# ENDOMORPHISM RINGS AND SUBGROUPS OF FINITE RANK TORSION-FREE ABELIAN GROUPS 

DAVID M. ARNOLD*

Let $A$ be a finite rank torsion-free abelian group and let $E(A)$ denote the endomorphism ring of $A$. Then $Q \otimes_{Z} E(A)=Q E(A)$ and $E(A) / p E(A)$ are artinian algebras, where $Z$ is the ring of integers, $Q$ is the field of rationals, and $p$ is a prime of $Z$.

Define $A$ to be $Q$-simple if $Q E(A)$ is a simple algebra, and $p$-simple for a prime $p$ of $Z$ if $p E(A)=E(A)$ or if $E(A) / p E(A)$ is a simple algebra. In contrast to finite rank torsion-free groups in general, groups that are $p$ simple for each $p$ have some pleasant decomposition properties.

Theorem I. $A$ reduced group $A$ is $p$-simple for each prime $p$ of $Z$ if and only if $A=A_{1} \oplus \cdots \oplus A_{k}$, where each $A_{i}$ is fully invariant in $A$, each $A_{i}$ is $Q$-simple and $p$-simple for each prime $p$ of $Z$, and if $p$ is a prime of $Z$ then there is some $j$ with $A / p A=A_{j} / p A_{j}$.

Theorem II. A group $A$ is $Q$-simple and p-simple for each prime $p$ of $Z$ if and only if $A=B_{1} \oplus \cdots \oplus B_{n}$, where each $B_{i}$ is strongly indecomposable, $Q$-simple and p-simple for each prime $p$ of $Z$ and $B_{i}$ is nearly isomorphic to $B_{j}$ (in the sense of Lady [7]) for each $i$ and $j$.

Suppose that $A$ is $Q$-simple and $p$-simple for each prime $p$ of $Z$. Then $A$ is indecomposable if and only if $A$ is strongly indecomposable. Furthermore, if $S=$ Center $E(A)$, then $S$ is a subring of an algebraic number field such that every element of $S$ is a rational integral multiple of a unit of $S$, as described in [1], and $E(A)$ is a maximal $S$-order in $Q E(A)$.

Examples of groups that are $Q$-simple and $p$-simple for each prime $p$ of $Z$ include: indecomposable strongly homogeneous groups (characterized in [1]); indecomposable groups with $p$-rank $\leqq 1$ for each prime $p$ of $Z$ (Murley [8]); and indecomposable quasi-pure-projective and quasi-pureinjective groups ([4]).

Define $A$ to be irreducible if $Q A$ is an irreducible $Q E(A)$-module (Reid [10]) and $p$-irreducible, for a prime $p$ of $Z$, if $A / p A$ is an irreducible $E(A) /$ $p E(A)$-module. If $A$ is irreducible ( $p$-irreducible), then $A$ is $Q$-simple

[^0]( $p$-simple). Furthermore, each strongly homogeneous group is irreducible and $p$-irreducible for each prime of $p$ of $Z$.

A group $A$ is finitely faithful if $I A \neq A$ for each maximal right ideal $I$ of finite index in $E(A)$. Define $A$, to be an $\mathscr{S}$-group if whenever $B$ is a subgroup of finite index in $A$ then $B=I A$ for some right ideal $I$ of $E(A)$. The following theorem gives a class of groups irreducible and $p$-irreducible for each prime $p$ of $Z$.

Theorem III. The following are equivalent:
(a) A is a finitely faithful $\mathscr{S}$-group;
(b) For each prime $p$ of $Z$ with $p A \neq A, E(A) / p E(A) \cong \operatorname{Mat}_{m}(Z / p Z)$, the ring of $m \times m$ matrices over $Z / p Z$, where $m=p$-rank $A$;
(c) $\operatorname{Ext}_{Z}(A, A)$ is torsion free; and
(d) $A$ is finitely faithful and if $B$ is a subgroup of finite index in $A$, then $B$ is nearly isomorphic to $A$.
B. Jónsson proved a uniqueness theorem for direct sum decompositions of finite rank torsion-free abelian groups up to quasi-isomorphism, where $A$ and $B$ are quasi-isomorphic if $B$ is isomorphic to a subgroup of finite index in $A$ (Fuchs [6]). Define $A$ to be a $\mathscr{J}$-group if $A$ is isomorphic to each subgroup of finite index in $A$ (Warfield [13]). Each $\mathscr{J}$-group is an $\mathscr{S}$-group. Moreover, a reduced group $A$ is a finitely faithful $\mathscr{J}$-group if and only if $A$ is a $\mathscr{J}$-group and $Q E(A)$ is a semi-simple algebra. If $A \simeq B^{k}$, where $B$ is indecomposable with $p$-rank $B \leqq 1$ for each prime $p$ of $Z$, then $A$ is a $\mathscr{F}$ group, necessarily finitely faithful.

An example of an indecomposable finitely faithful $\mathscr{J}$-group with $p$-rank $>1$ is constructed in $\S 7$. This is a counterexample to a conjecture of C.E. Murley: if $A$ is an indecomposable $\mathscr{J}$-group, then $p$-rank $A \leqq 1$ for each prime $p$ of $Z$.

In summary, the following implications are valid for $Q$-simple groups:
(a) Finite direct sum of copies of a indecomposable group with $p$-rank $\leqq 1$ for each $p \Rightarrow$ finitely faithful $\mathscr{J}$-group $\Rightarrow$ finitely faithful $\mathscr{S}$-group $\Rightarrow$ $p$-irreducible for each $p \Rightarrow p$-simple for each $p$.
(b) Finite direct sum of copies of an indecomposable irreducible group with $p$-rank $\leqq 1$ for each $p \Leftrightarrow$ finitely faithful strongly homogeneous $\mathscr{F}$ group $\Leftrightarrow$ finitely faithful strongly homogeneous $\mathscr{S}$-group $\Rightarrow$ strongly homogeneous $\Rightarrow$ irreducible and $p$-irreducible for each $p \Rightarrow$ irreducible and $p$-simple for each $p$.

The abelian group terminology is as given in Fuchs [6]. The classical Wedderburn-Artin theory of semi-simple artinian algebras is assumed.

## 1. $\boldsymbol{Q}$-simple and $\boldsymbol{p}$-simple groups.

Proposition 1.1. The following are equivalent:
(a) $A$ is $Q$-simple;
(b) If $B$ is a fully invariant subgroup of $A$ with $\operatorname{Hom}(A, B) \neq 0$, then $A / B$ is finite; and
(c) If I is a non-zero ideal of $E(A)$, then $E(A) / I$ is finite.

Proof. (a) $\Rightarrow$ (b). Let $I=\operatorname{Hom}(A, B)$, a non-zero ideal of $E(A)$. Then $Q I=Q E(A)$, since $Q E(A)$ is simple. Choose $0 \neq n \in Z$ with $n \cdot 1_{A} \in I$ so that $n E(A) \cong I$. Then $n A \cong I A \cong B \cong A$ and $A / B$ is finite since $A / n A$ is finite.
(b) $\Rightarrow$ (c). Let $B=I A$, a fully invariant subgroup of $A$. Then $0 \neq I \cong$ $\operatorname{Hom}(A, B)$ and $A / B$ is finite.

Let $\mathcal{J}(Q E(A))$ be the Jacobson radical of $Q E(A)$ and $\mathscr{N} E(A)=$ $\mathscr{J}(Q E(A)) \cap E(A)$, the nil radical of $E(A)$. If $\mathcal{N} E(A) \neq 0$, then $A / \mathcal{N} E(A) A$ must be finite so that $Q \mathcal{N} E(A) A=\mathscr{J}(Q E(A)) Q A=Q A$, which is impossible by Nakayama's Lemma. Therefore, $Q E(A)$ is semi-simple and artinian.

Now $Q I=f Q E(A)$ for some $f \in I$. Hence $Q A=Q B=f Q A$ and $f$ is an automorphism of $Q A$. Thus, $f Q E(A)=Q I=Q E(A)$ which implies that $E(A) / I$ is finite.
(c) $\Rightarrow$ (a). If $0 \neq I$ is an ideal of $Q E(A)$, then $E(A) /(I \cap E(A))$ is finite and $I=Q(I \cap E(A))=Q E(A)$.

Proposition 1.2. A is p-simple for each prime $p$ if and only if whenever $I$ is an ideal of $E(A)$ with $E(A) / I$ finite, then $I=n E(A)$ for some $n \in Z$.

Proof. $(\leftarrow)$. If $I / p E(A)$ is an ideal of $E(A) / p E(A)$, then $I=p E(A)$ or $I=E(A)$.
$(\Rightarrow)$. Let $0<n$ be the least integer with $n E(A) \cong I$ and let $p$ be a prime divisor of $n$. Then $I+p E(A)=E(A)$ or $I+p E(A)=p E(A)$. In the latter case, $(n / p) E(A) \cong(1 / p) I \cong E(A)$ so $(1 / p) I=(n / p) E(A)$ by induction on $n$. In the former case, $(n / p) E(A) \cong I$, contradicting the minimality of $n$.
Theorem 1.3. Assume that $A$ is reduced. Then $A$ is $p$-simple for each prime $p$ if and only if $A=A_{1} \oplus \cdots \oplus A_{k}$ where (i) each $A_{i}$ is fully invariant in $A$; (ii) each $A_{i}$ is $Q$-simple and $p$-simple for each prime $p$; and (iii) if $p$ is a prime then there is some $j$ with $A / p A=A_{j} / p A_{j}$.
Proof. $(\epsilon) . E(A)=E\left(A_{1}\right) \times \cdots \times E\left(A_{k}\right)$ and if $p$ is a prime, then $E(A) / p E(A)=E\left(A_{j}\right) / p E\left(A_{j}\right)$ for some $j$ since $A / p A=A_{j} / p A_{j}$ implies that $p A_{i}=A_{i}$ and $p E\left(A_{i}\right)=E\left(A_{i}\right)$ for each $i \neq j$.
$(\Rightarrow)$. For each $p,(\mathcal{N} E(A)+p E(A)) / p E(A) \cong \mathscr{J}(E(A) / p E(A))=0$. Thus $\mathcal{N} E(A) \cong p E(A) \cap \mathscr{N} E(A)=p \mathcal{N} E(A)$ for each $p$. Since $A$ is reduced, $E(A)$ is reduced so that $\mathcal{N} E(A)=0$ and $\mathscr{J}(Q E(A))=Q \mathscr{N} E(A)=0$. Therefore, $Q E(A)$ is a semi-simple artinian algebra.
Write $Q E(A)=K_{1} \times \cdots \times K_{k}$ as a product of simple algebras. Then $n \mathscr{R} \cong E(A) \subseteq \mathscr{R}=\mathscr{R}_{1} \times \cdots \times \mathscr{R}_{k}$, where each $\mathscr{R}_{i}$ is a subring of $K_{i}$ with $Q \mathscr{R}_{i}=K_{i}$ for some $0 \neq n \in Z$ (let $\mathscr{R}_{i}$ be the projection of $\mathscr{R}$ into $K_{i}$
and choose $n$ with $n \cdot 1_{\mathscr{R}_{i}} \in E(A)$ for each i). Now $I=n \mathscr{R}$ is an ideal of $E(A)$ with $E(A) / I$ finite so $n \mathscr{R}=I=m E(A)$ for some $m \in Z$ (Proposition 1.2) whence $m E(A)=m \mathscr{R} E(A)=m \mathscr{R}$ and $E(A)=\mathscr{R}$.

Let $A_{i}=\mathscr{R}_{i} A$ so that $A=A_{1} \oplus \cdots \oplus A_{k}, Q E\left(A_{i}\right)=K_{i}$, and $E(A)$ $=E\left(A_{1}\right) \times \cdots \times E\left(A_{k}\right)$. Clearly each $A_{i}$ is $Q$-simple. If $p$ is a prime, then $E(A) / p E(A)=E\left(A_{j}\right) / p E\left(A_{j}\right)$ for some $j$ (since $A$ is $p$-simple) so that $p A_{i}$ $=A_{i}$ if $i \neq j$ and $A / p A=A_{j} / p A_{j}$. Since $E(A) / p E(A)=E\left(A_{1}\right) / p E\left(A_{1}\right)$ $\times \cdots \times E\left(A_{k}\right) / p E\left(A_{k}\right)$, each $A_{i}$ must be $p$-simple

Corollary 1.4. Assume that $A$ is $Q$-simple and $p$-simple for each prime $p$ of $Z$ and let $S=$ Center $E(A)$.
(a) $S$ is a principal ideal domain such that every element of $S$ is a rational integral multiple of a unit of $S$.
(b) $E(A)$ is a maximal $S$-order in $Q E(A)$.
(c) For some $0<k \in Z, E(A) \cong S^{k}$ as $S$-modules.

Proof. (a) $S$ is a domain since $Q S=$ Center $(Q E(A))$ is an algebraic number field. Let $0 \neq s \in S$. Then $s E(A)$ is an ideal of $E(A)$ with $E(A) /$ $s E(A)$ finite (for some $s^{\prime} \in S, 0 \neq s^{\prime} s \in Z$ ). Write $s E(A)=n E(A)$ for some $n \in Z$ (Proposition 1.2). Now $s=n u, n=s v$ for some $u, v \in E(A) \cap$ Center $Q E(A)=S$. Hence $s=n u=s v u$ so that $u$ is a unit of $S$. Clearly, $S$ is a principal ideal domain.
(b) $E(A)$ is an $S$-order in $Q E(A)(E(A)$ is finitely generated as an $S$ module, Pierce [9]). If $E(A) \subseteq \mathscr{R} \subseteq Q E(A)$, where $\mathscr{R}$ is an $S$-order, then $\mathscr{R} \mid E(A)$ is finite say $n \mathscr{R} \subseteq E(A) \subseteq \mathscr{R}$ for some $0 \neq n \in Z$. Thus $I=n \mathscr{R}$ is an ideal of $E(A)$ so $n \mathscr{R}=I=m E(A)$ for some $m \in Z$. But $m E(A)=$ $\mathscr{R}(m E(A))=m \mathscr{R}$ so $E(A)=\mathscr{R}$. and $E(A)$ is a maximal $S$-order in $Q E(A)$.
(c) is a consequence of the fact that $S$ is a principal ideal domain and $E(A)$ is a finitely generated torsion free $S$-module.

Two finite rank torsion free groups $A$ and $B$ are quasi-isomorphic if there is a monomorphism $f: A \rightarrow B$ with $B / f(A)$ finite and nearly isomorphic if for each $0 \neq n \in Z$ there is a monomorphism $f_{n}: A \rightarrow B$ such that $B / f_{n}(A)$ is finite with cardinality relatively prime to $n$ (Lady [7]).

Corollary 1.5. (a) If $A$ and $B$ are quasi-isomorphic and if $A$ is $Q$-simple, then $B$ is $Q$-simple.
(b) If $A$ and $B$ are nearly isomorphic and if $A$ is p-simple, then $B$ is $p$ simple.

Proof. Suppose that $n A \subseteq B \subseteq A$ for some $0 \neq n \in Z$. Then $Q E(A)$ and $Q E(B)$ are ring isomorphie. Furthermore, if $p$ is a prime not dividing $n$ then $E(A) / p E(A)$ and $E(B) / p E(B)$ are ring isomorphic.

The group $A$ is strongly indecomposable if $0 \neq n \in Z$ and $n A \cong B \oplus$
$C \cong A$ imply $B=0$ or $C=0$. Reid [10] proves that $A$ is strongly indecomposable if and only if $Q E(A) / \mathscr{J}(Q E(A))$ is a division algebra.

Theorem 1.6. $A$ is $Q$-simple and p-simple for each prime $p$ of $Z$ if and only if $A$ is nearly isomorphic to $B^{k}($ the direct sum of $k$ copies of $B$ ) where $B$ is strongly indecomposable, $Q$-simple, and $p$-simple for each prime $p$.

Proof. $(\Leftarrow)$. In view of Corollary 1.5 , it is sufficient to assume that $A=$ $B^{k}$. Thus $E(A) \cong \operatorname{Mat}_{k}(E(B))$, where $Q E(B)$ is a division algebra and $E(B) / p E(B) \cong \operatorname{Mat}_{m_{p}}\left(F_{p}\right), F_{p}$ a finite field for each $p$. Hence, $Q E(A) \cong$ $\operatorname{Mat}_{k}(Q E(B))$ and $E(A) / p E(A) \cong \operatorname{Mat}_{k m_{p}}\left(F_{p}\right)$ so that $A$ is $Q$-simple and $p$-simple for each $p$.
$(\Rightarrow)$. Since $Q E(A)$ is a simple algebra, $Q E(A) \cong \operatorname{Mat}_{k}(D)$ for some division algebra $D$. Write $Q E(A)=I_{1} \oplus \cdots \oplus I_{k}$ where each $I_{i}$ is an irreducible right ideal of $Q E(A), I_{i}=e_{i} Q E(A)$ for some $e_{i}^{2}=e_{i} \in Q E(A)$, and $I_{i}$ is $Q E(A)$-isomorphic to $I_{j}$ for each $i$ and $j$. Then $A$ is quasi-isomorphic to $e_{i}(A) \oplus \cdots \oplus e_{k}(A), e_{i}(A)$ and $e_{j}(A)$ are quasi-isomorphic for each $i, j$; and $Q E\left(e_{i}(A)\right) \cong D$ for each $i$ (Reid [10]).

Choose $0 \neq m \in Z$ with $m A \subseteq C \cong A$ where $C=B_{1} \oplus \cdots \oplus B_{k}$ and $B_{i} \cong e_{i}(A)$ is strongly indecomposable. Let $X$ be the pure subgroup of $A$ generated by $\left\{B_{i} \mid i \neq 1\right\}$. Then $B=A / X$ is quasi-isomorphic to $B_{1}$, with $\operatorname{Hom}(A, B) A=B$.

It now suffices to assume that $m A \subseteq C \subseteq A$ for some $0 \neq m \in Z$ where $C=B_{1} \oplus \cdots \oplus B_{k}$, each $B_{i} \cong B$ is strongly indecomposable and $Q$ simple, and $\operatorname{Hom}(A, C) A=C$ (replace each $B_{i}$ by a subgroup of finite index isomorphic to $B$ ).

As a consequence of Corollary $1.4, E(A)$ is a maximal $S$-order in $Q E(A)$ and $S$ is a principal ideal domain. Moreover, if $p$ is a prime of $Z$ with $p A$ $\neq A$ and $E(A)_{p}=Z_{p} \otimes_{Z} E(A)$ (where $Z_{p}$ is the localization of $Z$ at $p$ ), then $E(A)_{p}$ is a maximal order over the discrete valuation ring $S_{p}$. Thus $\operatorname{Hom}(A, C)_{p} \cong E(A)_{p}$, since $\operatorname{Hom}(A, C)_{p}$ is a right ideal of $E(A)_{p}($ Swan and Evans [12]). But $\operatorname{Hom}(A, C)$ and $E(A)$ are finitely generated $S$-modules so there are $E(A)$-maps $\theta: \operatorname{Hom}(A, C) \rightarrow E(A)$ and $\phi: E(A) \rightarrow \operatorname{Hom}(A, C)$ with $\phi \theta=m \in Z$ and $m$ relatively prime to $p$. Since $\operatorname{Hom}(A, C) A=C, \theta$ and $\phi$ induce homomorphisms $f: C \rightarrow A$ and $g: A \rightarrow C$ with $g f=m$. It now follows that $A$ is nearly isomorphic to $C \cong B^{k}$, where $B$ is strongly indecomposable and $Q$-simple.

Finally, $B^{k}$ is $p$-simple for each $p$ (Corollary 1.5) from which it follows that $B$ is $p$-simple for each $p$.

Corollary 1.7. $A$ is $Q$-simple and $p$-simple for each $p$ if and only if $A \cong B^{k-1} \oplus B_{0}$ where $B$ and $B_{0}$ are strongly indecomposable, $Q$-simple, p-simple for each $p$, and $B$ is nearly isomorphic to $B_{0}$. Consequently, $A$ is indecomposable if and only if $A$ is strongly indecomposable.

Proof. $A$ is nearly isomorphic to $B^{k}$ if and only if $A \cong B^{k-1} \oplus B_{0}$ where $B_{0}$ is nearly isomorphic to $B$ (Arnold [2]). Now apply Theorem 1.6.
2. Irreducible and $\boldsymbol{p}$-irreducible groups. $A$ is irreducible if $B$ being a pure fully invariant subgroup of $A$ implies $B=0$ or $B=A$.

Theorem 2.1. (Reid [10]). The following are equivalent:
(a) $A$ is irreducible;
(b) $Q A$ is an irreducible left $Q E(A)$-module;
(c) $Q E(A) \cong \operatorname{Mat}_{m}(D)$, where $D$ is a division algebra with rank $A=$ $m \cdot \operatorname{dim}_{Q} D$; and
(d) $A$ is quasi-isomorphic to $B^{m}$ where $B$ is a strongly indecomposable irreducible group.

Corollary 2.2. (Reid [10]). Assume that $A$ is strongly indecomposable. Then $A$ is irreducible if and only if $Q E(A)$ is a division algebra and rank $E(A)=\operatorname{rank} A$.

Let $p$ be a prime of $Z$. Then $A$ is $p$-irreducible if $B$ being a fully invariant subgroup of $A$ with $p A \cong B$ implies $B=p A$ or $B=A$. Define $p$-rank $A$ to be the $Z / p Z$-dimension of $A / p A$.

Theorem 2.3. The following are equivalent:
(a) $A$ is p-irreducible;
(b) $A / p A$ is an irreducible left $E(A) / p E(A)$-module; and
(c) $E(A) / p E(A) \cong \operatorname{Mat}_{m}\left(F_{p}\right), F_{p}$ a finite field with $p$-rank $A=m$. $\operatorname{dim} F_{p}$.

Proof. (a) $\Leftrightarrow(b)$ is routine.
(b) $\Rightarrow$ (c). If $f+p E(A) \in E(A) / p E(A)$ and $(f+p E(A)(A / p A)=0$ for some $f \in E(A)$ then $f \in p E(A)$. Thus $E(A) / p E(A)$ is semi-simple since, if $I(p E(A)=\mathscr{J}(E(A) / p E(A))$, then $p A=I A$, in which case $I=p E(A)$; or else $I A=A$ which is impossible by Nakayama's Lemma. Therefore, $E(A) / p E(A)$ is a product of simple rings. In fact, $A / p A$ irreducible implies that $E(A) / p E(A)$ is simple.

Write $E(A) / p E(A) \cong(A / p A)^{m}, A / p A$ isomorphic to an irreducible left left ideal of $E(A) / p E(A)$. Then $E(A) / p E(A) \cong \operatorname{Mat}_{m}\left(F_{p}\right)$ where $F_{p}=$ $\operatorname{End}_{E(A) / p E(A)}(A / p A)$. Now $p$-rank $E(A)=m(p-\operatorname{rank} A)=m^{2} \operatorname{dim} F_{p}$ so $p$-rank $A=m \operatorname{dim} F_{p}$.
(c) $\Rightarrow$ (b). Write $E(A) / p E(A) \cong I^{m}, I$ an irreducible left ideal of $E(A) /$ $p E(A)$. Since $E(A) / p E(A)$ is simple, $A / p A \cong I^{k}$ for some $k$. But $\operatorname{dim} I=$ $m \operatorname{dim} F_{p}=p$-rank $A$ so $k \cong 1$ and $A / p A$ is $E(A) / p E(A)$-irreducible.

Corollary 2.4. (a) If $A$ is irreducible ( $p$-irreducible), then $A$ is $Q$-simple ( $p$-simple).
(b) If $A$ is quasi-isomorphic to $B$ and $A$ is irreducible, then $B$ is irreducible.
(c) If $A$ is nearly isomorphic to $B$ and if $A$ is p-irreducible, then $B$ is p-irreducible.

Proof. (a) Follows from Theorems 2.1 and 2.3.
(b) If $A$ is quasi-isomorphic to $B$, then $Q A \cong Q B$ and $Q E(A) \cong$ $Q E(B)$.
(c) If $n A \cong B \cong A$ and if $p$ is a prime not dividing $n$, then $B / p B \cong A / p A$ and $E(A) / p E(A)=E(B) / p E(B)$.

Corollary 2.5. Assume that $A$ is reduced. Then $A$ is p-irreducible for each $p$ if and only if $A=A_{1} \oplus \cdots \oplus A_{k}$ where (i) $\operatorname{Hom}\left(A_{i}, A_{j}\right)=0$ if $i \neq J$; (ii) each $A_{i}$ is $Q$-simple and p-irreducible for each $p$; (iii) if $p$ is a prime then there is some $j$ with $A / p A=A_{j} / p A_{j}$.

Proof. Apply Theorem 1.3 and Theorem 2.3.
Corollary 2.6. $A$ is $Q$-simple (irreducible) and p-irreducible for each $p$ if and only if $A \cong B^{k-1} \oplus B_{0}$ where $B$ and $B_{0}$ are strongly indecomposable, $Q$-simple (irreducible), and p-irreducible for each $p$.

Proof. Apply Corollary 1.7 and the preceding results.
Proposirion 2.7. Assume that $A$ is $Q$-simple and p-irreducible for each prime $p$. Let $B$ be a pure fully invariant subgroup of $A$ and assume that $C=A \mid B \neq 0$ and $B \neq 0$.
(a) $B$ and $C$ are p-irreducible for each $p$ and there are ring monomorphisms $E(A) \rightarrow E(B)$ and $E(A) \rightarrow E(C)$.
(b) If $p$ is a prime, then either $p B=B, A / p A \cong C / p C$, and there is a ring monomorphism $E(A) / p E(A) \rightarrow E(C) / p E(C)$; or else $p C=C, A / p A \cong$ $B / p B$ and there is a ring monomorphism $E(A) / p E(A) \rightarrow E(B) / p E(B)$.

Proof. Let $p$ be a prime with $p B \neq B$. Since $A$ is $p$-irreducible $B+p A=$ $A$ (the case $B+p A=p A$ is impossible). Therefore, the natural map $B / p B \rightarrow A / p A$ is an isomorphism of $E(A) / p E(A)$-modules. Hence $p C=C$ and $B$ is $p$-irreducible since any $E(B) / p E(B)$-submodule of $B / p B$ is an $E(A) / p E(A)$-submodule of $B / p B \cong A / p A$.

The natural maps $E(A) / p E(A) \rightarrow E(B) / p E(B)$ and $E(A) \rightarrow E(B)$ are non-zero, hence monic, since $E(A) / p E(A)$ and $Q E(A)$ are simple algebras.

Similarly, if $p C \neq C$ then $C$ is $p$-irreducible, $A / p A \cong C / p C, E(A) \rightarrow$ $E(C)$ is monic and $E(A) / p E(A) \rightarrow E(C) / p E(C)$ is monic.

Corollary 2.8. Suppose that $A$ is $Q$-simple and p-irreducible for each prime $p$. Then there are subgroups $B_{1}, \ldots, B_{k}$ of $A$ such that
(i) $A /\left(B_{1} \oplus \cdots \oplus B_{k}\right)$ is torsion divisible,
(ii) For each $i, B_{i}$ is a minimal non-zero pure fully invariant subgroup of $A, B_{i}$ is irreducible and p-irreducible for each $i$,
(iii) For each i, $A \mid B_{i}$ is p-irreducible for each $p$,
(iv) For each $p$ and each $i$, either $p B_{i}=B_{i}$ or else $p\left(A / B_{i}\right)=A / B_{i}$,
(v) For each $i$ and $j, Q B_{i}$ and $Q B_{j}$ are isomorphic as $Q E(A)$-modules, hence $\operatorname{rank} B_{i}=\operatorname{rank} B_{j}$, and
(vi) If $A$ is strongly indecomposable, then rank $A=k \operatorname{rank} E(A)$.

Proof. Since $Q E(A)$ is a simple algebra, $Q A=M_{1} \oplus \cdots \oplus M_{k}$ as left $Q E(A)$-modules where each $M_{i} \cong I$, an irreducible left ideal of $Q E(A)$. Let $B_{i}=M_{i} \cap A$, a minimal non-zero pure fully invariant subgroup of $A$. Then $B_{i}$ is irreducible since any $E\left(B_{i}\right)$-module of $B_{i}$ is an $E(A)$-submodule of $B_{i}$. Moreover, $Q B_{i}=M_{i} \cong M_{j}=Q B_{j}$ as $Q E(A)$-modules. In view of Proposition 2.7, each $B_{i}$ and each $A / B_{i}$ is $p$-irreducible for each $p$ and either $p B_{i}=B_{i}$ or else $p\left(A / B_{i}\right)=A / B_{i}$.

Since $Q A=Q B_{1} \oplus \cdots \oplus Q B_{k}=M_{1} \oplus \cdots \oplus M_{k}, A /\left(B_{1} \oplus \cdots \oplus\right.$ $B_{k}$ ) is torsion. If $p$ is a prime with $p A \neq A$, then $p B_{i} \neq B_{i}$ for some $i$. Thus $p\left(A / B_{i}\right)=A / B_{i}$ so that $A /\left(B_{1} \oplus \cdots \oplus B_{k}\right)$ is $p$-divisible. If $A$ is strongly indecomposable, then $Q E(A)$ is a division algebra so rank $A=$ $\operatorname{rank} B_{1}+\cdots+\operatorname{rank} B_{k}=k \operatorname{rank} E(A)\left(\right.$ since $\left.M_{i}=Q B_{i} \cong Q E(A)\right)$.
3. Strongly homogeneous groups. The group $A$ is strongly homogeneous if whenever $X$ and $Y$ are two pure rank 1 subgroups of $A$ then there is an automorphism $f$ of $A$ with $f(X)=Y$.

Theorem 3.1. (Arnold [1]): The group A is strongly homogeneous if and only if $A$ is isomorphic to the direct sum of finitely many copice of $\mathscr{R} \otimes_{Z}$ $X$ where $\mathscr{R}$ is a subring of an algebraic number field such that every element of $\mathscr{R}$ is a rational integral multiple of a unit of $\mathscr{R}$ and $X$ is a rank 1 group. Moreover, $\mathscr{R}$ may be chosen so that $E(A) \cong \operatorname{Mat}_{m}(\mathscr{R})$ and $\mathscr{R} \otimes_{Z} X$ is strongly indecomposable.

Corollary 3.2. If $A$ is strongly homogeneous, then $A$ is irreducible and p-irreducible for each $p$.

Proof. As a consequence of Theorem 3.1, $Q E(A) \cong \operatorname{Mat}_{m}(Q \mathscr{R})$ where $Q \mathscr{R}$ is a field and $\operatorname{rank} A=m \operatorname{rank} \mathscr{R}=m \operatorname{dim}_{Q} Q \mathscr{R}$. Furthermore, $E(A) /$ $p E(A) \cong \operatorname{Mat}_{m}(\mathscr{R} \mid p \mathscr{R})$ where $\mathscr{R} \mid p \mathscr{R}$ is a field, if $\mathscr{R} \neq p \mathscr{R}$, and $p$-rank $A=$ $m p$-rank $\mathscr{R}$.

Corollary 3.3. Suppose that $A$ is a finitely generated $E(A)$-module. Then the following are equivalent:
(a) $A$ is strongly homogeneous;
(b) $A$ is irreducible and p-irreducible for each $p$; and
(c) $A$ is $Q$-simple and $p$-simple for each $p$.

Proof. (a) $\Rightarrow$ (b) Corollary 3.2.
(b) $\Rightarrow$ (c) Corollary 2.4.
(c) $\Rightarrow($ a). Let $S=$ Center $E(A)$. Then $E(A)$ is a free $S$-module and $S$
is a subring of an algebraic number field such that every element of $S$ is an integral multiple of a unit of $S$ (Corollary 1.4). Since $A$ is a finitely generated $E(A)$-module, $A$ is a finitely generated torsion free $S$-module. Therefore, $A \cong S^{m}$ so that Theorem 3.1 applies.

The ring $E(A)$ is sub-commutative if whenever $f, g \in E(A)$, then there is $h \in E(A)$ with $f g=h f$. Examples of sub-commutative rings are given by Reid [11].

Lemma 3.4. Suppose that $E(A)$ is sub-commutative. Then
(a) $Q E(A) / \mathscr{J}(Q E(A))$ is a product of division algebras, and
(b) $(E(A) / p E(A)) / \mathscr{J}(E(A) / p E(A))$ is a product of fields.

Proof. $\mathscr{R}=Q E(A) / \mathscr{J}(Q E(A))$ is a semi-simple artinian sub-commutative ring hence a product of division algebras (Reid [11]). The proof of (b) is similar.

Proposition 3.5. A is strongly homogeneous and strongly indecomposable if and only if $A$ is irreducible and p-irreducible for each $p$, and $E(A)$ is subcommutative. In this case, $E(A)$ is commutative.

Proof. ( $\Rightarrow$ ). Theorem 3.1 implies that $E(A)$ is commutative, hence subcommutative. Now apply Corollary 3.2.
$(\Leftrightarrow)$. As a consequence of Corollary 2.4.a and Lemma 3.4, $Q E(A)$ is a division algebra and $E(A) / p E(A)$ is a field for each $p$. Thus $A$ is strongly indecomposable.

Let $X$ be a pure rank 1 subgroup of $A$ and $\phi: E(A) \otimes X \rightarrow A$ defined by $\phi(f \otimes x)=f(x)$. Then $\phi$ is monic and $A / E(A) X$ is torsion since rank $E(A)=\operatorname{rank} A$ (Corollary 2.2). Let $p$ be a prime and $p a \in E(A) X$ for $a \in A$. Since $X$ has rank $1, p a=f(x)$ for some $f \in E(A)$. Now $f E(A) \subseteq$ $E(A) f$, since $E(A)$ is subcommutative, so $E(A) f E(A) \cong E(A) f \subseteq E(A) f E(A)$ and $E(A) f E(A)=n E(A)$ for some $n \in Z$ (Proposition 1.2). Since $Q E(A)$ is a division algebra, $f=n u$ for some unit $u$ of $E(S)$. Now $p a=f(x)=$ $n u(x)$ so $p \mid n$, or else $u(x) / p \in A$ implies that $x \in p A \cap X=p X$, since $u$ is a unit of $E(A)$. In either case, $a \in E(A) X$ and $A \cong E(A) \otimes_{Z} X$.

Since $A$ is strongly indecomposable, $E(A)$ must be strongly indecomposable. In view of Theorem 3.1 and Corollary 1.4 it suffices to prove that $E(A)$ is commutative. For $0 \neq f \in E(A)$ define $\alpha_{f}: E(A) \rightarrow E(A)$ by $\alpha_{f}(g)$ $=f g-g f$. Then $\alpha_{f}$ induces an endomorphism of $A \cong E(A) \otimes_{Z} X$ via $g \otimes x \rightarrow \alpha_{f}(g) \otimes x$. Since $\alpha_{f}(1)=0$ and $Q E(A)$ is a division algebra, $\alpha_{f}=0$. Thus $f g=g f$ for all $g \in E(A)$.

## 4. Finitely faithful groups.

Lemma 4.1. Suppose that $Q E(A)$ is semi-simple and that $A$ is finitely faithful. Every exact sequence of groups

$$
O \rightarrow B \rightarrow G \xrightarrow{I} A \rightarrow 0
$$

such that $\operatorname{Hom}(A, G) A+B=G$ is split exact.
Proof. Let $I=\{I h: h \in \operatorname{Hom}(A, G)\}$, a right ideal of $E(A)$ with $I A=A$. Then $E(A) / I$ is finite since $Q E(A)$ is semi-simple (Arnold and Lady [3], Corollary 2.3). But $A$ is finitely faithful so $I=E(A)$, i.e., there is $h: A \rightarrow$ $G$ with $I h=1_{A}$.

Proposition 4.2. The following are equivalent:
(a) $A$ is finitely faithful;
(b) $I=\operatorname{Hom}(A, I A)$ for each maximal right ideal $I$ of finite index in $E(A)$; and
(c) $J_{p}=\operatorname{Hom}\left(A, J_{p} A\right)$ for each prime $p$ where $J_{p} / p E(A)=\mathscr{J}(E(A) /$ $p E(A)$ ).

Proof. (a) $\Rightarrow(\mathrm{b})$. Note that $I \subseteq \operatorname{Hom}(A, I A)$. a right ideal of $E(A)$. Since $A$ is finitely faithful, $\operatorname{Hom}(A, I A)=E(A)$ is impossible. By the maximality of $I, I=\operatorname{Hom}(A, I A)$.
(b) $\Rightarrow$ (c). Clearly, $J_{p}=\cap\{I \mid I$ is a maximal right ideal of $E(A)$ containing $p E(A)\}$. If $f \in \operatorname{Hom}\left(A, J_{p} A\right)$ then $f(A) \cong I A$ so that $f \in I$ for each maximal right ideal $I \cong p E(A)$. Thus $J_{p}=\operatorname{Hom}\left(A, J_{p} A\right)$.
(c) $\Rightarrow$ (a). Let $I$ be a maximal right ideal of $E(A)$ with $E(A) / I$ finite and $I A=A$. Then $p E(A) \subseteq J_{p} \subseteq I$ for some prime $p$ of $Z$. Since $E(A) / J_{p}$ is semi-simple, $I=e E(A)+J_{p}$ for some $e \in E(A)$, $e^{2}-e \in J_{p}$. But $A=$ $I A=e A+J_{p} A$ so $(1-e)(A) \subseteq J_{p} A$. By (c), $1-e \in J_{p}$ so $E(A) \cong$ $e E(A)+J_{p}=I$.

Corollary 4.3. Assume that $A$ is not divisible. If $E(A) / p E(A)$ is semisimple for each $p$, then $A$ is finitely faithful. Moreover, $\mathscr{N} E(A) A$ is the maximal divisible subgroup of $A$.

Proof. In this case, $J_{p}=p E(A)$ and $p E(A)=\operatorname{Hom}(A, p A)$. Also $(\mathscr{N} E(A)+p E(A)) / p E(A) \subseteq J_{p} / p E(A)=0$ so $\mathscr{N} E(A)=p \mathscr{N} E(A)$ for each p. Thus $\mathscr{N} E(A)$ is divisible and $\mathscr{N} E(A) A \subseteq D$, the maximal divisible subgroup of $A$. Write $A=B \oplus D, B$ reduced. Then $D=\operatorname{Hom}(B, D) B \subseteq$ $\mathscr{N} E(A) A$ since $\operatorname{Hom}(B, D)$, regarded as a left ideal of $E(A)$, is nilpotent.

## 5. $\mathscr{S}$-groups.

Theorem 5.1. The following are equivalent:
(a) For each prime $p, p-\operatorname{rank}(E(A))=(p-\operatorname{rank}(A))^{2}$;
(b) For each prime $p$ with $p A \neq A, E(A) / p E(A)=\operatorname{Mat}_{m_{p}}(Z / p Z)$ where $m_{p}=p$-rank $A$; and
(c) $A$ is a finitely faithful $\mathscr{S}$-group.

Proof. (a) $\Rightarrow(\mathrm{b})$. There is a monic ring homomorphism $E(A) / p E(A) \rightarrow$
$E(A / p A)$. But $E(A / p A) \cong \operatorname{Mat}_{m_{p}}(Z / p Z)$, where $m_{p}=p-\operatorname{rank}(A)$, has $\operatorname{dim}=m_{p}^{2}$ so $E(A) / p E(A) \cong E(A / p A)$.
(b) $\Rightarrow$ (c). Since $E(A) / p E(A)$ is simple for each $p, A$ is finitely faithful (Corollary 4.3).

Suppose that $n A \cong B \cong A$ for some $0 \neq n \in Z . B / n A=B_{1} / n A \oplus \cdots$ $\oplus B_{k} / n A$ where each $B_{i} / n A$ is cylic of prime power order.
It suffices to assume that $p^{j} A \cong B \subseteq A$ for some prime $p$ and that $B / p^{j} A \cong Z / p^{i} Z$ for some $i$; since if $B_{i} / n A \cong Z / p^{j} Z$, then $p^{j} A \cong\left(p^{j} / n\right)$ $B_{i} \cong A$ with $\left(p^{j} / n\right) B_{i} \cong B_{i}$, and if $\operatorname{Hom}\left(A, B_{i}\right) A=B_{i}$ for $1 \leqq i \leqq k$, then $\operatorname{Hom}(A, B) A=B$.

As a consequence of (b) there is an isomorphism $\phi: E(A) / p^{j} E(A)$ $\rightarrow E\left(A / p^{j} A\right)$. Write $B=Z b+p^{j} A$ and choose $f^{\prime} \in E\left(A / p^{j} A\right)$ with $f^{\prime}\left(A / p^{j} A\right)=B / p^{j} A$. Then $f^{\prime}=\phi\left(f+p^{j} E(A)\right)$ for some $f \in E(A)$ so $b \in$ $f(A)+p^{j} A$. Thus $B=Z b+p^{j} A \cong\left(f E(A)+p^{j} E(A)\right) A \cong \operatorname{Hom}(A, B) A$ $\cong B$ so that $B=\operatorname{Hom}(A, B) A$ and $A$ is an $\mathscr{S}$-group.
(c) $\Rightarrow$ (a). Write $A / p A=B_{1} / p A \oplus \cdots \oplus B_{m} / p A$ where $m=p$-rank $A$ and $B_{i} / p A \cong Z / p Z$. For each $i$, choose a right ideal $I_{i}$ of $E(A)$ minimal with respect to $p E(A) \cong I_{i}$ and $I_{i} A=B_{i}$. Then $A=B_{1}+\cdots+B_{m}=$ $\left(I_{1}+\cdots+I_{m}\right) A$ so $E(A)=I_{1}+\cdots+I_{m}$ since $A$ is finitely faithful. Also $E(A) / p E(A)=I_{1} / p E(A) \oplus \cdots \oplus I_{m} / p E(A)$ and each $I_{i} / p E(A)$ is a minimal right ideal of $E(A) / p E(A)$ by the choice of $I_{i}$ and the fact that $I_{i} A=B$ and $B_{i} / p A \cong Z / p Z$. Therefore $E(A) / p E(A)$, being the direct sum of minimal right ideals, must be semi-simple.
In fact, $E(A) / p E(A)$ is simple. Otherwise, $E(A) / p E(A)=I / p E(A) \oplus$ $J / p E(A)$ is the direct sum of non-zero ideals. Since $A$ is finitely faithful, $I A \neq A, J A \neq A$. Choose $a_{1} \in I A \backslash J A, a_{2} \in J A \backslash I A$, noting that $A=I A+$ $J A$. Let $a=a_{1}+a_{2} \in A \backslash(I A \cup J A)$ and $B=Z a+p A$. Then $L A=B$ for some right ideal $L$ of $E(A)$. Since $E(A)=I+J, L=L \cap I+L \cap J$ so $L / p E(A)=(L \cap I) / p E(A) \oplus(L \cap J) / p E(A)$. But $B / p A \cong Z / p Z \cong$ $L A / p A \cong(L \cap I)(A) / p A \oplus(L \cap J)(A) / p A$. Thus, for example, $(L \cap I)$ $A=B$ and $a \in B \subseteq(L \cap I) A \cong I A$, a contradiction.

Write $E(A) / p E(A)=\operatorname{Mat}_{m}(F), F=\operatorname{End}_{E(A) / D E(A)}\left(I_{i} / p E(A)\right)$, recalling that $m=p$-rank $(A)$. Thus $p$-rank $(E(A))=m^{2} \operatorname{dim}(F) \leqq m^{2}$ so $\operatorname{dim}(F)=1$ and $p$-rank $(E(A))=(p-\operatorname{rank}(A))^{2}$.

Corollary 5.2. $A$ is a finitely faithful $\mathscr{S}$-group if and only if $\operatorname{Ext}(A, A)$ is torsion free.

Proof. Warfield [13] proves that $\operatorname{Ext}(A, A)$ is torsion free if $p$-rank $(E(A))=(p-\operatorname{rank}(A))^{2}$ for each prime $p$.

Corollary 5.3. Assume A is a finitely faithful $\mathscr{S}$-group.
(a) $A$ is $p$-irreducible for each $p$.
(b) If $B$ is quasi-isomorphic to $A$, then $B$ is a finitely faithful $\mathscr{S}$-group.

Proof. (a) follows from Theorem 5.1 and Theorem 2.3.
(b) Note that $p$-rank $(B)=p$-rank $(A)$ and $p$-rank $(E(B))=$ $p-\operatorname{rank}(E(A))$ for each prime $p$ and apply Theorem 5.1.

Corollary 5.4. (a) $A$ is a finitely faithful $\mathscr{S}$-group if and only if $A=$ $A_{1} \oplus \cdots \oplus A_{k}$ where $\operatorname{Hom}\left(A_{i}, A_{j}\right)=0$ if $i \neq j$; each $A_{i}$ is a $Q$-simple finitely faithful $\mathscr{S}$-group; and if $p$ is a prime, then is some $j$ with $A / p A=$ $A_{j} / p A_{j}$.
(b) $A$ is a $Q$-simple finitely faithful $\mathscr{S}$-group if and only if $A \cong B^{k-1} \oplus$ $B_{0}$ where $B$ and $B_{0}$ are $Q$-simple strongly indecomposable finitely faithful $\mathscr{S}$-groups and $B$ is nearly isomorphic to $B_{0}$. In this case, if $S=$ Center $E(A)$, then $S / p S \cong Z / p Z$ for each prime $p$ with $p A \neq A$.
(c) Assume that $A$ is a $Q$-simple finitely faithful $\mathscr{S}$-group. Then there are pure fully invariant subgroup $B_{1}, \ldots, B_{k}$ of $A$ such that $A /\left(B_{1} \oplus \cdots \oplus B_{k}\right)$ is torsion divisible; for each $i, B_{i}$ is an irreducible finitely faithful $\mathscr{S}$-group; and if $p$ is a prime then either $p B_{i}=B_{i}$ or else $p\left(A / B_{i}\right)=A / B_{i}$.

Proof. Apply Theorem 5.1 and the results of $\S 2$.
Corollary 5.5. Assume that $A$ is finitely faithful. Then $A$ is an $\mathscr{S}$-group if and only if whenever $B$ is a subgroup of finite index in $A$ then $B$ is nearly isomorphic to $A$.

Proof. $(\Leftarrow)$. Let $B$ be a subgroup of finite index in $A$. Since $B$ is nearly isomorphic to $A, B \oplus B_{0} \cong A \oplus A$ for some $B_{0}$ (Lady [7]). Then $\operatorname{Hom}(A, B) A=B$ so that $A$ is an $\mathscr{S}$-group.
$(\Rightarrow)$. As a consequence of Corollary 5.4 , it suffices to assume that $A$ is $Q$-simple. Let $B$ be a subgroup of finite index in $A$. Then $\operatorname{Hom}(A, B)$ is a right ideal of $E(A)$ and $E(A)$ is a maximal $S$-order in $Q E(A)$ (Corollary 1.4). Thus $\operatorname{Hom}(A, B)$ is a projective right ideal of $E(A)$ (Swan and Evans [12]). Since $\operatorname{Hom}(A, B) A=B, B$ is nearly isomorphic to $A$ (as in the proof of Theorem 1.6).

## 6. $\mathscr{J}$-groups.

Theorem 6.1. If $A$ is reduced, then the following are equivalent:
(a) $A$ is a finitely faithful $\mathscr{J}$-group;
(b) $A$ is a finitely faithful $\mathscr{S}$-group and every right ideal of finite index in $E(A)$ is principal; and
(c) $A$ is a $\mathcal{J}$-group and $Q E(A)$ is semi-simple.

Proof. (a) $\Rightarrow$ (b). Every finitely faithful $\mathscr{J}$-group is a finitely faithful $\mathscr{S}$-group. Let $I$ be a right ideal of $E(A)$ with $E(A) / I$ finite. Then $A / I A$ is finite so choose $f \in E(A), f(A)=I A$. Then $A=f^{-1} I A$ so $f^{-1} I=E(A)$, since $A$ is finitely faithful, and $I=f E(A)$.
(b) $\Rightarrow$ (c). Clearly, $A$ is a $\mathscr{J}$-group and $Q E(A)$ is semi-simple (Theorem 5.1 and Corollary 4.3).
(c) $\Rightarrow(\mathrm{a})$. Since $Q E(A)$ is semi-simple, there is $0 \neq n \in Z, n \mathscr{R} \cong E(A) \cong$ $\mathscr{R}=\mathscr{R}_{1} \times \cdots \times \mathscr{R}_{k}, Q \mathscr{R}_{i}$ a simple algebra, $\mathscr{R}_{i}$ an $S_{i}$-order where $S_{i}=$ Center $\mathscr{R}_{i}$ (as in Theorem 1.3). There is a maximal $S_{i}$-order $\bar{R}_{i}$ in $Q \mathscr{R}_{i}$ with $\overline{\mathscr{R}}_{i} / \mathscr{R}_{i}$ finite (Swan and Evans [12]). Hence there is $0 \neq m \in Z$, $m \overline{\mathscr{R}} \subseteq E(A) \subseteq \overline{\mathscr{R}}=\overline{\mathscr{R}}_{1} \times \cdots \times \overline{\mathscr{R}}_{k}$. Let $B_{i}=\overline{\mathscr{R}}_{i} A$ and $B=B_{1} \oplus \cdots$ $\oplus B_{k}$. Them $m B \subseteq A \subseteq B=B_{1} \oplus \cdots \oplus B_{k}$ and $E\left(B_{i}\right)=\overline{\mathscr{R}}_{i}$. Since $A$ is a $\mathscr{J}$-group, $A \cong B$ and $E(A) \cong \overline{\mathscr{R}}_{1} \times \cdots \times \overline{\mathscr{R}}_{k}$. Consequently, every right ideal of $E(A)$ is projective, since every right ideal of the maximal order $\overline{\mathscr{R}}_{i}$ is projective (Swan and Evans [12]). Let $I$ be a maximal right ideal of finite index in $E(A)$. Since $I$ is $E(A)$-projective, $I=\operatorname{Hom}(A, I A)$ (Arnold and Lady [3]). Thus $A$ is finitely faithful by Proposition 4.2.

The group $A$ is a Murley group if $p$-rank $(A) \leqq 1$ for each prime $p$ of $Z$. If $A$ is a Murley group, then $A$ is a $\mathscr{J}$-group. If, in addition, $A$ is indecomposable, then $E(A)$ is an integral domain with $E(A) / p E(A) \cong Z / p Z$ or 0 . Furthermore, an indecomposable Murley group is irreducible if and only if it is strongly homogeneous (Murley [8]).

Corollary 6.2. Suppose that $A \cong B^{k}$ where $B$ is an indecomposable Murley group. Then $A$ is a finitely faithful $\mathcal{J}$-group. Moreover $A$ is irreducible if and only if $A$ is strongly homogeneous.

Corollary 6.3. $A$ is a strongly homogenecus finitely faithful $S$-group if and only if $A \cong B^{k}$ where $B$ is a strongly homogeneous indecomposable Murley group.

Proof. $(\leftarrow)$. Corollary 6.2.
$(\Rightarrow)$. Write $A \cong\left(R \otimes_{Z} X\right)^{m}$ so that $E(A) \cong \operatorname{Mat}_{m}(\mathscr{R})$ and $\mathscr{R} \otimes_{Z} X$ is strongly indecomposable. Then $E(A) / p E(A) \cong \operatorname{Mat}_{m}(\mathscr{R} / p \mathscr{R}) \cong$ $\operatorname{Mat}_{n}(Z / p Z)$ where $p-\operatorname{rank}(A)=m \cdot p-\operatorname{rank}(\mathscr{R})=n$. The uniqueness of Wedderburn-Artin theory implies that $m=n$ and $\mathscr{R} / p \mathscr{R} \cong Z / p Z$. Thus, $\mathscr{R} \otimes_{Z} X$ is a strongly indecomposable Murley group since $\operatorname{dim}\left(\mathscr{R} \otimes_{Z} X\right) /$ $p\left(\mathscr{R} \otimes_{Z} X\right) \leqq 1$ for each $p$. Also $\mathscr{R} \otimes_{Z} X$ is a strongly homogeneous group.

Corollary 6.4. Assume that $A$ is semi-local ( $p A=A$ for all but a finite number of primes $p$ ). Then $A$ is a finitely faithful $\mathscr{S}$-group if and only if $A$ is a finitely faithful $\mathscr{J}$-group.

Proof. Apply Theorem 6.1, Corollary 5.4, and Theorem 1.4, noting that if $A$ is $Q$-simple and semi-local, then $A=$ Center $E(A)$ has only finitely many maximal ideals and $E(A)$ is a maximal $S$-order. Thus every right ideal of $E(A)$ is principal (Swan and Evans [12]).

Corollary 6.5. Assume that $E(A)$ is subcommutative. Then $A$ is a finitely faithful $S$-group if and only if $A=A_{1} \oplus \cdots \oplus A_{k}$ where each $A_{i}$ is fully invariant in $A$ and each $A_{i}$ is an indecomposable Murley group.

Proof. $(\Leftarrow)$. Each $A_{i}$ is a finitely faithful $\mathscr{S}$-group (Corollary 6.2) so that $A=A_{1} \oplus \cdots \oplus A_{k}$ is a finitely faithful $\mathscr{S}$-group (Corollary 5.4).
$(\Rightarrow)$. As a consequence of Theorem 5.1 and Lemma $3.4, E(A) / p E(A)$ is a field isomorphic to $Z / p Z$ for each prime $p$ with $p A \neq A$ and $\operatorname{dim}(A / p A)=1$. Thus $A=A_{1} \oplus \cdots \oplus A_{k}$ where each $A_{i}$ is a fully invariant indecomposable Murley group.
7. Examples. Let $S$ be a commutative ring and $H(S)=S \oplus S i \oplus S j \oplus$ $S k$ the ring of Hamiltonian quaternions over $S$. Then $H(S) \subseteq Q H(S)$ $=H(Q S)$. Moreover, $H(Z) / p H(Z) \cong H(Z / p Z) \cong \operatorname{Mat}_{2}(Z / p Z)$ for each prime $p \neq 2$ of $Z$ and $H(Q)$ is a division algebra. Let $Z[1 / 2]$ be the subring of $Q$ generated by $Z$ and $1 / 2$. Then $H(Z[1 / 2]) / p H(Z[1 / 2]) \cong H(Z / p Z)$ if $p \neq 2$ while $2 H(Z[1 / 2])=H(Z[1 / 2])$.

Example 7.1. There is a torsion free group $A$ of $\operatorname{rank} 8$ with $E(A) \cong$ $H(Z[1 / 2]), p-\operatorname{rank} A=\operatorname{dim} E(A) / p E(A)=4$ for $p \neq 2$, and $2-\operatorname{rank}(A)=0$ (Corner [5]). Then $A$ is strongly indecomposable, $Q$-simple, $p$-simple for each $p$ but is not irreducible or $p$-irreducible for $p \neq 2$.

Example 7.2. There is a torsion free group $A$ of $\operatorname{rank} 4$ with $E(A) \cong$ $H(Z)$ and $p$-rank $A=p$-rank $H(Z)=4$ for each $p$ (Zassenhaus [14]). Then $A$ is strongly indecomposable, irreducible, $p$-simple for $p \neq 2$, but not $p$-irreducible for any $p$ (note that $H(Z) / 2 H(Z)$ is not semi-simple).

Example 7.3. There is a torsion free group $A$ of $\operatorname{rank} 2$ with $E(A) \cong Z$ and $p$-rank $A=1$ for each $p$ (Corner [5]). Then $A$ is a strongly indecomposable $Q$-simple Murley group that is not irreducible. Moreover, $A$ satisfies the conclusions of Corollary 2.8 with $k>1$.

Assume that $\mathscr{R}$ is a subring of $Q \mathscr{R}$ and that $Q \mathscr{R}$ is a finite dimensional $Q$-algebra. For a prime $p$ of $Z$, define $\mathscr{R}_{p}^{*}$ to be the $p$-adic completion of $\mathscr{R}$. Then $\mathscr{R}_{p}^{*}$ is complete in the $p$-adic topology. Moreover, if $S=$ Center $\mathscr{R}$ then $S_{p}^{*}=$ Center $\mathscr{R}_{p}^{*}$.

Lemma 7.4. Suppose that $\mathscr{R} / p \mathscr{R} \cong \operatorname{Mat}_{m}(F)$, where $F$ is a finite field. Then $\mathscr{R}_{p}^{*}=\mathscr{R}_{p}^{*} e_{1} \oplus \cdots \oplus \mathscr{R}_{p}^{*} e_{m}$, where $e_{i}^{2}=e_{i}$ and $\operatorname{dim}\left(\mathscr{R}_{p}^{*} e_{i} / p \mathscr{R}_{p}^{*} e_{i}\right)=$ $m \operatorname{dim}(\mathscr{R} / p \mathscr{R})$.

Proof. Write $\mathscr{R} / p \mathscr{R}=I_{1} \oplus \cdots \oplus I_{m}$, where $I_{i}=(\mathscr{R} / p \mathscr{R}) f_{i}$ is an irreducible left ideal, $f_{i}^{2}=f_{i}$, and $\operatorname{dim}\left(I_{i}\right)=m \operatorname{dim}(F)$ for each $i$. Then $\mathscr{R}_{p}^{*} /$ $p \mathscr{R}_{p}^{*}$ is isomorphic to $\mathscr{R} / p \mathscr{R}$. Since $\mathscr{R}_{p}^{*}$ is complete in the $p$-adic topology, $\mathscr{R}_{p}^{*}=\mathscr{R}_{p}^{*} e_{1} \oplus \cdots \oplus \mathscr{R}_{p}^{*} e_{m}$, where $e_{i}^{2}=e_{i}$ and $e_{i}+p \mathscr{R}_{p}^{*}=f_{i}$ for each $i$. Thus $\operatorname{dim}\left(\mathscr{R}_{p}^{*} e_{i} / p \mathscr{R}_{p}^{*} e_{i}\right)=\operatorname{dim}\left(I_{i}\right)=m \operatorname{dim}(F)$ for each $i$.

Lemma 7.5. Suppose that $\mathscr{R} \subseteq Q \mathscr{R}, Q \mathscr{R}$ is a division algebra, $S=$ Center $\mathscr{R}, \mathscr{R}$ is $p$-local $(q \mathscr{R}=\mathscr{R}$ for each prime $q \neq p$ ) and that $\mathscr{R} / p \mathscr{R} \cong$ $\mathrm{Mat}_{m}(F), F$ a finite field. Then there is a finite rank torsion free p-local
group $A$ such that $E_{S}(A) \cong \mathscr{R}$ and $p$ - $\operatorname{rank}(A)=m \operatorname{dim}(F)$.
Proof. The construction of $A$ is a mild variation of the construction given by Corner [5]. As in Lemma 7.4, write $\mathscr{R}_{p}^{*}=\mathscr{R}_{p}^{*} e_{1} \oplus \cdots \oplus \mathscr{R}_{p}^{*} e_{m}$ where $e_{i}^{2}=e_{i}$ and $\operatorname{dim}\left(\mathscr{R}_{p}^{*} e_{i} / p \mathscr{R}_{p}^{*} e_{i}\right)=m \operatorname{dim}(F)$ for each $i$. Then $\mathscr{R}$ is a free $S$-module, a maximal $S$-order in $Q \mathscr{R}$, and $S$ is a discrete valuation ring with unique maximal ideal $p S$ (Corollary 1.4).

Now $\mathscr{R} e_{1} \cong \mathscr{R}_{p}^{*} e_{1}$ and $\mathscr{R} \cong \mathscr{R} e_{1}$ since $Q \mathscr{R}$ is a division algebra. Let $\left\{\xi_{1}, \ldots, \xi_{\}}\right\}$, where $/ \operatorname{dim}\left(S_{p}^{*} / p S_{p}^{*}\right)=\operatorname{dim}\left(\mathscr{R}_{p}^{*} e_{1}\right)=m \operatorname{dim}(F)$, be an $S_{p}^{*}$-basis for $\mathscr{R}_{p}^{*} e_{1}$ and choose $\left\{\xi_{1+1}, \ldots \xi_{k}\right\} \cong \mathscr{R}_{p}^{*} e_{2} \oplus \cdots \mathscr{R}_{p}^{*} e_{m}$ such that $\left\{\xi_{1}, \ldots, \xi_{k}\right\}$ is an $S_{p}^{*}$-basis for $\mathscr{R}_{p}^{*}$ where $k \operatorname{dim}\left(S_{p}^{*} / p S_{p}^{*}\right)=m^{2} \operatorname{dim}(F)$.
Define $T$ to be the pure subring of $S_{p}^{*}$ generated by $\left\{\Pi_{i} \mid r=\Pi_{1} \xi_{1}+\cdots\right.$ $+I_{k} \xi_{k}$ for some $\left.r \in \mathscr{R}\right\}$. Then $T$ is countable and $S_{p}^{*}$ is uncountable so there are $n=S-\operatorname{rank}(\mathscr{R})$ elements $\rho_{1}, \ldots \rho_{n}$ of $S_{p}^{*}$ algebraically independent over $T$.

Let $\left\{\alpha_{1}=1, \alpha_{2}, \ldots \alpha_{n}\right\}$ be an $S$-basis of $\mathscr{R}$ and let $e=\rho_{1} \alpha_{1}+\cdots+$ $\rho_{n} \alpha_{n} \in \mathscr{R}_{p}^{*}$. Define $A$ to be the pure $S_{p}$-submodule of $\mathscr{R}_{p}^{*} e_{1}$ generated by $\left\{\mathscr{R} e_{1}, \mathscr{R e} e_{1}\right\}$. Then $A_{p}^{*}=\mathscr{R}_{p}^{*} e_{1}$ since $\mathscr{R}_{R}^{*} \mid \mathscr{R}$, hence $\left(\mathscr{R}_{p}^{*} e_{1}\right) /\left(\mathscr{R} e_{1}\right)$, is divisible and $A$ is pure in $\mathscr{R}_{p}^{*} e_{1}$. Thus $\operatorname{dim}(A / p A)=\operatorname{dim}\left(A_{p}^{*} / p A_{p}^{*}\right)=m \operatorname{dim}(F)$.

There is a ring monomorphism $\phi: \mathscr{R} \rightarrow E_{S}(A)$, given by $\phi(r)=$ left multiplication by $r$ since $\mathscr{R} A \cong A$. To show that $\phi$ is into, let $f \in E_{S}(A)$. Then $f$ lifts to an $S_{p}^{*}$-homomorphism $f^{*}: \mathscr{R}_{p}^{*} e_{1} \rightarrow \mathscr{R}_{p}^{*} e_{1}$. Hence $f\left(e e_{1}\right)=$ $\rho_{1} f\left(\alpha_{1} e_{1}\right)+\cdots+\rho_{n} f\left(\alpha_{n} e_{1}\right)$ and for some $0<j \in Z, p^{j} f\left(e e_{1}\right)=\beta_{0}+\gamma_{0} e e_{1}$ and $p^{j} f\left(\alpha_{i} e_{1}\right)=\beta_{i}+\gamma_{i} e_{1}$ for $\beta_{i} \in \mathscr{R} e_{1}, \gamma_{i} \in \mathscr{R}, 0 \leqq i \leqq n$. Therefore, $\beta_{0}+\gamma_{0}\left(\rho_{1} \alpha_{1} e_{1}+\cdots+\rho_{n} \alpha_{n} e_{1}\right)=\rho_{1}\left(\beta_{1}+\gamma_{1}\left(\rho_{1} \alpha_{1} e_{1}+\cdots+\rho_{n} \alpha_{n} e_{1}\right)\right)+$ $\cdots+\rho_{n}\left(\beta_{n}+\gamma_{n}\left(\rho_{1} \alpha_{1} e_{1}+\cdots+\rho_{n} \alpha_{n} e_{1}\right)\right)$. Note that $\rho_{1}, \ldots \rho_{n}$ are algebraically independent over the pure subring of $S_{p}^{*}$ generated by $\left\{I_{i} \mid\right.$ $r e_{1}=\Pi_{1} \xi_{1}+\cdots+\Pi_{1} \xi$, for some $\left.r e_{1} \in \mathscr{R} e_{1}\right\}$ since $r=r e_{1}+\cdots+$ $r e_{m}=\left(I_{1} \xi_{1}+\cdots+I I_{r} \xi_{l}\right)+\left(I_{九+1} \xi_{/+1}+\cdots+\Pi_{k} \xi_{k}\right)$ by the choice of the $\xi_{i}$ 's. It follows that $p^{j} f\left(e e_{1}\right)=\gamma_{0} e e_{1}$ and $p^{j} f\left(\alpha_{i} e_{1}\right)=\beta_{i}=\gamma_{0}\left(\alpha_{i} e_{1}\right)$ for $1 \leqq i \leqq n$.
Since $\left\{\alpha_{1}, \ldots \alpha_{n}\right\}$ is an $S$-basis of $\mathscr{R} \cong \mathscr{R} e_{1}, S=$ Center $\mathscr{R}$, and $f \in$ $E_{S}(A), p^{i} f\left(r e_{1}\right)=r_{0}\left(r_{1}\right)$ for all $r e_{1} \in \mathscr{R} e_{1}$. Now $p^{j} f^{*}-\phi\left(\gamma_{0}\right): \mathscr{R}_{\dot{p}}^{*} e_{1} \rightarrow$ $\mathscr{R}_{p}^{*} e_{1}$ with $\left(p^{j} f^{*}-\phi\left(\gamma_{0}\right)\right)\left(\mathscr{R} e_{1}\right)=0$. Since $\mathscr{R}_{p}^{*} e_{1} / \mathscr{R} e_{1}$ is divisible and $\mathscr{R}_{p}^{*} e_{1}$ is reduced, $p^{j} f^{*}=\phi\left(\gamma_{0}\right)$ and $p^{j} f=\phi\left(\gamma_{0}\right)$. Thus $E_{S}(A) / \phi(\mathscr{R})$ is torsion so it suffices to assume $\mathscr{R} \cong E_{S}(A) \cong Q \mathscr{R}=Q E_{S}(A)$. But $S=$ Center $\mathscr{R}$, $S \cong$ Center $E_{S}(A) \subset$ Center $(Q \mathscr{R})=Q S$ and $S$ is a discrete valuation ring. Thus $S=$ Center $E_{S}(A)$ so that $\mathscr{R}$ and $E_{S}(A)$ are $S$-orders in $Q \mathscr{R}$ (Pierce [9]). But $\mathscr{R}$ is a maximal $S$-order in $Q \mathscr{R}$ so that $\mathscr{R}=E_{S}(A)$.

Example 7.6. For each $p \neq 2$ there is a $p$-local strongly indecomposable $\mathcal{J}$-group $A$ such that $Q E(A)$ is a division algebra but $A$ is not a Murley group.

Proof. Let $\mathscr{R}=H\left(Z_{p}\right)$ so that $\mathscr{R} / p \mathscr{R} \cong \operatorname{Mat}_{2}(Z / p Z)$ and $S=$ Center $\mathscr{R} \cong Z_{p}$. By Lemma 7.5 there is a $p$-local group $A$ with $E(A) \cong \mathscr{R}$ and $\operatorname{dim}(A / p A)=2$. Since $\operatorname{dim}(E(A) / p E(A))=4=\left(\operatorname{dim}(A / p A)^{2}, A\right.$ is a finitely faithful $\mathscr{S}$-group, hence a finitely faithful $\mathscr{J}$-group (Theorem 5.1 and Corollary 6.4). Also $A$ is strongly indecomposable since $Q E(A) \cong$ $Q \mathscr{R} \cong H(Q)$ is a division algebra.

The following question, arising from Theorem II, remains open: If $A$ is strongly indecomposable, $Q$-simple, $p$-simple for each $p$ and if $B$ is nearly isomorphic to $A$, then is $B \cong A$ ? Equivalently, if $R$ is a maximal Center $(R)$-order in a finite dimensional division algebra $Q R$ and if every ideal in $R$ is generated by an element of $Z$, then is every right ideal of $R$ principal?

## References

1. D. Arnold, Strongly homogeneous torsion free abelian groups of finite rank, Proc. A.M.S. 56 (1975), 67-72.
2. _-, Genera and direct sum decompositions of torsion free modules, Lecture Notes in Mathematics \#616, Springer, New York, (1977), 197-218.
3. _- and E. Lady, Endomorphism rings and direct sums of torsion free abelian groups, Trans. A.M.S., 211 (1975), 225-237.
4. -_, B. O'Brien and J. Reid, Quasi-pure injective and projective torsion free abelian groups of finite rank, Proc. London Math. Soc. 38 (1979), 532-544.
5. A.L.S. Corner, Every countable reduced torsion free ring is an endomorphism ring, Proc. London Math. Soc. 13 (1963), 687-710.
6. L. Fuchs, Infinite Abelian Groups, Vol. I and II, Academic Press, New York, 1970, 1973.
7. E.L. Lady, Nearly isomorphic torsion-free abelian groups, J. Alg. 35 (1975), 235-238.
8. C.E. Murley, The classification of certain classes of torsion free abelian groups of finite rank, Pac. J. Math. 40 (1972), 647-665.
9. R.S. Pierce, Subrings of simple algebras, Mich. Math. J. 7 (1960), 241-243.
10. J. Reid, On the ring of quasi-endomorphisms of torsion free groups, Topics in Abelian Groups, Scott-Foresman, Chicago, 1963, 51-68.
11. -, On subcommutative rings, Acta Math. Acad. Sci. Hungar 16 (1965), 23-26.
12. R.G. Swan and E.G. Evans, K-Theory of finite groups and orders, Lecture Notes in Mathematics 149, Springer, New York, 1970.
13. R.B. Warfield, Jr., Extensions of torsion free abelian groups of finite rank, Arch. Math. 23 (1972), 145-150.
14. H.J. Zassenhaus, Orders as endomorphism rings of modules of the same rank, J. London Math. Soc. 42 (1967), 180-182.

New Mexico State Univeristy, Las Cruces, NM 88003.


[^0]:    *Research supported, in part, by N.S.F. Grant MCS 77-03458-A01.
    Received by the editors on October 15, 1979 and in revised form on December 22, 1980.

