz, x)} 

+ {(*, x\ z) + {t, z, x2)}. 

Analogously from (9) follows 

(xiii) 0 = {zt, x, x) + {{tx, x, z) + {tx, z, x)}. 

If we now add equations (vi)-(xiii) and use the linearized flexible law to 
make repeated cancellations in addition to immediate ones, we arrive 
at — (z, x, x)t = t{z, x, x) which is (12). 

COROLLARY. If A is a flexible algebra {with characteristic ^ 2,3) which 
satisfies (2), then B{A) is a nil ideal of bounded index 4. 

PROOF. Of course B{A) is an ideal by the corollary to Proposition 1. 
Let 

n 

1=1 

Then 
n n 

2a* = a3oa = a3° 2] <xt(yi9 xh xt) = 2] at-(a
3o{y.9 xh xt)) = 0 

i=i i=i 

by (12), whence aA = 0. 

We can now prove the following theorems. 

THEOREM 1. Let A be an algebra {with characteristic ^ 2, 3) which 
satisfies {1) and (2). If A is without nonzero nil ideals, then A is alternative. 

PROOF. Since by the preceding corollary B{A) is a nil ideal of A, B{A) = 
(0) by our assumption. Hence {y, x, x) = 0 = (x, x, y) using flexibility, 
and such an algebra is alternative by definition. 

THEOREM 2. Let A be an algebra {with characteristic # 2, 3) which 
satisfies (/) and (2). If A is prime, then A is either alternative or nil of 
bounded index 3. 

PROOF. First let C be any ideal such that (C, y, y) = 0 for all y e A. 
Linearizing this identity, for any ideal D one has 

(xiv) {cd)a = — {cd)d + c{a o d), 
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where ceC,deD,atA. This shows CD is a right ideal of A. Since also 
(>>, y, C) = 0 by flexibility, analogously DC is a left ideal. In particular, 
by (8) we can let C = N(A) and D = B(A), Then since by Proposition 
2 the elements of N(A) and B(A) anti-commute, it follows that K = 
N(A)B(A) is an ideal of A. 

Now K g N(A), so also (K, y, y) = 0 for all j ; e ,4. Thus likewise K2 

is an ideal of A. Furthermore, the elements of K also anti-commute. 
Thus if e, d, a e K, then (cd)a = — (ca)d by (xiv). In particular, (dc)a = 
— (cd)a = (ca)d = — d(ca), which shows the elements of K anti-associate. 
But then for x, y, z, w e K we have 

(xy)(zw) = -x[y(zw)] = x[(yz)w] 

= - M » ] w = K*y)z]w = -(xy)(zw). 

Hence it follows that K2 is an ideal which squares to zero. Since A is prime, 
this means K2 = (0), and so in turn K = (0). Thus either B(A) = (0) or 
N(A) = (0), which completes the proof of the theorem. 

THEOREM 3 (WEDDERBURN PRINCIPAL THEOREM). Let A be a finite-
dimensional algebra which satisfies (1) and (2) over afield with characteristic 
^ 2, 3; and let N be the nil radical of A. If A/N is separable, then A = 
S + N (vector space direct sum) where S is a subalgebra of A such that 
S £ A/N. 

PROOF. If A is without nonzero nil ideals, then by Theorem 1 A is 
alternative. Thus for such a nil-semisimple A we know A = Ax © • • • 
®An, where each A{ is simple with an identity element [6]. Also, since 
A is noncommutative Jordan, from [3] we know that if e is an idempotent 
in A then ^4^(0^/0 = ^«(0 f° r *' = 0, 1. This means that by [4] we can 
now reduce consideration to the case when A itself has an identity element 
1. But then 0 = F(l, JC, x, y) = 2(x, x, j ) , whence (x, x, y) = 0 = (y, JC, x). 
Thus A is alternative, and so the result follows in this case from [6]. 
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2. They would also like to express appreciation to their colleague Leslie 
Hogben, who helped design and implement a computer program utilized 
in this work. 
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