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ENDOMORPHISM RINGS AND SUBGROUPS OF FINITE 
RANK TORSION-FREE ABELIAN GROUPS 

DAVID M. ARNOLD* 

Let A be a finite rank torsion-free abelian group and let E(A) denote 
the endomorphism ring of A. Then Q ®z E(A) = QE(A) and E(A)/pE(A) 
are artinian algebras, where Z is the ring of integers, Q is the field of ra­
tional, and p is a prime of Z. 

Define A to be Q-simple if QE(A) is a simple algebra, and p-simple for 
a prime p of Z if /?£(/4) = £(y4) or if E(A)/pE(A) is a simple algebra. In 
contrast to finite rank torsion-free groups in general, groups that are p-
simple for each p have some pleasant decomposition properties. 

THEOREM I. A reduced group A is p-simple for each prime p of Z if and 
only if A = Ai © • • • ® Ah where each A{ is fully invariant in A, each A{ 

is Q-simple and p-simple for each prime p ofZ, and ifp is a prime of Z then 
there is somej with AjpA = AjjpAj. 

THEOREM II. A group A is Q-simple and p-simple for each prime p of Z 
if and only if A = Bx © • • • © Bn, where each B{ is strongly indecomposable, 
Q-simple and p-simple for each prime p of Z and B{ is nearly isomorphic to 
Bj (in the sense of Lady [7]) for each i andj. 

Suppose that A is g-simple and /7-simple for each prime p of Z. Then A 
is indecomposable if and only if A is strongly indecomposable. Further­
more, if S = Center E(A), then S is a subring of an algebraic number field 
such that every element of S is a rational integral multiple of a unit of S, 
as described in [1], and E(A) is a maximal S-order in QE(A). 

Examples of groups that are Q-simple and /7-simple for each prime p of 
Z include: indecomposable strongly homogeneous groups (characterized 
in [1]); indecomposable groups with /?-rank g 1 for each prime p of Z 
(Murley [8]); and indecomposable quasi-pure-projective and quasi-pure-
injective groups ([4]). 

Define A to be irreducible if QA is an irreducible QE(A)-module (Reid 
[10]) and p-irreducible, for a prime p of Z, if AjpA is an irreducible E(A)I 
/?iì(y4)-module. If A is irreducible (/?-irreducible), then A is g-simple 
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(/7-simple). Furthermore, each strongly homogeneous group is irreducible 
and /^-irreducible for each prime of/? of Z. 

A group A is finitely faithful if I A ^ A for each maximal right ideal / of 
finite index in E (A). Define A, to be an y-group if whenever B is a sub­
group of finite index in A then B = I A for some right ideal / of E (A). The 
following theorem gives a class of groups irreducible and /7-irreducible for 
each prime p of Z. 

THEOREM III. The following are equivalent: 
(a) Ais a finitely faithful {/-group ; 
(b) For each prime p of Z with pA ^ A, E(A)/pE(A) ^ MatM(Z//?Z), 

the ring of m x m matrices over Z/pZ, where m = /?-rank A ; 
(c) Ext Z(A, A) is torsion free; and 
(d) A is finitely faithful and if B is a subgroup of finite index in A, then B 

is nearly isomorphic to A. 

B. Jónsson proved a uniqueness theorem for direct sum decompositions 
of finite rank torsion-free abelian groups up to quasi-isomorphism, where 
A and B are quasi-isomorphic if B is isomorphic to a subgroup of finite 
index in A (Fuchs [6]). Define A to be a /-group if A is isomorphic to each 
subgroup of finite index in A (Warfield [13]). Each ^/-group is an ^-group. 
Moreover, a reduced group A is a finitely faithful f-gvoxxp if and only if 
A is a ^/-group and QE(A) is a semi-simple algebra. If A c~ Bk, where B is 
indecomposable with /7-rank B ^ 1 for each prime p of Z, then y4 is a y -
group, necessarily finitely faithful. 

An example of an indecomposable finitely faithful ^-group with/?-rank 
> 1 is constructed in §7. This is a counterexample to a conjecture of C E . 
Murley: if A is an indecomposable y-group, then/7-rank A fg 1 for each 
prime /7 of Z. 

In summary, the following implications are valid for g-simple groups : 
(a) Finite direct sum of copies of a indecomposable group with /7-rank 

^ 1 for each p => finitely faithful ^-group => finitely faithful 5^-group => 
/7-irreducible for each p => /7-simple for each p. 

(b) Finite direct sum of copies of an indecomposable irreducible group 
with /7-rank ^ 1 for each p o finitely faithful strongly homogeneous /-
group o finitely faithful strongly homogeneous ^-group => strongly 
homogeneous => irreducible and /7-irreducible for each /? => irreducible 
and/7-simple for each/7. 

The abelian group terminology is as given in Fuchs [6]. The classical 
Wedderburn-Artin theory of semi-simple artinian algebras is assumed. 

1. 2-s™ple and /7-simple groups. 

PROPOSITION 1.1. The following are equivalent: 
(a) A is Q-simple ; 
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(b) If B is a fully invariant subgroup of A with Hom(^4, B) ^ 0, then 
AjB is finite, and 

(c) If lis a non-zero ideal ofE(A), then E(A)/I is finite. 

PROOF, (a) => (b). Let / = Hom(A, B), a non-zero ideal of E(A). Then 
QI = QE(A), since QE(A) is simple. Choose 0 # « e Z with n • \A e / so 
that nE(A) g /. Then nA g IA g 5 £ A and ,4/£ is finite since ^ / /L4 is 
finite. 

(b) => (c). Let B = IA, & fully invariant subgroup of ^4. Then 0 ^ / E 
Hom(^4, B) and ^4/^ is finite. 

Let f(QE(A)) be the Jacobson radical of QE(A) and ^£ ( ,4 ) = 
f(QE(A)) n E ( A the nil radical of E(A). If jrE(A)^0, then AlJTE(A)A 
must be finite so that QJfE{A)A = f(QE{A))QA = g;4, which is impos­
sible by Nakayama's Lemma. Therefore, QE(A) is semi-simple and ar-
tinian. 

Now QI = fQE(A) for some fel. Hence QA = QB = fQA and / is 
an automorphism of QA. Thus, fQE(A) = QI = QE(A) which implies 
that E(A)/I is finite. 

(c) => (a). If 0 ^ / is an ideal of QE(A), then E(A)/(I fi £(>*)) is finite 
and / = ß ( / fi £04)) = Ô^(^). 

PROPOSITION 1.2. 4̂ is p-simple for each prime p if and only if whenever I 
is an ideal cfE(A) with E{A)\Ifinite, then I = nE(A)for some neZ. 

PROOF. (<=). If I/pE(A) is an ideal of E(A)/pE(A), then 7 = pE(A) or 
/ = E(A). 

(=>). Let 0 < n be the least integer with nE(A) g / and let/? be a prime 
divisor of«. Then / + pE(A) = E(A) or / + pE(A) = pE(A). In the latter 
case, (n/p)E(A) g (l/p)I g £(>4) so (\/p)I = (n/p)E(A) by induction on n. 
In the former case, (n/p)E(A) g /, contradicting the minimality of n. 

THEOREM 1.3. Assume that A is reduced. Then A is p-simple for each 
prime p if and only if A = A^ © • • • © Ak where (i) each A t- is fully invariant 
in A ; (ii) each A{ is Q-simple and p-simple for each prime p; and (iii) ifp is a 
prime then there is some j with A/pA = AjjpAj. 

PROOF. (<=). E(A) = E(A^) x • • • x E(Ak) and if p is a prime, then 
E(A)/pE(A) = E(Aj)lpE(Aj) for some j since A/pA = Aj/pAj implies 
that pA{ = A{ 2LndpE(A{) = E(At) for each / ^ j . 

(=>). For each p, (JfE(A) + pE(A))/pE(A) g /(E(A)/pE(A)) = 0. Thus 
^ £ 0 4 ) g /7JE:(^) fi JTE(A) = pjrE(A) for each /?. Since ^ is reduced, 
£(,4) is reduced so that jrE(A) = 0 and f(QE(A)) = QJTE(A) = 0. 
Therefore, QE(A) is a semi-simple artinian algebra. 

Write QE(A) = Kx x • • • x Kk as a product of simple algebras. Then 
« ^ g E(A) i ^ = l ! x • • • x <%k, where each ^ is a subring of ^ 
with Q&t = ^ for some 0 ^ neZ (let ^ be the projection of <% into AT,-
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and choose n with n-l@. eE(A) for each i). Now / = n& is an ideal of 
E(A) with E(A)/I finite so n<% = / = mE(A) for some meZ (Proposition 
1.2) whence mE(A) = m&E(A) = m& and E(A) = &. 

Let Ai = @(A so that A = Ax 0 • • • 0 Ak, QE(At) = Ki9 and E(A) 
= ^(^i) x • • • x E(Ak). Clearly each A{ is g-simple. if p is a prime, then 
E(A)/pE(A) = E(Aj)/pE(Aj) for some 7 (since >4 is p-simple) so that pAf 

= Ai if i ^ j and A/pA = ^ / M " . s i n c e E(A)jpE{A) = EiA^/pE^) 
x • • • x E(Ak)/pE(Ak), each ^4, must be/7-simple 

COROLLARY 1.4. Assume that A is Q-simple andp-simple for each prime p 
ofZ and let S = Center E(A). 

(a) S is a principal ideal domain such that every element of S is a rational 
integral multiple of a unit of S. 

(b) E(A) is a maximal S-order in QE(A). 
(c) For some 0 < h e Z, E(A) ^ Sk as S-modules. 

PROOF, (a) S is a domain since QS = Center (QE(A)) is an algebraic 
number field. Let 0 ^ s e S. Then sE(A) is an ideal of E(A) with E(A)/ 
sE(A) finite (for some ^ ' e ^ O ^ s's e Z). Write sE(A) = nE(A) for some 
neZ (Proposition 1.2). Now s — nu, n = sv for some u, v e E(A) f) 
Center QE(A) = S. Hence s = nu = sv« so that w is a unit of S. Clearly, 
S is a principal ideal domain. 

(b) E(A) is an S-order in QE(A) (E(A) is finitely generated as an S-
module, Pierce [9]). If E(A) E ^ E QE(A), where @ is an S-order, then 
&/E(A) is finite say « ^ g £(,4) g ^ for some 0 ^ neZ. Thus / = n@ is 
an ideal of £(,4) so n<% = I = mE(A) for some meZ. But mE(A) = 
m(mE(Ä)) = m@ so £(,4) = ^ . and £(,4) is a maximal S-order in ß£04). 

(c) is a consequence of the fact that S is a principal ideal domain and 
E(A) is a finitely generated torsion free S-module. 

Two finite rank torsion free groups A and B are quasi-isomorphic if there 
is a monomorphism f\ A -* B with B/f(A) finite and nearly isomorphic if 
for each 0 ^ neZ there is a monomorphism/„: A -+ B such that B/fn(A) 
is finite with cardinality relatively prime to « (Lady [7]). 

COROLLARY 1.5. (a) If A and B are quasi-isomorphic and if A is Q-simple, 
then B is Q-simple. 

(b) If A and B are nearly isomorphic and if A is p-simple, then B is p-
simple. 

PROOF. Suppose that nA E B ü A for some 0 ^ n e Z. Then QE(A) 
and QE(B) are ring isomorphic Furthermore, if/? is a prime not dividing n 
then E(A)jpE(A) and E(B)/pE(B) are ring isomorphic. 

The group >4 is strongly indecomposable if 0 ^ « e Z and « ^ i 5 © 
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C E A imply B = 0 or C = 0. Reid [10] proves that 4̂ is strongly inde­
composable if and only if QE(A)/f(QE(A)) is a division algebra. 

THEOREM 1.6. A is Q-simple and p-simple for each prime p of Z if and 
only if A is nearly isomorphic to Bk (the direct sum ofk copies ofB) where 
B is strongly indecomposable, Q-simple, and p-simple for each prime p. 

PROOF. (<=). In view of Corollary 1.5, it is sufficient to assume that A = 
BK Thus E(A) ^ MdLÌk(E(B)), where QE(B) is a division algebra and 
E(B)/pE(B) s MzXmp(Fp), Fp a finite field for each p. Hence, QE(A) ^ 
MaXk(QE(B)) and E(A)/pE(A) s Msitkmp(Fp) so that A is g-simple and 
/?-simple for each/?. 

(=>). Since QE(A) is a simple algebra, QE(A) ^ Mat*(Z>) for some divi­
sion algebra D. Write QE(A) = /x © • • • © /* where each /z is an irreduci­
ble right ideal of QE(A), I{ = etQE(A) for some e% = e, e ß £ ( A and /, 
is ßii(y4)-isomorphic to / ; for each / a n d / Then A is quasi-isomorphic to 
et(A) © • • • © ek(A), e{(A) and ej(A) are quasi-isomorphic for each /, j ; 
and QE(et{A)) £ Z) for each i (Reid [10]). 

Choose 0 ^ meZ with my4 i C i ^ where C = Bx © • • • © Bk and 
i?, = et(A) is strongly indecomposable. Let X be the pure subgroup of A 
generated by {B{\i # 1}. Then B = A/X is quasi-isomorphic to Bx, with 
Hom(^, 5 ) ^ = B. 

It now suffices to assume that mA E C E >4 for some 0 ^ meZ where 
C = 2?! © • • • © Z?£, each B( ^ 2? is strongly indecomposable and Q-
simple, and Hom(A, C)A = C (replace each B{ by a subgroup of finite 
index isomorphic to B). 

As a consequence of Corollary 1.4, E(A) is a maximal 5-order in QE(A) 
and S is a principal ideal domain. Moreover, if/? is a prime of Z with/?^4 
7* >4 and E(A)P = Z ,̂ ® z E(A) (where Zp is the localization of Z at/?), then 
2sC4)j is a maximal order over the discrete valuation ring Sp. Thus 
Hom(^4, C)p ^ E(A)p, since Hom(y4, C)/>is a right ideal of E(A)p (Swan 
and Evans [12]). But ¥Lom(A, C) and £(^4) are finitely generated 5-modules 
so there are E(A)-maps 0: Hom(^, C)->E(A) and ç?: E(A)-*Yiom(A, C) 
with <fid — meZ and m relatively prime to p. Since Hom(y4, C)A = C,6 
and ^ induce homomorphisms f:C->A and g: A -* C with g / = m. It 
now follows that A is nearly isomorphic to C ^ Bk, where i? is strongly 
indecomposable and g-simple. 

Finally, Bk is/?-simple for each/? (Corollary 1.5) from which it follows 
that B is/?-simple for each/?. 

COROLLARY 1.7. A is Q-simple and p-simple for each p if and only if 
A = Bk~l © B0 where B and BQ are strongly indecomposable, Q-simple, 
p-simple for each p, and B is nearly isomorphic to B0. Consequently, A is 
indecomposable if and only if A is strongly indecomposable. 
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PROOF. A is nearly isomorphic to Bk if and only if A ^ Bk~l © B0 where 
BQ is nearly isomorphic to B (Arnold [2]). Now apply Theorem 1.6. 

2. Irreducible and /̂ -irreducible groups. A is irreducible if B being a 
pure fully invariant subgroup of A implies B = 0 or B = A. 

THEOREM 2.1. (REID [10]). The following are equivalent: 
(a) A is irreducible; 
(b) QA is an irreducible left QE(A)-module; 
(c) QE(A) £ Matw(Z>), w/zere Z) /s a division algebra with rank A = 

m'dimQD; and 
(d) 4̂ w quasi-isomorphic to Bm where B is a strongly indecomposable 

irreducible group. 

COROLLARY 2.2. (REID [10]). Assume that A is strongly indecomposable. 
Then A is irreducible if and only if QE(A) is a division algebra and rank 
E(A) = rank A. 

Let p be a prime of Z. Then A is p-irreducible if B being a fully in­
variant subgroup of A with pA ü i? implies B = /?̂ 4 or B = >4. Define 
p-rank A to be the Z//?Z-dimension of A/pA. 

THEOREM 2.3. The following are equivalent: 
(a) 4̂ is p-irreducible; 
(b) ^4//?^ w A« irreducible left E(A)/pE(Aymodule; and 
(c) E(A)/pE(A) ^ Matm(F/>), i7^ a ./zw/te field with /?-rank v4 = m • 

dim/^. 

PROOF, (a) o (b) is routine. 
(b) => (c). If / + pE(A) e E(A)/pE(A) and ( / + pE(A)(A/pA) = 0 for 

some f e E(A) then fepE(A). Thus E(A)/pE(A) is semi-simple since, if 
/(/>£(,*) = /(E(A)/pE(A))9 then /?,4 = I A, in which case 7 = pE(A); or 
else L4 = A which is impossible by Nakayama's Lemma. Therefore, 
E(A)/pE(A) is a product of simple rings. In fact, A/pA irreducible implies 
that E(A)jpE(A) is simple. 

Write E(A)/pE(A) ^ (A/pA)m, A/pA isomorphic to an irreducible left 
left ideal of E(A)/pE(A). Then E(A)/pE(A) ^ Matm(F,) where Fp = 
EndE(A)/pE(A)(A/pA). Now p-mnk E(A) = ra(/?-rank 4̂) = raMimF^ so 
p-rank >4 = radimF^. 

(c) => (b). Write E(A)/pE(A) ^ Im, I an irreducible left ideal of E(A)/ 
pE(A). Since E(A)/pE(A) is simple, y4//?,4 ^ /* for some fc. But dim I = 
radim Fp = /?-rank 4̂ so k ^ 1 and y4//?̂ 4 is £04)//?ii(,4)-irreducible. 

COROLLARY 2.4. (a) If A is irreducible (p-irreducible), then A is Q-simple 
(p-simple). 

(b) If A is quasi-isomorphic to B and A is irreducible, then B is irreducible. 
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(c) If A is nearly isomorphic to B and if A is p-irreducible, then B is 
p-irreducible. 

PROOF, (a) Follows from Theorems 2.1 and 2.3. 
(b) If A is quasi-isomorphic to B, then QA s QB and QE(A) s 

QE(B). 
(c) If nA E B = 4̂ and if /? is a prime not dividing «, then 

£//>£ s >4/M and E(A)/pE(A) = E(B)/pE(B). 

COROLLARY 2.5. Assume that A is reduced. Then A is p-irreducible for 
each p if and only if A = Ax © • • • © Ak where (i) Hom(y4f-, ^4y) = 0 if 
i ^ J; (ii) e#cA v4,- w Q-simple and p-irreducible for each p; (iii) //*/? w a 
prime then there is some j with AjpA = Aj/pAj. 

PROOF. Apply Theorem 1.3 and Theorem 2.3. 

COROLLARY 2.6. A is Q-simple (irreducible) and p-irreducible for each 
p if and only if A = Bk~l © B0 where B and B0 are strongly indecomposable, 
Q-simple (irreducible), and p-irreducible for each p. 

PROOF. Apply Corollary 1.7 and the preceding results. 

PROPOSIriON 2.7. Assume that A is Q-simple and p-irreducible for each 
prime p. Let B be a pure fully invariant subgroup of A and assume that 
C = A\B # OandB # 0. 

(a) B and C are p-irreducible for eachp and there are ring monomorphisms 
E(A) -* E(B)andE(A) -> E(C). 

(b) If p is a prime, then either pB = B, AjpA ^ C/pC, and there is a 
ring monomorphism E(A)/pE(A) -> E(C)/pE(C); or else pC = C, A/pA^ 
B/pB and there is a ring monomorphism E(A)/pE(A) -> E(B)/pE(B). 

PROOF. Let/? be a prime mthpB ^ B. Since A is/?-irreducible B + pA = 
A (the case B + pA — pA is impossible). Therefore, the natural map 
B/pB -» AjpA is an isomorphism of E(A)/pE(A)-modu\es. Hence pC = C 
and B is /^-irreducible since any E(B)lpE(B)-s\xbmod\\\z of B/pB is an 
E(A)/pE(A)-submodu\c of B/pB ^ AjpA. 

The natural maps E(A)/pE(A) -> E(B)/pE(B) and E(A) -> E(B) are 
non-zero, hence monic, since E(A)/pE(A) and QE(A) are simple algebras. 

Similarly, if pC # C then C is /?-irreducible, AjpA ^ C//?C, £04) -+ 
E(C) is monic and E(A)/pE(A) -* E(C)/pE(C) is monic. 

COROLLARY 2.8. Suppose that A is Q-simple and p-irreducible for each 
prime p. Then there are subgroups Bl9 . . . , Bkof A such that 

(i) A\(BX © • • • © Bk) is torsion divisible, 
(ii) For each i, Bt is a minimal non-zero pure fully invariant subgroup of 

A, B{ is irreducible and p-irreducible for each i, 
(iii) For each i, AjB( is p-irreducible for each p, 
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(iv) For each p and each i, either pB{ = B{ or else p(A/Bt) = A/Bh 

(v) For each i and j , QB{ and QBj are isomorphic as ß£'(^)-modules, 
hence rank B{ = rank BJ9 and 

(vi) If A is strongly indecomposable, then rank A = k rank E(A). 

PROOF. Since QE(A) is a simple algebra, QA = Mx © • • • © Mk as 
left QE(A)-mod\\\ss where each M{ ^ /, an irreducible left ideal of QE(A). 
Let B{ = M{ fi A, a minimal non-zero pure fully invariant subgroup of 
A. Then B{ is irreducible since any is^O-module of Bt is an E(A)-sub-
module of B{. Moreover, QB{ = Mt = Mj = QBj as ßjE'(y4)-modules. 
In view of Proposition 2.7, each B{ and each A/Bt- is/7-irreducible for each 
p and either/?!?, = Bt or elsep(AjBt) = AjB{. 

Since QA = QBX © • • • © QBk = M1 © • • • © Mk, A/(B1 © • • • © 
Bk) is torsion. If p is a prime with pA ^ A, then pB{ ^ j?t. for some /. 
Thus p(A/Bt) = A/Bt so that A/(B1 © • • • © Bk) is /7-divisible. If ^ is 
strongly indecomposable, then QE(A) is a division algebra so rank A = 
rank ^ + • • • + rank Bk = k rank E(A) (since Af, = QB{ ^ Ö^(^))-

3. Strongly homogeneous groups. The group A is strongly homogeneous 
if whenever X and F are two pure rank 1 subgroups of A then there is an 
automorphism/of ^with/(X) = Y. 

THEOREM 3.1. (ARNOLD [1]): The group A is strongly homogeneous if 
and only if A is isomorphic to the direct sum of finitely many copie e of'& (x)z 

X where <% is a subring of an algebraic number field such that every element 
of&is a rational integral multiple of a unit of & and X is a rank 1 group. 
Moreover, & may be chosen so that E(A) ^ Matw(^) and & ® z X is 
strongly indecomposable. 

COROLLARY 3.2. If A is strongly homogeneous, then A is irreducible and 
p-irreducible for each p. 

PROOF. AS a consequence of Theorem 3.1, QE(A) ^ Matm(g^) where 
Q& is a field and rank A = m rank ^ = m dimQQ&. Furthermore, E(A)/ 
pE(A) ^ Ma.tm(&/p&) where &/pg? is a field, if & # p@, and/?-rank A = 
m /7-rank @. 

COROLLARY 3.3. Suppose that A is a finitely generated E(A)-module. 
Then the following are equivalent: 

(a) A is strongly homogeneous ; 
(b) A is irreducible and p-ir reducible for eachp; and 
(c) A is Q-simple andp-simple for each p. 

PROOF, (a) => (b) Corollary 3.2. 
(b) => (c) Corollary 2.4. 
(c) => (a). Let S = Center E(A). Then E(A) is a free 5-module and S 
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is a subring of an algebraic number field such that every element of S is 
an integral multiple of a unit of S (Corollary 1.4). Since A is a finitely 
generated E(A)-module9 A is a finitely generated torsion free 5-module. 
Therefore, A ^ Sm so that Theorem 3.1 applies. 

The ring E(A) is sub-commutative if whenever/, g e E(A), then there is 
h 6 E(A) with fg = hfi Examples of sub-commutative rings are given by 
Reid [11]. 

LEMMA 3.4. Suppose that E (A) is sub-commutative. Then 
(a) QE(A)I\fl(QE(A)) is a product of division algebras, and 
(b) (E(A)/pE(A))/f(E(A)/pE(A)) is a product of fields. 

PROOF. @ = QE(A)/f(QE(A)) is a semi-simple artinian sub-commuta­
tive ring hence a product of division algebras (Reid [11]). The proof of 
(b) is similar. 

PROPOSITION 3.5. A is strongly homogeneous and strongly indecomposable 
if and only if A is irreducible and p-irreducible for eachp, and E(A) is sub-
commutative. In this case, E(A) is commutative. 

PROOF. (=>). Theorem 3.1 implies that E(A) is commutative, hence sub-
commutative. Now apply Corollary 3.2. 

(<=). As a consequence of Corollary 2.4.a and Lemma 3.4, QE(A) is 
a division algebra and E(A)/pE(A) is a field for each p. Thus A is strongly 
indecomposable. 

Let X be a pure rank 1 subgroup of A and <fi: E(A) ® X -* A defined 
by <j>(f® x) =/ (*)• Then (j> is monic and A/E(A)X is torsion since rank 
E(A) = rank A (Corollary 2.2). Let p be a prime and pa e E(A)X for 
a e A. Since X has rank 1, pa = f(x) for some / e £(^) . Now fE(A) ü 
E(A)f since E(A) is subcommutative, so E(A)fE(A) g E(A)f g E(A)fE(A) 
and E(A)fE(A) = nE(A) for some neZ (Proposition 1.2). Since QE(A) 
is a division algebra, / = nu for some unit u of ü^S). Now pa = f(x) = 
HW(X) so /?|w, or else w(x)//? e A implies that x epA f| X — pX, since w 
is a unit of £04). In either case, a e E(A)X and ,4 ^ £(.4) ® z X. 

Since .4 is strongly indecomposable, E(A) must be strongly indecom­
posable. In view of Theorem 3.1 and Corollary 1.4 it suffices to prove that 
E(A) is commutative. For 0 ^ fe E(A) define af: E(A) -> E(A) by af(g) 
= fg — gf Then af induces an endomorphism of A ^ £04) ® z X via 

g (g) x -• a/(g) ® x. Since af{\) = 0 and QE(A) is a division algebra, 
af = 0. Thus^g = gf Tor all g G £04). 

4. Finitely faithful groups. 

LEMMA 4.1. Suppose that QE(A) is semi-simple and that A is finitely faith­
ful. Every exact sequence of groups 
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such that Hom(A, G)A + B = G is split exact. 

PROOF. Let / = {uh: h e Hom(^, G)}, a right ideal of E(A) with I A = A. 
Then E(A)/I is finite since QE(A) is semi-simple (Arnold and Lady [3], 
Corollary 2.3). But A is finitely faithful so / = E(A), i.e., there is h: A -> 
G with Ilh = \A. 

PROPOSITION 4.2. The following are equivalent: 
(a) A is finitely faithful', 
(b) / = Hom(A, I A) for each maximal right ideal I of finite index in 

E(A); and 
(c) Jp = Hom(v4, JpA) for each prime p where Jp/pE(A) = /{E{A)j 

pE(A)). 

PROOF, (a) => (b). Note that / g Hom(^, IA). SL right ideal of E(A). 
Since A is finitely faithful, Hom(y4, IA) = E(A) is impossible. By the 
maximality of/, / = Hom(y4, L4). 

(b) => (c). Clearly, /^ = f| {I\I *s a maximal right ideal of E(A) contain­
ing/?^^)} . Iff e HomÇ4, JpÄ) then/(^4) g IA so t h a t / e /for each maxi­
mal right ideal / g pE(A). Thus /^ = Hom(^, JpA). 

(c) => (a). Let / be a maximal right ideal of E(A) with E (A)/I finite 
and IA = A. Then pE(A) g ./^ g / for some prime p of Z. Since E(A)/Jp 

is semi-simple, / = eE(A) + /^ for some e e £(y4), e2 — e e J^. But y4 = 
IA = eA + JpA so (1 - e)(A) g / ^ . By (e), 1 - eejp so E(A) g 
e£(i4) + JP = I. 

COROLLARY 4.3. Assume that A is not divisible. If E(A)/pE(A) is semi-
simple for eachp, then A is finitely faithful. Moreover, JrE(A)A is the maxi­
mal divisible subgroup of A. 

PROOF. In this case, Jp = pE(A) and pE(A) = Hom(A, pA). Also 
(JTE(A) + pE(A))/pE(A) g Jp/pE(A) = 0 so JfE(A) = pJfE(A) for each 
/?. Thus JTE{A) is divisible and ,ArE(A)A g Z>, the maximal divisible 
subgroup of A. Write A = B ® D, B reduced. Then D = Hom(£, D)B g 
JVE{A)A since Hom(5, D), regarded as a left ideal of E(A), is nilpotent. 

5. ^-groups. 

THEOREM 5.1. The following are equivalent: 
(a) For each prime p, p-mnk(E(A)) = (p-mnk(A))2; 
(b) For each prime p with pA # A, E(A)/pE(A) = Ma\mp(ZjpZ) where 

mp = /7-rank A ; A« J 
(c) A is a finitely faithful £f-group. 

PROOF, (a) => (b). There is a monic ring homomorphism E(A)/pE(A) -+ 



ENDOMORPHISM RINGS 251 

E(A/pA). But E(A/pA) ^ Matw/Z//?Z), where mp = p-mnk(A), has 
dim = mjsoE(A)/pE(A) s E(A/pA). 

(b) => (c). Since E(A)/pE(A) is simple for each /?, 4̂ is finitely faithful 
(Corollary 4.3). 

Suppose that nA g £ g A for some 0 ^ neZ. B/nA = Bx\nA © • • • 
© ^/«y4 where each i?,-/«/4 is cylic of prime power order. 

It suffices to assume that pi A g B g A for some prime /? and that 
£//?^4 Ä Z//?'Z for some i; since if 2?,//b4 s Z/p'Z, then /?',4 g (p'/rì) 
Bt g v4 with (pJ\n)Bi s 5f-, and if Hom(^, J9,.)^ = £, for I £ i £ k, 
then Hom(,4, # M = B. 

As a consequence of (b) there is an isomorphism <f>: E(A)/pŒ(A) 
-> E(A\piÂ). Write B = Zb + /»'^ and choose / ' e E(A\pJA) with 

f\A\piÄ) = Ä/p/^. Then / ' = <f>(f + pŒ(A)) for some feE(A) so b e 
f(A) + />'A Thus B = Zb + pJA g (/E(,4) + p>E(A))A g Hom(>4, # M 
g 2? so that i? = Hom(y4, 5)^4 and v4 is an ^-group. 

(c) => (a). Write A/pA = Bx\pA © • • • © i?w//>^ where m = /?-rank A 
and 2?,-//?J4 = Z//?Z. For each j , choose a right ideal 7, of 2s04) minimal 
with respect to pE(A) g /,- and ItA = Bt, Then ^ = ^ + • • • + Bm = 
(h + - - + Im)A so E(A) = li + • • • + 7m since >4 is finitely faithful. 
Also E(A)/pE(A) = hlpE(A) © • • • © IJpE(A) and each I{lpE{A) is a 
minimal right ideal of E(A)/pE(A) by the choice of I{ and the fact that 
ItA = £ and £z//?,4 s Z//?Z. Therefore E(A)/pE(A)9 being the direct sum 
of minimal right ideals, must be semi-simple. 

In fact, E(A)/pE(A) is simple. Otherwise, E(A)/pE(A) = I/pE(A) © 
J/pE(A) is the direct sum of non-zero ideals. Since A is finitely faithful, 
IA ^ A, JA ^ A. Choose a1 e IA\JA, a2 e JA\IA, noting that A = IA + 
JA. Let a = ax -h a2e A\(IA (J JA) and £ = Za 4- pA. Then LA = B 
for some right ideal 7 of E(A). Since T1^) = / + / , 7 = 7 ( V + 7 f V 
so 7//>£(,4) = (L fi /)/p£G<) S (L fi J)lpE(A). But J5//?^ Ä Z/pZ £ 
7^//?^ ^ (7 fi I)(A)/pA © (7 n J)(A)/pA. Thus, for example, (7 fi / ) 
A = B and Ö G i? g (7 f| 7)̂ 4 g 74, a contradiction. 

Write E(A)/pE(A) = M a t w ( n F = EndE(A)/pE(A) (IJpE(A))9 recalling 
that m = /7-rank 04). Thus /?-rank (E(A)) = m2dim(ir) g w2 so 
dim(F) = 1 a n d ^ - r a n k ^ ^ ) ) = (/?-rank (A))2. 

COROLLARY 5.2. A is a finitely faithful ¥-group if and only if Ext(^4, A) 
is torsion free. 

PROOF. Warfìeld [13] proves that Ext(^4, A) is torsion free if/?-rank 
(E(A)) = (p-mnk(A))2 for each prime/?. 

COROLLARY 5.3. Assume A is a finitely faithful y-group. 
(a) A is p-ir reducible for each p. 
(b) If B is quasi-isomorphic to A, then B is a finitely faithful £f-group. 
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PROOF, (a) follows from Theorem 5.1 and Theorem 2.3. 
(b) Note that /?-rank (B) = p-mnk (A) and /?-rank (E(B)) = 

p-mnk(E(A)) for each prime p and apply Theorem 5.1. 

COROLLARY 5.4. (a) A is a finitely faithful £f-group if and only if A = 
A1 © • • • © Ak where Hom(y4„ Aj) = 0 if i # j ; each A{ is a Q-simple 

finitely faithful y-group; and if p is a prime, then is some j with A/pA = 
Aj/pAj. 

(b) A is a Q-simple finitely faithful Sf-group if and only if A ^ Bk~l © 
BQ where B and B0 are Q-simple strongly indecomposable finitely faith­
ful ^-groups and B is nearly isomorphic to B0. In this case, if S = 
Center£(;4), then S/pS ^ Z/pZ for each prime p with p A ^ A. 

(c) Assume that A is a Q-simple finitely faithful Sf-group. Then there are 
pure fully invariant subgroup Bl9 . . . , Bk of A such that A\{BX © • • • © Bk) 
is torsion divisible ; for each i, Bt is an irreducible finitely faithful £f-group ; 
and if p is a prime then either pB{ = B{ or else p(A/Bt) = AlB{. 

PROOF. Apply Theorem 5.1 and the results of §2. 

COROLLARY 5.5. Assume that A is finitely faithful. Then A is an Sf-group 
if and only if whenever B is a subgroup of finite index in A then B is nearly 
isomorphic to A. 

PROOF. (<=). Let B be a subgroup of finite index in A. Since B is near­
ly isomorphic to A, B © B0 s A © A for some B0 (Lady [7]). Then 
Hom(^l, B)A = B so that A is an ^-group. 

(=>). As a consequence of Corollary 5.4, it suffices to assume that A is 
g-simple. Let B be a subgroup of finite index in A. Then Hom(A, B) is 
a right ideal of E(A) and E(A) is a maximal 5-order in QE(A) (Corollary 
1.4). Thus Hom(A, B) is a projective right ideal of E(A) (Swan and Evans 
[12]). Since Hom(^4, B)A = B, Bis nearly isomorphic to A (as in the proof 
of Theorem 1.6). 

6. ^-groups. 

THEOREM 6 A. If Ais reduced, then the following are equivalent: 
(a) A is a finitely faithful /-group', 
(b) A is a finitely faithful ¥-group and every right ideal of finite index 

in E (A) is principal; and 
(c) A is a f-group and QE(A) is semi-simple. 

PROOF, (a) => (b). Every finitely faithful / -group is a finitely faithful 
^-group. Let / be a right ideal of E(A) with E(A)/I finite. Then A/IA is 
finite so choose feE(A), f(A) = I A. Then A = f-*IA so / - 1 / = E(A), 
since A is finitely faithful, and / = fE(A). 

(b) => (c). Clearly, A is a ^/-group and QE(A) is semi-simple (Theorem 
5.1 and Corollary 4.3). 


