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INFINITE PERMUTABLE SUBGROUPS 

FLETCHER GROSS 

1. Introduction. Suppose H is a core-free permutable subgroup of the 
group G. This means that H contains no non-identity normal subgroup 
of G and that HK = KH for each subgroup Kin G. If G is finite, then 
Ito and Szep [6] proved that H must be nilpotent. This result was improved 
by Maier and Schmid [7] who showed that H is contained in Zoo( G), the 
hypercenter of G, when G is finite. The motivation behind the present 
paper was to investigate what happens when G is infinite. 

It is known in general that H must be residually a finite nilpotent group 
([1] and [8]). This result seems less satisfying, however, when it is recalled 
that any free group is also residually a finite nilpotent group. Another 
approach to the structure of His to consider the subgroup of H generated 
by all its elements of finite order. It follows from results in [2] that this 
subgroup, which I denote by T(H), is both locally finite and locally 
nilpotent. It is natural then, to ask what can be said about H/T(H). This 
question seemed even more pertinent when the author realized that in all 
the examples of core-free permutable subgroups previously known (to 
the author, at least), H/T(H) is abelian. If it were true that H/T(H) is 
locally nilpotent, then it would follow that H is locally solvable. 

It is shown in [1] and [8] how to construct examples in which His not 
nilpotent nor even solvable. These examples are constructed by taking 
the direct sum of groups of prime-power-order using infinitely many 
distinct primes. One consequence of the present paper is that even when 
G is a p-group, H need not be solvable. The major thrust of this paper, 
however, is to settle the question of whether H need be locally nilpotent 
or locally solvable. We will do a little more than this by constructing an 
example in which H/T(H) is not locally solvable. 

As far as the result of Maier and Schmid is concerned, there are various 
natural ways to try to generalize this result to infinite groups. For example, 
one could work with ascending series and ask whether H ~ Zoo(G). 
Alternately, one could work with descending series and ask whether 
[H, G; oo] or [G, H; oo] is the identity. (This notation is explained in the 
next section.) The answers to all of these questions are no and the main 
result of this paper may be stated as follows. 
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THEOREM. Let p be any prime. Then there exists a group G with a core­
free permutable subgroup H such that 

(i) H/T(H) is not locally solvable. Indeed, there is a 2-generator 
subgroup of H/T(H) which is not solvable. 

(ii) Zoo(G) = Z(G); Z(G) is finite; and H n Z(G) = 1. 
(iii) [G, H; oo] and [H, G; oo] are both infinite. 
(iv) T(G) is a locally finite p-group. 
(v) T(H) is a core-free permutable subgroup of T(G). 

(vi) T(H) is not solvable. 
(vii) His residually a finite p-group. 

Most of this work was done while the author was a visitor at the Uni­
versity of Warwick. I wish to express my gratitude to T. Hawkes and 
everyone at Warwick for a most enjoyable stay. I am also grateful for a 
grant from NATO. Finally, I have had the benefit of some very helpful 
discussions with T.R. Berger, M. Newman, and S.E. Stonehewer. 

2. Notation and preliminary results. The notation is mostly standard 
but a few symbols deserve explanation. If A and B are subgroups of a 
group G and a is an ordinal, then [A, B; a] is defined as follows: [A, B; 
1] = [A, B]. If a is not a limit ordinal, then [A, B; a] = [[A, B; a - 1], B]. 
If a is a limit ordinal, then [A, B; a] = n [A, B; {J] where the intersection 
is over all {J < a. Eventually, [A, B; rl = [A, B; r + I] for some ordinal 
T· Then we set [A, B; oo] = [A, B; r]. 

Z(G) is the center of G and Za(G) is defined inductively by Z 1(G) = 
Z(G), Za(G)/Za_1(G) = Z(G/Za_1(G)) if a is not a limit ordinal, and 
Za(G) = U Zp(G) where this union is over all {J < a if a is a limit ordinal. 
The hypercenter, Zoo(G), is defined to be Zr(G) if Zr+l(G) = Zr(G). The 
lower central series {Ln(G)In = 1, 2, ... } is defined by L1(G) = G and 
Ln+l(G) = [Ln(G), G]. If G is nilpotent (solvable), then c(G) (d(G)) denotes 
the class (derived length) of G. 

If His a subgroup of G, then H G• the core of H in G, is the intersection 
n x-1Hx as X runs through all elements of G. If H G = 1, then His said 
to be core-free. If G is represented as a permutation group on the cosets 
of H, then those elements which move only finitely many cosets constitute 
a normal subgroup of G. The intersection of this subgroup with H is 
denoted by F(H, G). Alternately, F(H, G) consists of those elements of 
H which belong to all but a finite number of the groups {x-1Hxlx E G}. 
Clearly Ha :;S! F(H, G) :;S! H and F(H, G)/ H a is locally finite. 

If G is a p-group, then Dk(G) is the subgroup generated by all elements 
of order dividing pk. For any group G, T(G) is the subgroup generated 
by all elements of finite order in G. The set of all primes p such that G 
contains an element of order p is denoted by no( G). If { G,.li e /} is a set 
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of groups, then IT ;cc1G; is the unrestricted direct product. Finally, Z and 
Q denote the additive groups of integers and rationals, respectively. 

THEOREM 2. I. Let H be a core-free permutable subgroup, let n be an 
integer, and let K = { x E Hlxn = I}. Then K is a subgroup of H and K 
is nilpotent of class at most some function of n. 

PROOF. This follows immediately from Theorems 3.3 and 3.4 of [2]. 

CoROLLARY 2.2. Assume that His a core-free permutable subgroup. Then 
T(H) is locally finite and locally nilpotent. 

PROOF. The theorem implies that a finitely generated subgroup of T(H) 
is periodic and nilpotent. Since a periodic finitely generated, nilpotent 
group must be finite, the corollary follows. 

CoROLLARY 2.3. Assume that H is a core-free permutable subgroup. If 
H/T(H) is locally nilpotent, then His locally solvable. 

PROOF. Let K be a finitely generated subgroup of H. Since H/T(H) is 
locally nilpotent, there must be an integer n such that Ln(K) ~ T(H). 
Since K is finitely generated, it follows from [5, Lemma 1.6] that there 
is a finite subset SinK such that Ln(K) is generated by all conjugates in 
K of the elements of S. We conclude from this that for some integer m, 
the set {x E Hlxm = I} contains generators for Ln(K). The theorem now 
implies that Ln(K) is solvable and so K is solvable. 

I do not know whether or not the local nilpotence of H/T(H) is sufficient 
to imply that H is locally nilpotent. If T(H) is replaced by F(H, G), 
however, the result is true. 

THEOREM 2.4. Let H be a core-free permutable subgroup of the group G. 
Then His locally nilpotent if and only if H/F(H, G) is locally nilpotent. 

PROOF. We set K = F(H, G) and assume that H/K is locally nilpotent. 
Now if His abelian, the theorem is certainly true. Hence we assume that 
His not abelian. It follows from [3] that IH(x): HI is finite for all x E G. 

Let Q be the set of all right cosets of H in G. Since His core-free, G 
is faithfully represented as a transitive permutation group on Q. The 
orbits of H on Q have lengths IH: H n x-1Hxl for X E G. Now x-1Hx ~ 
H(x) and so 

IH: H n x-1Hxl = IH(x-1Hx): HI~ IH(x): m. 
Thus the orbits of H all have finite length. It follows from this that if x 
is an element of K, then x has only finitely many conjugates in H. 

Now suppose M is a finitely generated subgroup of H. Then MK/K is 
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finitely generated and hence MK/K is nilpotent. Then Ln(M) ~ K for 
some integer n. Lemma 1.6 of [5] implies that there is a finite subset S 
in M such that Ln(M) is generated by S and its conjugates in M. Since 
S ~ K and since S is finite, there are only a finite number of conjugates 
of S in H. Now K is locally finite and so all the conjugates of S in H 
generate a finite normal subgroup of H. Thus there is a finite normal 
subgroup N in H such that Ln(M) ~ N ~ K. 

From the facts that N is finite and normal in H, we conclude that there 
must be an integer r such that [N, H; r] = [N, H; r + 1]. This implies 
that [N, H; r] ~ LiH) for all k ~ 1. But His residually nilpotent ([1, 
Theorem 4.2] and [8, Theorem C]) and so n Lk(H) = 1 where the inter­
section is over all k ~ 1. Therefore, [N, H; r] = 1. But then 

Ln+r(M) ~ [N, M; r] ~ [N, H; r] = I 

and so M is nilpotent. 

The examples to be constructed later have the structure G = HA 
where H is a core-free permutable subgroup and A is abelian. We now 
prove some facts about such groups starting with the special case when 
G is a finite p-group. 

LEMMA 2.5. Let G be a finite p-group and assume that G = AH where 
A is an abelian subgroup and His a core-free permutable subgroup of G. 
Assume that x andy are elements ofG and xP" = yP" = 1. Then (xy)P" = 1. 

PROOF. Since A n H :Sl A and since He = 1, it must be true that A n 
H = 1. Suppose now that z E G and zP = 1. Then IH<z): HI ~ p 
and <z>H = (<z)H n A)H. This implies that I <z)H n AI ~ p and so 
<z>H n A ~ !NA). Then z E !NA)H from which it follows that 
0 1(G) ~ D1(A)H. Since IH<z): HI ~ p, z must normalize H and so 
Q1(G) ~ Nc(H). Now [G, Q1(A)] :SJ G and 

~DM~=~~DM~=~DM~~H. 

Since He = 1, we conclude that Q1(A) ~ Z(G). Then 

But then the Frattini subgroup of Q1(G) is contained in Q1(H). Since H 
is core-free, this implies that Q1(G) is elementary abelian. Hence, the 
theorem is proved if n = 1. We now assume that n > 1. 

Let M be the core of HQ 1(G) in G. Then M ~ Q1(G) = Q1(A)Q 1(H) 
and HQ 1(G) = HQ 1(A). Hence M = Q1(A) x (M n H). Then the 
Frattini subgroup of M is contained in M n H. Since M :SJ G and since 
He = 1, we conclude that M is elementary abelian. Then M = Q1(G) 
and so HQ1(G)/01(G) is a core-free permutable subgroup in G/DI{G). 
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Hence G/01(G) satisfies the hypothesis of the lemma and both xtr1 and 
yr 1 are contained in Q1(G). Induction then yields (xy)P"- 1 E QI(G). Since 
0 1(G} has exponent p, the theorem follows. 

CoROLLARY 2.6. Let G be a finite group, H a core-free permutable sub­
group of G, and A an abelian subgroup of G. Assume that G = HA. Then 
G is nilpotent, and if x and y are elements in G such that xn = yn = 1, 
then (xy}n = 1. 

PROOF. H ~ Zoo(G) by [7]. Then G/Zoo(G) is abelian. This implies that 
G is nilpotent. Then G is the direct product of its Sylow subgroups and 
the corollary follows from the lemma. 

THEOREM 2. 7. Let H be a core-free permutable subgroup of the group G. 
Assume that A is an abelian subgroup of G such that G = HA. Then 

(i) H n A = 1 
(ii) If x andy are elements of G and xn = yn = I, then (xy)n = 1. 

(iii) T(G) is locally finite and locally nilpotent. 
(iv) T(H) is a core-free permutable subgroup of T(G). 
(v) 1r(G) = 1r(A). 

(vi) His residually a finite nilpotent 1r(A)-group. 

PROOF. (H n A)e = (H n A)AH = (H n A)H ~ H. The fact that His 
core-free now yields H n A = I. Now suppose X andy belong to G and 
xn = yn = l but (xy)n i= I. Then there is some z E A such that (xy)n 
does not belong to z-lHz. Since IH(x): HI must divide n and since 
H(x) = H(H(x) n A), we see that H(x) n A and H(y) n A have 
orders dividing n. Since A is abelian, this implies that A contains a finite 
subgroup B such that tn = I for all t E Band HB contains both x andy. 
Next, let M be the core of H in HB(z). Since (xy)n is not contained in 
z-lHz, HB(z)/M is a counter-example to part (ii) of the theorem. Thus 
in proving (ii), we may assume that G = HB(z) and M = I. By Corollary 
2.6, we may assume that G is infinite. Since He = I, this implies that 
IG: HI is infinite. Therefore, (z) is infinite. But then z normalizes H by 
[1, Theorem 4.1] or by [8, Lemma 2.1], and then 

I =He= n t-1 Ht. 
tEB 

This implies that H is a core-free permutable subgroup of HB. Since 
IHB: HI = IBI is finite, HB must be finite. Then (xy)n = l by Corollary 
2.6. Thus (ii) is proved. 

An immediate consequence of (ii) is that T(G) must be periodic. Let 
L be a finitely generated subgroup of T(G). If x E T(G), then H(x) n A 
must be finite. Then there is a finite subgroup L1 in A such that L ~ L1H. 
This implies that IL: L n HI is finite and so L n His finitely generated. 
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But L n H ~ T(G) n H = T(H) and T(H) is locally finite by Corollary 
2.2. It follows from this that Lis finite. Finally, since L satisfies (ii) (i.e., 
if x and y belong to L and x" = y" = 1, then (xy)" = 1), L must be 
nilpotent. This proves (iii). 

Since T(H) = H n T(G), we find that T(H) is a permutable subgroup 
of T(G). If x is an element of infinite order in A, then x normalizes 
H([l] or [8]). Hence 

1 = He= nr1Hy 

where the intersection is over all y E T(A). This implies that T(H) is core­
free in T(G). Hence, (iv) is proved. 

Suppose next that pis a prime contained in 1r(G) but not in 1r(A). Then, 
if X is an element of order pin G, we find that IH(x) n AI =F p. But 
H(x) = H(H(x) n A) and IH(x): HI divides p. Hence X must be 
contained in H. Then H contains all elements of order p in G which 
contradicts He = 1. Thus, 1r(G) = 1r(A). 

Now let y be any element in G and let H, be the core of H in H(y). 
Then His a subdirect product of the groups { H/ H,IY E G}. If IH(y): HI 
is infinite, then IH/ H,l = 1 by [1] or [8]. If IH(y): HI is finite, then by 
(v) applied to(H(y)/H,), we see that H/H, is a1r((y)H1/H1)-group. Since 
IH(y): HI = IH(y) n AI, we see that H/H, is a 1t'(A)-group for all 
y E G. This proves (vi). 

3. Construction of the examples. Before proceeding to the infinite 
groups, we need to review the groups constructed in [4]. Throughout this 
section we fix some notation. For the benefit of the reader, a glossary is 
included at the end. 

Let p be a fixed prime, e = (3 + ( -l)P)/2, and r = p• - pe-1. Thus 
e = 1 and r = p - 1 if p is odd, while e = 2 and r = 2 if p = 2. Let n 
be a positive integer, ler F,. be the additive group Z/p"Z, and let L1,.,, be 
the set of elements of order p" in F ,. Let x, be the permutation of F, 
given by 

(p"Z + a)x, = p"Z + a + 1. 

If 0 ~ m ~ n, then set x,, m = xf:'-m. If 0 ~ m ~ n - e and ~ i ~ r, 
then let o ... m, i be the orbit under (x,, m> of 

p"Z + ipn-m-1 _ (e _ l)pn-m-e. 

Then L1n,m+e is the disjoint union of the sets {O,.,m,;ll ~ i ~ r}. Next let 
11:n,m,i be the permutation on o ... m,i induced by x,,m and let 

A ... m = {ft 11:~:m ... li> .. = o}. 
•=1 •=1 
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Then An, m is an abelian group which is the direct product of r - 1 copies 
of a cyclic group of order pm. 

Now let Gn be the group generated by Xn and {An,mlO ~ m ~ n- e}. 
Let Hn be the stabilizer in Gn of the zero element of Fn. Then Gn = 
(xn)Hn and H n is a core-free permutable subgroup of Gn [4]. Next let 
Rn be the subgroup of Hn consisting of those elements which fix every 
element in {)n_1(Fn). Then Rn is faithfully represented as a permutation 
group on L1n, n· If 0 ~ k ~ n, then 

pkZ + a -+ p"Z + apn-k 

determines a one-to-one correspondence between Llk, k and L1n, k· In this 
way, we may consider Rk as a permutation group on L1n,k· Since Fn is 
the disjoint union of the sets {Lln. klO ~ k ~ n }, we may consider the 
direct product n ~=IRk as a permutation group on F n· It is shown in [4] 
that this group is in fact H n· 

Shortly, we will construct a group in which n k=IRk is a core-free per­
mutable subgroup. Before doing this, however, we consider a particular 
2-generator subgroup. One consequence will be that n k=IRk is not locally 
solvable. 

To start, we set 

r 

Yn = n n (7rn, n-e-2k+2, ;)C-I)ip2-· 

k i=l 

where k runs over all positive integers such that 2k ~ n - e + 2. Since 
r 

I; (- 1 )i p2-e = 0, 
i=l 

Yn belongs to Gn. We now describe specifically how Yn acts on F n· Since 
Yn fixes pnz, we look at (pnz + a)yn where a is a positive integer. 

Suppose first that p > 2 and that pk is the largest power of p dividing a. 
Then a = i pk (mod pHI) where l ~ i ~ p - 1. Then 

{
pnZ + a if k is odd, 

(pnz + a)y = 
n p"Z + a + (- 1 )i pH2 if k is even. 

Now suppose that p = 2 and that 4k is the largest power of 4 dividing 
a. Then a = i4k (mod 4k+l) where l ~ i ~ 3. Then 

f2nz +a- 4k+l 

(2"Z + a)yn = ) 2nz + a 

l2nz + a + 4k+l 

Next (again assuming that p is any prime), let 

if i = l, 

if i = 2, 

if i = 3. 
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and 

Vn = [x£, Ynl· 

Then un and vn are contained in <xn, Yn)'. A straightforward but tedious 
calculation shows that Un and vn fix the set 

{pnz + p2aja E Z}. 

The mapping pnz + p2a -> pn~zz + a induces a homomorphism of 
(um v n) onto a permutation group on r n~z· The calculation referred to 
above shows that this homomorphism maps un onto Xn-Z and Vn onto 
Yn~Z· Here, if n ~ 2, we set Xn-Z = Yn~Z = 1. 

LEMMA 3.1. There are elements x and y in TI~=lGn such that for all 
positive integers m, (x, y) cmJ contains an element of infinite order. 

PROOF. Let x andy be the elements of TI :=rGn whose n-th components 
are xn and Ym respectively. Let u = x[y, xP+l]x~l and v = [xP, y]. It 
follows from the previous discussion that there is a homomorphism of 
(u, v) onto (x, y). Since (u, v) ~ (x, y)', we see that (x, y) is a homo­
morphic image of a subgroup of (x, y) CmJ. Since (x) is infinite, the lemma 
is proved. 

COROLLARY 3.2. There are elements X and yin n:=rRn such that for 
all positive integers m, (x, y)CmJ contains an element of infinite order. 

PROOF. If n > e, then Gn~e is a homomorphic image of Rn [4, Lemma 
3.19]. Then TI ~1Gn is a homomorphic image of TI :=rRn and the corollary 
follows immediately. 

Now set R = TI:=rRn and let A be the Sylow p-subgroup of Q/Z. R 
operates on A as follows: R fixes the zero of A. Iff E R, if a is an integer 
not divisible by p, and if n is a positive integer, then 

and so (pnz + a)f(n) = pnz + b for some integer b. Then set 

(Z + ajpn)J = Z + bjpn. 

It is easily verified that this is well-defined and that in this way R is 
faithfully represented as a permutation group on A. 

Next, if x E A, let Tx be the permutation of A given by yTx = y + x. 
Set X= {Txlx E A}. Then X is a group isomorphic to A and X acts as a 
regular permutation group on /1. 

We now let G be the permutation group generated by Rand X. Set H 
equal to the stabilizer of the zero element of .~1. Clearly H contains R. 
The following theorem is the principal result of this paper. 
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THEOREM 3.3. His a core-free permutable subgroup of G = HX. Further-
more, H = R and the following are true: 

(i) There is a 2-generator subgroup of H/T(H) which is not solvable. 
(ii) Zoo(G) = Z(G); Z(G) is finite; and H n Z(G) = 1. 

(iii) [G, H; oo] and [H, G; oo] both contain X and hence are infinite. 
(iv) T(G) is a locally finite p-group. 
(v) T(H) is a core-free permutable subgroup of T(G). 

(vi) T(H) is not solvable. 
(vii) H is residually a finite p-group. 

PROOF. Since X is transitive, we conclude that G = HX and that H is 
core-free in G. Suppose now that n is a positive integer and let An = Dn(A). 
Set Xn = {Txix E An} and let Pn be the subgroup of G generated by R 
and Xn. Then Pn fixes the set An. If Kn = {g E Pnixg = x for allxeAn}, 
then Kn is a normal subgroup of P n and P nl Kn is a permutation group 
acting on An· 

The mapping 

pnz + a --+ Z + ajpn 

establishes a one-to-one correspondence between F n and An. If we make 
this identification, then the image of R in P n/ Kn is permutation isomorphic 
to TI~=lRk = Hn. The image of Xn in Pn/Kn is permutation isomorphic to 
(xn>· Thus Pn/Kn is isomorphic to Gn = (xn)Hn where R is mapped onto 
Hn and Xn onto (xn>· Hn is the stabilizer in Gn of the zero of Fn. This 
implies that RKn = H n Pn- Since Hn is a permutable subgroup of G"' 
we see that RKn is a permutable subgroup of P n-

It is immediate that G is the ascending union U n"'1P n· This implies 
that His the ascending union U n"'1RKn- Now R fixes A, for all n. If hE H 
and n is any integer, then we can find an integer m such that h E RKm 
and An ~ Am· Then h must fix An and the permutation on An induced by 
h is also induced by some element of R. 

In the correspondence between r n and An, L1n. n corresponds with the 
set-theoretic difference An-An_1• If hE H, then h will induce a permutation 
hn on An-An-1> and if An-An-1 is identified with L1n,"' hn is an element of 
Rn. But then his the same permutation on A asfe R wheref(n) = hn for 
all n. Thus H = R. 

Then RKn = H and so H is a permutable subgroup of P n for all n. 
If g is any element of G, then g E Pn for some n. But then (g)H = H(g). 
This implies that H is a permutable subgroup of G. 

Since X is an abelian p-group, Theorem 2. 7 implies that T( G) is a locally 
finite p-group, T(H) is a core-free permutable subgroup of T(G), and H 
is residually a finite p-group. Corollary 3.2 implies that there is a 2-genera­
tor subgroup of H/T(H) which is not solvable. T(H) contains a copy of 
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R, and d(R,) -t oo as n -t oo [4]. It now follows that T(H) is not solvable. 
From [4, Lemma 4.4], we find that there are elements t, and tin H such 

that xt = (p• + l)x for all x e A and 

xt n = { ~· + l)x 
if X E A, 

if X¢ A,. 

We now easily conclude that[T,., t] = T pex for all x eA. Then [X, (t)] = 
X which implies that X is contained in both [G, H; oo] and [H, G; oo]. 
Also [T,., t] = 1 if, and only if x eA •. Hence Cx(t) = x •. 

Since X is an abelian regular permutation group, we have Z(G) ~ 
Cc(X) = X. This implies that Z(G) ~ x •. However, it is an easy matter 
to verify that x. ~ Z(G) (this follows, for example, from [4, Lemma 
3.2(4)]). Thus Z(G) = X •. Since X. is cyclic of order P" and X n H = I, 
we will be done once we show that Z 2(G) = Z(G). 

Suppose now that g e Z 2(G). Then [g, G] ~ Z(G) = x •. This implies 
that [g, hP'] = [g, h]P' = 1 for all he G. Since {(T,.)P'Ix e A} = X, we see 
that g e Cc(X) = X. Hence g = T,. for some x e A. Choose n such that 
x e A,. Then 

{
y + p•x 

y[T,., t,] = y 
if yeA,., 

if y ¢A,. 

Hence [T,., t,.] cannot be a non-identity element of X since X acts regularly 
on A. Since [T,., G] ~ Z(G) < X, we conclude that [T,., t,] = 1. Hence 
p•x = 0 and so x eA •. But then T,. e Z(G). Therefore, Z(G) = Z 2(G) 
and the theorem is proved. 

p 
e 
r 
r,. 
.::1,, k 

x,. 
Xn,m 

On,m, i 

'Kn, m, i 

GLOSSARY 

a prime 
e= lifp>2,e=2ifp=2 
r=p-lifp>2,r=2ifp=2 
Z/p"Z 
set of elements of order pk in r n 

permutation p"Z + a -t p"Z + a + 1 
xe·-m if 0 ~ m ~ n 
orbit under (x,, m) of p"Z + ipn-m-1 - (e - l)p"-m-e 

if 1 ~ i ~ r and 0 ~ m ~ n - e 
permutation on 0,, m, i induced by x,., m 

{fi n~m,i It c; = o} 
•=1 •=1 

(x,., A,., miD ~ m ~ n - e) 
{g E G,l(p"Z)g = p"Z} 
{g e H,lag = a for all a e .Q,_1(F ,). } 



INFINITE PERMUTABLE SUBGROUPS 

Yn 

u, 
v,. 

r II II ( )(-I)ip2-• 
1Cn, n-e-2k+2, i 

" i=l 
x,[y,, x.P+l]x;1 
[x£, y,.] 

00 

R II R,. 
n=l 

A Sylow p-subgroup of Q/Z 

where 1 ~ k ~ [(n - e + 2)/2] 

T" If x, y e A, then yT, = y + x 
X {T.,Ix e A} 
G (R, X) 
H {g E GI(Z)g = Z} 
A, O,.(A) 
X, {T,Ix e A,.} 
P, (R, X,) 
K,. {g e P ,.lxg = x for all x e A,} 
t xt = (p• + I )x for all x e A 
t,. xt = (p• + l)x if x e A,., xt = x otherwise 
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