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ENDOMORPHISM RINGS AND SUBGROUPS OF FINITE
RANK TORSION-FREE ABELIAN GROUPS

DAVID M. ARNOLD¥

Let A be a finite rank torsion-free abelian group and let E(4) denote
the endomorphism ring of 4. Then Q ® ; E(4) = QE(A) and E(A4)/pE(A)
are artinian algebras, where Z is the ring of integers, Q is the field of ra-
tionals, and p is a prime of Z.

Define A4 to be Q-simple if QE(A) is a simple algebra, and p-simple for
a prime p of Z if pE(A) = E(A) or if E(4)/pE(A) is a simple algebra. In
contrast to finite rank torsion-free groups in general, groups that are p-
simple for each p have some pleasant decomposition properties.

THEOREM 1. A reduced group A is p-simple for each prime p of Z if and
onlyif A = Ay ® --- @ A,, where each A; is fully invariant in A, each A;
is Q-simple and p-simple for each prime p of Z, and if p is a prime of Z then
there is some j with A[pA = A;[pA;.

THEOREM 11. A group A is Q-simple and p-simple for each prime p of Z
ifandonlyif A= B, ® --- @ B,, where each B, is strongly indecomposable,
Q-simple and p-simple for each prime p of Z and B; is nearly isomorphic to
B; (in the sense of Lady [7]) for each i and j.

Suppose that 4 is Q-simple and p-simple for each prime p of Z. Then A4
is indecomposable if and only if A4 is strongly indecomposable. Further-
more, if S = Center E(A), then S is a subring of an algebraic number field
such that every element of S is a rational integral multiple of a unit of S,
as described in [1], and E(A) is a maximal S-order in QE(A).

Examples of groups that are Q-simple and p-simple for each prime p of
Z include: indecomposable strongly homogeneous groups (characterized
in [1]); indecomposable groups with p-rank < 1 for each prime p of Z
(Murley [8]); and indecomposable quasi-pure-projective and quasi-pure-
injective groups ([4]).

Define A4 to be irreducible if QA is an irreducible QE(A4)-module (Reid
[10]) and p-irreducible, for a prime p of Z, if A/pA is an irreducible E(A4)/
PE(A)-module. If A is irreducible (p-irreducible), then A is Q-simple
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(p-simple). Furthermore, each strongly homogeneous group is irreducible
and p-irreducible for each prime of p of Z.

A group A is finitely faithful if I4 # A for each maximal right ideal I of
finite index in E(A). Define A.to be an %-group if whenever B is a sub-
group of finite index in 4 then B = IA4 for some right ideal I of E(A4). The
following theorem gives a class of groups irreducible and p-irreducible for
each prime p of Z.

THEOREM II1. The following are equivalent:

(a) A is a finitely faithful -group;

(b) For each prime p of Z with pA # A, E(A)/pE(A) = Mat,(Z/pZ),
the ring of m x mmatrices over Z|pZ, where m = p-rank A4;

(c) Extz(A4, A) is torsion free; and

(d) A is finitely faithful and if B is a subgroup of finite index in A, then B
is nearly isomorphic to A.

B. Jonsson proved a uniqueness theorem for direct sum decompositions
of finite rank torsion-free abelian groups up to quasi-isomorphism, where
A and B are quasi-isomorphic if B is isomorphic to a subgroup of finite
index in 4 (Fuchs [6]). Define 4 to be a ¢-group if A is isomorphic to each
subgroup of finite index in A (Warfield [13]). Each g-group is an &-group.
Moreover, a reduced group A is a finitely faithful g¢-group if and only if
Aisa g-group and QE(A) is a semi-simple algebra. If 4 ~ B*, where B is
indecomposable with p-rank B < 1 for each prime p of Z, then 4 isa ¢-
group, necessarily finitely faithful.

An example of an indecomposable finitely faithful #-group with p-rank
> 1 is constructed in §7. This is a counterexample to a conjecture of C.E.
Murley: if 4 is an indecomposable g-group, then p-rank 4 =< 1 for each
prime p of Z.

In summary, the following implications are valid for Q-simple groups:

(a) Finite direct sum of copies of a indecomposable group with p-rank
< 1 for each p = finitely faithful g-group = finitely faithful &-group =
p-irreducible for each p = p-simple for each p.

(b) Finite direct sum of copies of an indecomposable irreducible group
with p-rank < 1 for each p < finitely faithful strongly homogeneous ¢-
group <> finitely faithful strongly homogeneous .-group = strongly
homogeneous = irreducible and p-irreducible for each p => irreducible
and p-simple for each p.

The abelian group terminology is as given in Fuchs [6]. The classical
Wedderburn-Artin theory of semi-simple artinian algebras is assumed.

1. Q-simple and p-simple groups.

PROPOSITION 1.1. The following are equivalent:
(a) Ais Q-simple;
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(b) If B is a fully invariant subgroup of A with Hom(A4, B) # O, then
A|B is finite; and
(¢) If 1is a non-zero ideal of E(A), then E(A)/I is finite.

PRrROOF. (a) = (b). Let I = Hom(4, B), a non-zero ideal of E(A). Then
OI = QE(A), since QE(A) is simple. Choose 0 # ne Z with n-1,€ 1 so
that nE(4A) € I. Then nd € IA & B & A4 and A/B is finite since A/nA is
finite.

(b) = (c). Let B = IA, a fully invariant subgroup of 4. Then 0 # I &
Hom(A4, B) and A/B is finite.

Let #(QE(A)) be the Jacobson radical of QE(A4) and AE(4) =
F(QE(A)) N E(4), the nil radical of E(A). If A"E(A)#0, then A/ A"E(A)A
must be finite so that QA4 E(A)A = ¢(QE(A))QA = QA, which is impos-
sible by Nakayama’s Lemma. Therefore, QF(A) is semi-simple and ar-
tinian.

Now QI = fQE(A) for some fel Hence Q4 = QB = fQA and f is
an automorphism of QA. Thus, fQE(A) = QI = QE(A) which implies
that E(A)/1 is finite.

(c) = (a). If 0 5 I is an ideal of QE(A), then E(A)/(I | E(A)) is finite
and I = Q(I | E(4)) = QE(A).

PROPOSITION 1.2. 4 is p-simple for each prime p if and only if whenever I
is an ideal ¢f E(A) with E(A)/I finite, then I = nE(A) for somen e Z.

PRrROOF. (<=). If I/pE(A) is an ideal of E(A)/pE(A), then I = pE(A) or
I = E(A).

(=). Let 0 < n be the least integer with nE(4) € I and let p be a prime
divisor of n. Then I + pE(A) = E(A) or I + pE(A) = pE(A). In the latter
case, (n/p)E(A) € (1/p)I € E(A)so (1/p)I = (n/p)E(A) by induction on n.
In the former case, (n/p)E(A) € I, contradicting the minimality of n.

THEOREM 1.3. Assume that A is reduced. Then A is p-simple for each
primepifandonlyif A = A1 @ --- @ A, where (i) each A; is fully invariant
in A; (il) each A; is Q-simple and p-simple for each prime p; and (iii) if p is a
prime then there is some j with A[pA = A;/pA;.

PROOF. («=). E(4) = E(4;) x --- x E(4,) and if p is a prime, then
E(A)/pE(A) = E(A;)/[pE(A;) for some j since A/pA = A;/pA; implies
that pA; = A; and pE(A;) = E(A,) for each i # j.

(=). Foreach p, (/'E(A4) + pE(A))[pE(A) = #(E(A)/pE(A4)) = 0. Thus
NE(A) € pE(A) | /' E(A) = p#E(A) for each p. Since A4 is reduced,
E(A) is reduced so that A#"E(4) =0 and #(QE(A)) = QNE(A) = 0.
Therefore, QE(A) is a semi-simple artinian algebra.

Write QF(4) = K; x --- x K, as a product of simple algebras. Then
nR S EA)SR=%R x -+ x %, where each &, is a subring of K;
with Q2; = K; for some 0 # n € Z (let %, be the projection of £ into K;
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and choose n with n-1,4 € E(A) for each i). Now I = n# is an ideal of
E(A) with E(A)/I finite so n® = I = mE(A) for some m € Z (Proposition
1.2) whence mE(A) = mRE(A) = m% and E(A) = A. :

Let A; = #;,A sothat 4 = 4, ® --- ® A,, QE(4,) = K, and E(A)
= E(A4;) x --- x E(A,). Clearly each A4, is Q-simple. If p is a prime, then
E(A)/pE(A) = E(A,)[pE(A;) for some j (since A4 is p-simple) so that pA,
= A; if i #j and A/pA = A;/pA;. Since E(A)[pE(A) = E(A))/pE(4,)
x +++ X E(A,)/pE(A,), each A; must be p-simple

COROLLARY 1.4. Assume that A is Q-simple and p-simple for each prime p
of Z and let S = Center E(A).

(a) S is a principal ideal domain such that every element of S is a rational
integral multiple of a unit of S.

(b) E(A) is a maximal S-order in QE(A).

(c) Forsome0 < ke Z, E(A) = S* as S-modules.

PRrROOF. (2) S is a domain since QS = Center (QFE(A)) is an algebraic
number field. Let 0 # se S. Then sE(A) is an ideal of E(A) with E(A4)/
SE(A) finite (for some s’ € S, 0 # s's € Z). Write sE(A) = nE(A) for some
neZ (Proposition 1.2). Now s = nu, n = sv for some u, ve E(4)
Center QFE(A) = S. Hence s = nu = svu so that u is a unit of S. Clearly,
S is a principal ideal domain.

(b) E(A) is an S-order in QE(A) (E(A) is finitely generated as an S-
module, Pierce [9]). If E(4) € # S QFE(A), where £ is an S-order, then
RIE(A) is finite say n®? € E(A) & #forsome 0 # neZ. Thus I = nfR is
an ideal of E(A) so n® = I = mE(A) for some me Z. But mE(A) =
RME(A)=mR so E(A)=2. and E(A) is a maximal S-order in QE(A).

(c) is a consequence of the fact that S is a principal ideal domain and
E(A) is a finitely generated torsion free S-module.

Two finite rank torsion free groups 4 and B are quasi-isomorphic if there
is a monomorphism f: A — B with B/f(A) finite and nearly isomorphic if
for each 0 # n € Z there is a monomorphism f,,: A — B such that B/f,(A)
is finite with cardinality relatively prime to n (Lady [7]).

COROLLARY 1.5. (a) If A and B are quasi-isomorphic and if A is Q-simple,
then B is Q-simple.

(b) If A and B are nearly isomorphic and if A is p-simple, then B is p-
simple.

PrOOF. Suppose that n4 & B & A for some 0 # ne Z. Then QE(A)
and QE(B) are ring isomorphie. Furthermore, if p is a prime not dividing n
then E(A)/pE(A) and E(B)/pE(B) are ring isomorphic.

The group A is strongly indecomposable if 0 # ne Z and n4A € B ®
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C € Aimply B = 0 or C = 0. Reid [10] proves that A is strongly inde-
composable if and only if QE(A4)/ #(QE(A)) is a division algebra.

THEOREM 1.6. A4 is Q-simple and p-simple for each prime p of Z if and
only if A is nearly isomorphic to B* (the direct sum of k copies of B) where
B is strongly indecomposable, Q-simple, and p-simple for each prime p.

PRrOOF. (<=). In view of Corollary 1.5, it is sufficient to assume that 4 =
Bt, Thus E(A4) =~ Mat,(E(B)), where QE(B) is a division algebra and
E(B)/pE(B) = Mat,, (F,), F, a finite field for each p. Hence, QE(4) =
Mat,(QE(B)) and E(A)/pE(A) = Mat,, (F,) so that A is Q-simple and
p-simple for each p.

(=). Since QE(A) is a simple algebra, QE(A) =~ Mat,(D) for some divi-
sion algebra D. Write QE(A) = I; @ - - @ I, where each I, is an irreduci-
ble right ideal of QF(A), I; = ¢;QE(A) for some €% = ¢; € QF(A), and I,
is QE(A)-isomorphic to /; for each i and j. Then 4 is quasi-isomorphic to
e{A) @ - @ eA), e(A4) and e[ A) are quasi-isomorphic for each i, j;
and QF(e(A)) =~ D for each i (Reid [10]).

Choose 0 # meZwithmd € C< AwhereC =B, ® --- @ B, and
B; =~ e/A) is strongly indecomposable. Let X be the pure subgroup of A4
generated by {B;|i # 1}. Then B = A/X is quasi-isomorphic to B;, with
Hom(4, B)A = B.

It now suffices to assume that m4 €& C & A for some 0 # m € Z where
C=B® - - ® B, each B; =~ B is strongly indecomposable and Q-
simple, and Hom(4, C)4 = C (replace each B; by a subgroup of finite
index isomorphic to B).

As a consequence of Corollary 1.4, E(A) is a maximal S-order in QE(A)
and S is a principal ideal domain. Moreover, if p is a prime of Z with pA4
# Aand E(A), = Z, ® ; E(A) (where Z, is the localization of Z at p), then
E(A), is a maximal order over the discrete valuation ring S,. Thus
Hom(4, C), = E(A),, since Hom(4, C),is a right ideal of E(4),(Swan
and Evans [12]). But Hom(4, C) and E(A) are finitely generated S-modules
so there are E(A)-maps 0: Hom(4, C)— E(A) and ¢: E(4)—Hom(4, C)
with ¢0 = m € Z and m relatively prime to p. Since Hom(4, C)4 = C,
and ¢ induce homomorphisms f: C - 4 and g: 4 - C with gf = m. It
now follows that A is nearly isomorphic to C =~ B% where B is strongly
indecomposable and Q-simple.

Finally, B* is p-simple for each p (Corollary 1.5) from which it follows
that B is p-simple for each p.

COROLLARY 1.7. A4 is Q-simple and p-simple for each p if and only if
A = B¥1@® By where B and By are strongly indecomposable, Q-simple,
p-simple for each p, and B is nearly isomorphic to By. Consequently, A is
indecomposable if and only if A is strongly indecomposable.
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PROOF. A4 is nearly isomorphic to B* if and only if 4 =~ B*1 @ B, where
B, is nearly isomorphic to B (Arnold [2]). Now apply Theorem 1.6.

2. Irreducible and p-irreducible groups. A is irreducible if B being a
pure fully invariant subgroup of A4 implies B = 0 or B = A.

THEOREM 2.1. (REID [10]). The following are equivalent:

(a) A is irreducible;

(b) QA is an irreducible left QE(A)-module;

() QE(A) =~ Mat, (D), where D is a division algebra with rank A =
m-dimgD; and

(d) A is quasi-isomorphic to B™ where B is a strongly indecomposable
irreducible group.

COROLLARY 2.2. (REID [10]). Assume that A is strongly indecomposable.
Then A is irreducible if and only if QE(A) is a division algebra and rank
E(A) = rank A.

Let p be a prime of Z. Then A is p-irreducible if B being a fully in-
variant subgroup of A with p4 S B implies B = p4 or B = A. Define
p-rank A to be the Z/pZ-dimension of A/pA.

THEOREM 2.3. The following are equivalent:

(a) A is p-irreducible;

(b) A/pA is an irreducible left E(A)/pE(A)-module; and

(¢) E(A)/pE(A) = Mat,(F,), F, a finite field with p-rank A = m-
dimF .

PROOF. (a) <> (b) is routine.

(b) = (c). If f+ pE(A) € E(A)/pE(A) and (f + pE(A)(A/pA) = 0 for
some fe E(A4) then fe pE(A). Thus E(A)/pE(A) is semi-simple since, if
I(pE(A) = ¢(E(A)/pE(A)), then pA = IA, in which case I = pE(A); or
else 74 = A which is impossible by Nakayama’s Lemma. Therefore,
E(A)/pE(A) is a product of simple rings. In fact, 4/pA irreducible implies
that E(A)/pE(A) is simple.

Write E(A)/pE(A) =~ (A/pA)", A/pA isomorphic to an irreducible left
left ideal of E(A)/pE(A). Then E(A)/pE(A) = Mat,(F,) where F, =
Endg 4,550 (4/pA). Now p-rank E(A) = m(p-rank A) = m?dimF, so
p-rank A = mdimF,

(c) = (b). Write E(A)/pE(A) = I™, I an irreducible left ideal of E(A)/
pE(A). Since E(A)/pE(A) is simple, A/pA =~ I* for some k. But dim / =
mdim F, = p-rank Aso k = | and A/pA is E(A4)/pE(A)-irreducible.

COROLLARY 2.4. (a) If A is irreducible ( p-irreducible), then A is Q-simple
(p-simple).
(b) If A is quasi-isomorphic to B and A is irreducible, then B is irreducible.
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(c) If A is nearly isomorphic to B and if A is p-irreducible, then B is
p-irreducible.

ProoF. (a) Follows from Theorems 2.1 and 2.3.
(b) If A is quasi-isomorphic to B, then Q4 =~ QB and QE(A4) =
QE(B).
(©)If nA € B= A and if p is a prime not dividing n, then
B/pB = A/pA and E(A)/pE(A) = E(B)/pE(B).

COROLLARY 2.5. Assume that A is reduced. Then A is p-irreducible for
eachpifand only if A = A1 ® --- @ A, where (i) Hom(4;, 4;) = 0 if
i # J; (ii) each A; is Q-simple and p-irreducible for each p; (iil) if p is a
prime then there is some j with AljpA = A;[pA;.

Proor. Apply Theorem 1.3 and Theorem 2.3.

COROLLARY 2.6. A is Q-simple (irreducible) and p-irreducible for each
pifandonly if A = B*1 @ By where B and B are strongly indecomposable,
Q-simple (irreducible), and p-irreducible for each p.

PrOOF. Apply Corollary 1.7 and the preceding results.

PROPOSITION 2.7. Assume that A is Q-simple and p-irreducible for each
prime p. Let B be a pure fully invariant subgroup of A and assume that
C = A/B # 0and B # 0.

(a) B and C are p-irreducible for each p and there are ring monomorphisms
E(A) — E(B)and E(A) — E(C).

(b) If p is a prime, then either pB = B, A[pA =~ C/pC, and there is a
ring monomorphism E(A)/pE(A) — E(C)[pE(C); or else pC = C, AlpA=
B/pB and there is a ring monomorphism E(A)/pE(A) — E(B)/pE(B).

PROOF. Let p be a prime with pB # B. Since 4 is p-irreducible B + pA =
A (the case B + pA = pA is impossible). Therefore, the natural map
B/pB — A[pA is an isomorphism of E(A)/pE(A)-modules. Hence pC = C
and B is p-irreducible since any E(B)/pE(B)-submodule of B/pB is an
E(A)/pE(A)-submodule of B/pB = A/pA.

The natural maps E(A)/pE(A) — E(B)/pE(B) and E(A) — E(B) are
non-zero, hence monic, since E(A4)/pE(A) and QE(A) are simple algebras.

Similarly, if pC # C then C is p-irreducible, A/pA = C/pC, E(A4) —
E(C) is monic and E(A4)/pE(A) — E(C)/pE(C) is monic.

COROLLARY 2.8. Suppose that A is Q-simple and p-irreducible for each
prime p. Then there are subgroups B, ..., B, of A such that
(i) A/(B, @ - -- @ B,) is torsion divisible,
(ii) For each i, B; is a minimal non-zero pure fully invariant subgroup of
A, B;is irreducible and p-irreducible for each i,
(iii) For each i, A| B, is p-irreducible for each p,
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(iv) For each p and each i, either pB; = B; or else p(A/B;) = A/B,,

(v) For each i and j, QB; and QB; are isomorphic as QE(A)-modules,
hence rank B; = rank B;, and

(vi) If A is strongly indecomposable, then rank A = k rank E(A).

PrOOF. Since QE(A) is a simple algebra, Q4 = M, @ --- @ M, as
left QE(A)-modules where each M; =~ I, an irreducible left ideal of QE(A).
Let B; = M; [\ 4, a minimal non-zero pure fully invariant subgroup of
A. Then B;is irreducible since any E(B;)-module of B; is an E(A)-sub-
module of B,. Moreover, OB, = M; =~ M, = QB; as QFE(A)-modules.
In view of Proposition 2.7, each B; and each A/B; is p-irreducible for each
p and either pB; = B; or else p(4/B;) = A/B;.

Since QA =0B @ - ® 0B, =M, ® - ® My, 4B D - @
B,) is torsion. If p is a prime with pA4 # A, then pB; # B, for some i.
Thus p(A4/B,) = A/B; so that A/(B; ® --- @ B,) is p-divisible. If A4 is
strongly indecomposable, then QE(A) is a division algebra so rank 4 =
rank B; + --- + rank B, = k rank E(A) (since M; = OB; = QE(A)).

3. Strongly homogeneous groups. The group A is strongly homogeneous
if whenever X and Y are two pure rank 1 subgroups of A then there is an
automorphism fof 4 with f(X) = Y.

THEOREM 3.1. (ARNOLD [1]): The group A is strongly homogeneous if
and only if A is isomorphic to the direct sum of finitely many copice of # ® ;
X where R is a subring of an algebraic number field such that every element
of #is a rational integral multiple of a unit of #and X is a rank 1 group.
Moreover, # may be chosen so that E(A) =~ Mat, (%) and # ®; X is
strongly indecomposable.

COROLLARY 3.2. If A is strongly homogeneous, then A is irreducible and
p-irreducible for each p.

PrOOF. As a consequence of Theorem 3.1, QE(4) ~ Mat,(Q%) where
Q% is a field and rank 4 = m rank # = m dimgQ%. Furthermore, E(A)/
pE(A) =~ Mat,(#/p#) where Z[p# is a field, if # # p#, and p-rank A =
m p-rank A.

COROLLARY 3.3. Suppose that A is a finitely generated E(A)-module.
Then the following are equivalent:

(@) A is strongly homogeneous

(b) A is irreducible and p-irreducible for each p; and

(c) A is Q-simple and p-simple for each p.

PROOF. (a) = (b) Corollary 3.2.
(b) = (c) Corollary 2.4.
(c) = (a). Let S = Center E(A). Then E(A) is a free S-module and S
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is a subring of an algebraic number field such that every element of S is
an integral multiple of a unit of .S (Corollary 1.4). Since 4 is a finitely
generated E(A)-module, A is a finitely generated torsion free S-module.
Therefore, A = S™ so that Theorem 3.1 applies.

The ring E(A) is sub-commutative if whenever f, g € E(A), then there is
h € E(A) with fg = hf. Examples of sub-commutative rings are given by
Reid [11].

LemMA 3.4. Suppose that E(A) is sub-commutative. Then
(a) QE(A)/ #(QE(A)) is a product of division algebras, and
(b) (E(A)/pE(A))] #(E(A)/pE(A)) is a product of fields.

PROOF. # = QE(A)/ #(QE(A)) is a semi-simple artinian sub-commuta-
tive ring hence a product of division algebras (Reid [11]). The proof of
(b) is similar.

PROPOSITION 3.5. A is strongly homogeneous and strongly indecomposable
if and only if A is irreducible and p-irreducible for each p, and E(A) is sub-
commutative. In this case, E(A) is commutative.

PROOF. (=>). Theorem 3.1 implies that F(A4) is commutative, hence sub-
commutative. Now apply Corollary 3.2.

(<). As a consequence of Corollary 2.4.a and Lemma 3.4, QE(A4) is
a division algebra and E(A)/pE(A) is a field for each p. Thus A is strongly
indecomposable.

Let X be a pure rank 1 subgroup of 4 and ¢: E(4) @ X — A4 defined
by ¢(f ® x) = f(x). Then ¢ is monic and 4/E(A4)X is torsion since rank
E(A) = rank A (Corollary 2.2). Let p be a prime and pa € E(4)X for
a€ A. Since X has rank 1, pa = f(x) for some fe E(4). Now fE(A) =
E(A)f, since E(A) is subcommutative, so E(A)fE(A) € E(A)f & E(A)fE(A)
and E(A)fE(A) = nE(A) for some n € Z (Proposition 1.2). Since QE(A)
is a division algebra, f = nu for some unit u of E(S). Now pa = f(x) =
nu(x) so pln, or else u(x)/p € A implies that x e pA | X = pX, since u
is a unit of E(4). In either case, a € E(4)Xand 4 =~ E(4) ®, X.

Since A is strongly indecomposable, E(A) must be strongly indecom-
posable. In view of Theorem 3.1 and Corollary 1.4 it suffices to prove that
E(A) is commutative. For 0 # f'e E(A) define ay: E(4) — E(A) by ay(g)
= fg — gf- Then «; induces an endomorphism of 4 =~ E(4) ®, X via
g ® x — ayg) ® x. Since afl) =0 and QE(A) is a division algebra,
a; = 0. Thus fg = gffor all g € E(A4).

4. Finitely faithful groups.

LEMMA 4.1. Suppose that QE(A) is semi-simple and that A is finitely faith-
Sul. Every exact sequence of groups
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b4
O->B->-G->A4A-0
such that Hom(A4, G)A + B = G is split exact.

PrOOF. Let I = {[lh: h e Hom(4, G)}, a right ideal of E(A) with I4 = A.
Then E(A)/I is finite since QFE(A) is semi-simple (Arnold and Lady [3],
Corollary 2.3). But A4 is finitely faithful so I = E(A), i.e., there is h: 4 —
G with [lh = 1,.

PROPOSITION 4.2. The following are equivalent:

(a) A is finitely faithful

(b) I = Hom(A, 1A) for each maximal right ideal I of finite index in
E(A); and

() J, = Hom(A, J,A) for each prime p where Jy[pE(A) = ¢(E(A)/
PE(A)).

PrOOF. (a) = (b). Note that 7 & Hom(4, I4). a right ideal of E(A).
Since A is finitely faithful, Hom(4, I4) = E(A) is impossible. By the
maximality of 7, I = Hom(4, 14).

(b) = (). Clearly, J, = () {I|] is a maximal right ideal of E(A4) contain-
ing pE(A)}. If fe Hom(4, J,A) then f(4) < IA so that f € I for each maxi-
mal right ideal I & pE(A). Thus J, = Hom(4, J,A).

(c) = (a). Let 7 be a maximal right ideal of E(A) with E(A)/I finite
and /4 = A. Then pE(A) < J, < I for some prime p of Z. Since E(A4)/J,
is semi-simple, / = eE(A4) + J, for some e € E(A), €2 — e€ J,. But 4 =
IA = eA + JyA so (1 —e)(4) S Jpd. By (¢), 1 —eeJ, so E(A) S
eE(A) + J, = I

COROLLARY 4.3. Assume that A is not divisible. If E(A)/pE(A) is semi-

simple for each p, then A is finitely faithful. Moreover, A"E(A)A is the maxi-
mal divisible subgroup of A.

Proor. In this case, J, = pE(4) and pE(A) = Hom(4, pA). Also
(NVE(A) + pE(A))[pE(A) S Jy/pE(A) = 050 /' E(A) = pA#"E(A) for each
p. Thus AE(A) is divisible and #'E(4)A & D, the maximal divisible
subgroup of A. Write 4 = B @ D, Breduced. Then D = Hom(B, D)B &
N E(A)A since Hom(B, D), regarded as a left ideal of E(A), is nilpotent.

5. #-groups.

THEOREM 5.1. The following are equivalent:

(a) For each prime p, p-rank(E(A)) = (p-rank(4))?;

(b) For each prime p with pA # A, E(A)[pE(A) = Mat,, (Z|pZ) where
m, = p-rank 4; and

(c) A is afinitely faithful -group.

PROOF. (a) = (b). There is a monic ring homomorphism E(A)/pE(A) —
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E(A[pA). But E(A/pA) = Mat,, (Z|pZ), where m, = p-rank(d), has
dim = mZso E(A)/pE(A) = E(A[pA).

(b) = (c). Since E(A)/pE(A) is simple for each p, A is finitely faithful
(Corollary 4.3).

Suppose that 14 € B S A forsome 0 # neZ. BnA = BjjnA@® ---
@ B,/nA where each B,/nA is cylic of prime power order.

It suffices to assume that pid & B S A for some prime p and that
B|piA = Z|p‘Z for some i; since if B;/nA =~ Z|piZ, then pid < (pi/n)
B; & A with (pi[n)B; = B;, and if Hom(4, B)A = B, for 1 £ i £k,
then Hom(4, B)A = B.

As a consequence of (b) there is an isomorphism ¢: E(A)/p/E(A)
— E(A/piA). Write B = Zb + piA and choose f' e E(A/pid) with
f'(A/piA) = B/piA. Then f' = ¢(f + piE(A)) for some fe E(A) so be
f(A) + p’A. Thus B = Zb + p/A = (fE(A) + p/E(A))A = Hom(4, B)4
€ Bso that B = Hom(4, B)A and A is an &-group.

(c) = (a). Write A/pA = B/pA® --- @ B,,/[pA where m = p-rank A
and B,/pA = Z/pZ. For each i, choose a right ideal I; of E(A) minimal
with respect to pE(4) € I; and I;A = B;. Then A = B; + --- + B,, =
L+ ---+1)As0o E(A) =1, + --- + I, since A4 is finitely faithful.
Also E(A)/pE(A) = L/pE(A) @ --- & I,,/JpE(A) and each I,/pE(A) is a
minimal right ideal of E(A)/pE(A) by the choice of I, and the fact that
I:A = B and B;/pA =~ Z/pZ. Therefore E(A)/pE(A), being the direct sum
of minimal right ideals, must be semi-simple.

In fact, E(A)/pE(A) is simple. Otherwise, E(A)/pE(A) = I/pE(4) &
JIpE(A) is the direct sum of non-zero ideals. Since A is finitely faithful,
IA # A, JA # A. Choose a; € IA\JA, a, € JA\IA, noting that A = T4 +
JA. Let a = a; + a,€ A\(IA |J JA) and B = Za + pA. Then LA = B
for some right ideal L of E(A). Since E(4) =1+ J, L = LNI+ LNJ
so L/pE(A) = (L (| D/pE(A) @ (L N\ J)[pE(A). But BjpA = Z/pZ =
LA/pA = (L N D(A)/pA & (L N J)(A)/pA. Thus, for example, (L  I)
A = Bandae B & (L () )4 £ IA, a contradiction.

Write E(A)/pE(A) = Matm(F), F = EndE(A)/pE(A) (I,/pE(A)), recalling
that m = p-rank (A4). Thus p-rank (E(A4)) = m2dim(F) £ m? so
dim(F) = 1 and p-rank (E(4)) = (p-rank (A4))2.

COROLLARY 5.2. A is a finitely faithful &-group if and only if Ext(A, A)
is torsion free.

Proor. Warfield [13] proves that Ext(4, A) is torsion free if p-rank
(E(A)) = (p-rank (A4))?for each prime p.

COROLLARY 5.3. Assume A is a finitely faithful &-group.
(@) A is p-irreducible for each p.
(b) If B is quasi-isomorphic to A, then B is a finitely faithful -group.






