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ON AN OCTUPLE-PRODUCT IDENTITY

JOHN A. EWELL

ABSTRACT. The author represents an eightfold infinite product in
two complex variables by a double series, which is subsequently
simplified by infinite products.

1. Introduction. For each complex number x such that |x| < 1, the fol-
lowing identities are valid.

Q)] ﬁ(l — x")3 = f} (= 1)"Q2n + 1)xnrtbr2)
n=1 n=0

(2) ﬁ(l - x")3(1 — xZn-—l)Z = i (6” + l)xn(3n+1) /2,
n=1 n=—oo

The first identity is a celebrated result due to Jacobi [3, p. 285], while the
second is apparently due to Basil Gordon [2, p. 285]. These identities are
respectively derived in similar fashion from the Gauss-Jacobi triple-
product identity and G. N. Watson’s quintuple-product identity, below
stated as identities (3) and (4).

(3) ﬁ (1 . xn)(l — axn)(l _ a—lxn—l) —_ i (_l)nxn(n+l)/zan

n=1

4 ﬁ 1 = x)(1 — ax”)(1 — axF1)(1 — a2x?1)(] — a2x21)

n=1

= i xn@ntD /2(g3n — g3n-1),

Both (3) and (4) are valid for each pair of complex numbers a, x such that
a # 0 and |x| < 1. For a proof of (3) see [3, p. 282], and for proof of (4)
see [1, pp. 42-43]. By multiplying identities (1) and (2) we can obviously
express the infinite produce IT(1 — x#)5(1 — x2#~1)2as a double series.

In this paper we express the product in terms of a different double
series, which apparently is not a trivial transformation of the former.
This result is here deduced as a corollary of the following theorem.
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THEOREM 1. For each pair of complex numbers a, x, with a # 0 and
x| <1,

[oe]

IT (1 — 291 — ax’(l — a1 — axr=)(1 — a-txwY)
®) - (1 — a2xz1)(1 — g-2x2n1)
= 2P() _‘ij(— Dyt — Q) :)i(’ 1yrxatn(axn + a-lx—)
where

P() = T1(1 — xt),

n=1
[o e}

00) = [T = x1Z9)(1 — x12n-7)(1 — x12n-5)

n=1

+ x [T = x129)(1 — x12-11)(] — xli2n-1),
n=1

2. Proof of Theorem 1. In identity (3) we replace a by a—! and multiply
the resulting identity by identity (4) to get

ﬁ(l — x4l — ax?)(1 — ax*)(1 — ax*1)(1 — a~lx»1)
n=1

(1 — a2x2n-1)(1 — g-2x2n-1)

= Z (_])nanx(nz—n)/Z Z xm(3m+1)/2(a3m _ a—3m—l)

n=—oc m=—co

= i (aBrtn — g 3mAn=T)(— | )nx(P—nt3mitm)/2
n,m—-—00

= i as i (_.1)s—Smx[(S—Bm)z—(s—3m)+3m2+m]/2

§$=—00  p=—0c0

(o] fee)
— Z as Z (_1)s+3m+lx[(s+3m+1)2—(s+3m+1)+3m2+m1/2

§=—00 m=—00

= f: (_ l)sxsZ/Sas f: (_ 1)"‘ xB0m—s/4)2+2(m—s/4)
§=—00 m=—o0
3 2 3 )2+2( )
+ — 1)sxs%8gs — 1)m x6(m+s/424-2(m+s/4
2, (Z D & (=)

2
=), { f (— D)4+ix2tti+it8gle+y Zozo (— 1)#HexSC—i/a+20k—j/4)
j:—1 {=—oc k=—0c0
00 o]
— )4+ 202+t +72/8 fAt+j — 1 Ye—t 3 6(k+j/4)242(k+j/4)
+ 2 (=1)¥hix atts 3 (=1)kix

t=—00 k=—00
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= —X i (_])tx2t2a4:(a—1x—t) Z (_l)kx5k2+5k

t=—00 k=—00

— f: ( _l)tx2!2a4t(a—1x—t) E: ( _l)kakZ—k

t=—00 k=—0o
+ Z (—Dix2qtt Z (— D)rx Sk +2k
t=—00
+ f: (- l)tx2t2a4t Z (- 1)kx Sk +2k
t=—o0
— ,_i: (- ])tx2t2a4t(axt) Z (- l)kx6k2—
—_ xti (-1 x2ﬂa4t(axt) Z (- l)kx6k2+5k

+ x Z ( _l)tx2t2a4t(a2x2t) Z (- l)kakZ—Sk

t=—00

+ x3 2 (_1);x2t2a4z(azx2t) Z: (— 1)ExSH+6k

{=—00

We now use the triple-product identity (3) to simplify the summations
over k (while realizing that the last two k-sums vanish), and collect like
terms to obtain the desired conclusion.

COROLLARY. For each complex number x such that |x| < 1,
]of[l(l — xmB(] — x2n-1)2
(6) = — 2P(x) ;(— 1) (4n)2xer?
+0( 3 (~rn + Dxzein
PrOOF. Let a, x be given and rewrite the right side of (5) as:
2P(x) + 2P(x) 33 (= 1@ + a-*)

— 0(¥)(a + at) — O(x) ’g (= Dynx2rtn(gintl 4 g—tn-1)
— 0(x) g)l(— )rx2nn(gin=l 4 gin+1),

Further, let G(a, x) be defined by

G(a, x) = ﬁ (I — ax)%(1 — aIx"%(1 — a2x2-1)(1 — g 2x27-1),

n=1



282 J.A. EWELL

so that the left side of (5) become (1 — a)(1 — aY) [ (1 — x")2G(a, x).
Now, put a = e%!, and for brevity f(z) = [[2,(1 — x")2G(e%?, x). Multi-
plying both sides of (5) by 4-1, we have

1

f@#)sin2t = — P(x) — %Q(x) cos 2t

®|

+ P(x) i (= Dnx?% cos 8nt
n=1
~ 30 37 (= 1y cos (8n + 2)t
n=1

- %Q(x) f} (— D)#x2%n cos (8n — 2)t
n=1

We now differentiate the foregoing identity twice with respect to ¢ to get
2f(t) cos?t + 2D,[f(t) cos t]sint + D, [sin? ¢ - f'(2)]

= 20(x) cos 21 — 4P(x) 3" (= 1)"x*(4n)? cos 8nt
n=1

+20(x) 3 (= Dyrx™n(dn + 1)2cos (8n + 2)t

n=1

+20(%) 2:1(— 1)x2(dn — 1)2cos (8n — 2.

In the foreoging we put ¢ = 0, cancel a factor of 2 from both sides of the
resulting identity and effect a trivial transformation to obtain the desired
conclusion.

The author would like to thank the referee for suggested improvements
of the exposition.
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