ENDOMORPHISM RINGS AND SUBGROUPS OF FINITE RANK TORSION-FREE ABELIAN GROUPS

DAVID M. ARNOLD*

Let A be a finite rank torsion-free abelian group and let E(A) denote the endomorphism ring of A. Then $Q \otimes_Z E(A) = QE(A)$ and E(A)/pE(A)are artinian algebras, where Z is the ring of integers, Q is the field of rationals, and p is a prime of Z.

Define A to be Q-simple if QE(A) is a simple algebra, and p-simple for a prime p of Z if pE(A) = E(A) or if E(A)/pE(A) is a simple algebra. In contrast to finite rank torsion-free groups in general, groups that are psimple for each p have some pleasant decomposition properties.

THEOREM I. A reduced group A is p-simple for each prime p of Z if and only if $A = A_1 \oplus \cdots \oplus A_k$, where each A_i is fully invariant in A, each A_i is Q-simple and p-simple for each prime p of Z, and if p is a prime of Z then there is some j with $A/pA = A_j/pA_j$.

THEOREM II. A group A is Q-simple and p-simple for each prime p of Z if and only if $A = B_1 \oplus \cdots \oplus B_n$, where each B_i is strongly indecomposable, Q-simple and p-simple for each prime p of Z and B_i is nearly isomorphic to B_j (in the sense of Lady [7]) for each i and j.

Suppose that A is Q-simple and p-simple for each prime p of Z. Then A is indecomposable if and only if A is strongly indecomposable. Furthermore, if S = Center E(A), then S is a subring of an algebraic number field such that every element of S is a rational integral multiple of a unit of S, as described in [1], and E(A) is a maximal S-order in QE(A).

Examples of groups that are Q-simple and p-simple for each prime p of Z include: indecomposable strongly homogeneous groups (characterized in [1]); indecomposable groups with p-rank ≤ 1 for each prime p of Z (Murley [8]); and indecomposable quasi-pure-projective and quasi-pure-injective groups ([4]).

Define A to be *irreducible* if QA is an irreducible QE(A)-module (Reid [10]) and *p*-*irreducible*, for a prime p of Z, if A/pA is an irreducible E(A)/pE(A)-module. If A is irreducible (*p*-irreducible), then A is *Q*-simple

^{*}Research supported, in part, by N.S.F. Grant MCS 77-03458-A01.

Received by the editors on October 15, 1979 and in revised form on December 22, 1980.

(*p*-simple). Furthermore, each strongly homogeneous group is irreducible and *p*-irreducible for each prime of p of Z.

A group A is *finitely faithful* if $IA \neq A$ for each maximal right ideal I of finite index in E(A). Define A to be an \mathcal{G} -group if whenever B is a subgroup of finite index in A then B = IA for some right ideal I of E(A). The following theorem gives a class of groups irreducible and p-irreducible for each prime p of Z.

THEOREM III. The following are equivalent:

(a) A is a finitely faithful *S*-group;

(b) For each prime p of Z with $pA \neq A$, $E(A)/pE(A) \cong Mat_m(Z/pZ)$, the ring of $m \times m$ matrices over Z/pZ, where m = p-rank A;

(c) $\operatorname{Ext}_{Z}(A, A)$ is torsion free; and

(d) A is finitely faithful and if B is a subgroup of finite index in A, then B is nearly isomorphic to A.

B. Jónsson proved a uniqueness theorem for direct sum decompositions of finite rank torsion-free abelian groups up to quasi-isomorphism, where A and B are quasi-isomorphic if B is isomorphic to a subgroup of finite index in A (Fuchs [6]). Define A to be a \mathcal{J} -group if A is isomorphic to each subgroup of finite index in A (Warfield [13]). Each \mathcal{J} -group is an \mathcal{S} -group. Moreover, a reduced group A is a finitely faithful \mathcal{J} -group if and only if A is a \mathcal{J} -group and QE(A) is a semi-simple algebra. If $A \simeq B^k$, where B is indecomposable with p-rank $B \leq 1$ for each prime p of Z, then A is a \mathcal{J} group, necessarily finitely faithful.

An example of an indecomposable finitely faithful \mathcal{J} -group with *p*-rank > 1 is constructed in §7. This is a counterexample to a conjecture of C.E. Murley: if A is an indecomposable \mathcal{J} -group, then *p*-rank $A \leq 1$ for each prime *p* of Z.

In summary, the following implications are valid for Q-simple groups:

(a) Finite direct sum of copies of a indecomposable group with *p*-rank ≤ 1 for each $p \Rightarrow$ finitely faithful \mathscr{J} -group \Rightarrow finitely faithful \mathscr{J} -group \Rightarrow *p*-irreducible for each $p \Rightarrow p$ -simple for each p.

(b) Finite direct sum of copies of an indecomposable irreducible group with *p*-rank ≤ 1 for each $p \Leftrightarrow$ finitely faithful strongly homogeneous \mathscr{J} -group \Leftrightarrow finitely faithful strongly homogeneous \mathscr{S} -group \Rightarrow strongly homogeneous \Rightarrow irreducible and *p*-irreducible for each $p \Rightarrow$ irreducible and *p*-simple for each *p*.

The abelian group terminology is as given in Fuchs [6]. The classical Wedderburn-Artin theory of semi-simple artinian algebras is assumed.

1. Q-simple and p-simple groups.

PROPOSITION 1.1. The following are equivalent: (a) A is Q-simple; (b) If B is a fully invariant subgroup of A with $Hom(A, B) \neq 0$, then A/B is finite; and

(c) If I is a non-zero ideal of E(A), then E(A)/I is finite.

PROOF. (a) \Rightarrow (b). Let I = Hom(A, B), a non-zero ideal of E(A). Then QI = QE(A), since QE(A) is simple. Choose $0 \neq n \in Z$ with $n \cdot 1_A \in I$ so that $nE(A) \subseteq I$. Then $nA \subseteq IA \subseteq B \subseteq A$ and A/B is finite since A/nA is finite.

(b) \Rightarrow (c). Let B = IA, a fully invariant subgroup of A. Then $0 \neq I \subseteq$ Hom(A, B) and A/B is finite.

Let $\mathcal{J}(QE(A))$ be the Jacobson radical of QE(A) and $\mathcal{N}E(A) = \mathcal{J}(QE(A)) \cap E(A)$, the nil radical of E(A). If $\mathcal{N}E(A) \neq 0$, then $A/\mathcal{N}E(A)A$ must be finite so that $Q\mathcal{N}E(A)A = \mathcal{J}(QE(A))QA = QA$, which is impossible by Nakayama's Lemma. Therefore, QE(A) is semi-simple and artinian.

Now QI = fQE(A) for some $f \in I$. Hence QA = QB = fQA and f is an automorphism of QA. Thus, fQE(A) = QI = QE(A) which implies that E(A)/I is finite.

(c) \Rightarrow (a). If $0 \neq I$ is an ideal of QE(A), then $E(A)/(I \cap E(A))$ is finite and $I = Q(I \cap E(A)) = QE(A)$.

PROPOSITION 1.2. A is p-simple for each prime p if and only if whenever I is an ideal of E(A) with E(A)/I finite, then I = nE(A) for some $n \in Z$.

PROOF. (\Leftarrow). If I/pE(A) is an ideal of E(A)/pE(A), then I = pE(A) or I = E(A).

(⇒). Let 0 < n be the least integer with $nE(A) \subseteq I$ and let p be a prime divisor of n. Then I + pE(A) = E(A) or I + pE(A) = pE(A). In the latter case, $(n/p)E(A) \subseteq (1/p)I \subseteq E(A)$ so (1/p)I = (n/p)E(A) by induction on n. In the former case, $(n/p)E(A) \subseteq I$, contradicting the minimality of n.

THEOREM 1.3. Assume that A is reduced. Then A is p-simple for each prime p if and only if $A = A_1 \oplus \cdots \oplus A_k$ where (i) each A_i is fully invariant in A; (ii) each A_i is Q-simple and p-simple for each prime p; and (iii) if p is a prime then there is some j with $A/pA = A_j/pA_j$.

PROOF. (\Leftarrow). $E(A) = E(A_1) \times \cdots \times E(A_k)$ and if p is a prime, then $E(A)/pE(A) = E(A_j)/pE(A_j)$ for some j since $A/pA = A_j/pA_j$ implies that $pA_i = A_i$ and $pE(A_i) = E(A_i)$ for each $i \neq j$.

(⇒). For each p, $(\mathcal{N}E(A) + pE(A))/pE(A) \subseteq \mathcal{J}(E(A)/pE(A)) = 0$. Thus $\mathcal{N}E(A) \subseteq pE(A) \cap \mathcal{N}E(A) = p\mathcal{N}E(A)$ for each p. Since A is reduced, E(A) is reduced so that $\mathcal{N}E(A) = 0$ and $\mathcal{J}(QE(A)) = Q\mathcal{N}E(A) = 0$. Therefore, QE(A) is a semi-simple artinian algebra.

Write $QE(A) = K_1 \times \cdots \times K_k$ as a product of simple algebras. Then $n\mathcal{R} \subseteq E(A) \subseteq \mathcal{R} = \mathcal{R}_1 \times \cdots \times \mathcal{R}_k$, where each \mathcal{R}_i is a subring of K_i with $Q\mathcal{R}_i = K_i$ for some $0 \neq n \in \mathbb{Z}$ (let \mathcal{R}_i be the projection of \mathcal{R} into K_i and choose *n* with $n \cdot 1_{\mathscr{R}_i} \in E(A)$ for each i). Now $I = n\mathscr{R}$ is an ideal of E(A) with E(A)/I finite so $n\mathscr{R} = I = mE(A)$ for some $m \in Z$ (Proposition 1.2) whence $mE(A) = m\mathscr{R}E(A) = m\mathscr{R}$ and $E(A) = \mathscr{R}$.

Let $A_i = \mathscr{R}_i A$ so that $A = A_1 \oplus \cdots \oplus A_k$, $QE(A_i) = K_i$, and $E(A) = E(A_1) \times \cdots \times E(A_k)$. Clearly each A_i is Q-simple. If p is a prime, then $E(A)/pE(A) = E(A_j)/pE(A_j)$ for some j (since A is p-simple) so that $pA_i = A_i$ if $i \neq j$ and $A/pA = A_j/pA_j$. Since $E(A)/pE(A) = E(A_1)/pE(A_1) \times \cdots \times E(A_k)/pE(A_k)$, each A_i must be p-simple

COROLLARY 1.4. Assume that A is Q-simple and p-simple for each prime p of Z and let S = Center E(A).

(a) S is a principal ideal domain such that every element of S is a rational integral multiple of a unit of S.

(b) E(A) is a maximal S-order in QE(A).

(c) For some $0 < k \in \mathbb{Z}$, $E(A) \cong S^k$ as S-modules.

PROOF. (a) S is a domain since QS = Center(QE(A)) is an algebraic number field. Let $0 \neq s \in S$. Then sE(A) is an ideal of E(A) with E(A)/sE(A) finite (for some $s' \in S$, $0 \neq s's \in Z$). Write sE(A) = nE(A) for some $n \in Z$ (Proposition 1.2). Now s = nu, n = sv for some u, $v \in E(A) \cap$ Center QE(A) = S. Hence s = nu = svu so that u is a unit of S. Clearly, S is a principal ideal domain.

(b) E(A) is an S-order in QE(A) (E(A) is finitely generated as an S-module, Pierce [9]). If $E(A) \subseteq \mathscr{R} \subseteq QE(A)$, where \mathscr{R} is an S-order, then $\mathscr{R}/E(A)$ is finite say $n\mathscr{R} \subseteq E(A) \subseteq \mathscr{R}$ for some $0 \neq n \in \mathbb{Z}$. Thus $I = n\mathscr{R}$ is an ideal of E(A) so $n\mathscr{R} = I = mE(A)$ for some $m \in \mathbb{Z}$. But $mE(A) = \mathscr{R}(mE(A)) = m\mathscr{R}$ so $E(A) = \mathscr{R}$. and E(A) is a maximal S-order in QE(A).

(c) is a consequence of the fact that S is a principal ideal domain and E(A) is a finitely generated torsion free S-module.

Two finite rank torsion free groups A and B are quasi-isomorphic if there is a monomorphism $f: A \to B$ with B/f(A) finite and nearly isomorphic if for each $0 \neq n \in Z$ there is a monomorphism $f_n: A \to B$ such that $B/f_n(A)$ is finite with cardinality relatively prime to n (Lady [7]).

COROLLARY 1.5. (a) If A and B are quasi-isomorphic and if A is Q-simple, then B is Q-simple.

(b) If A and B are nearly isomorphic and if A is p-simple, then B is p-simple.

PROOF. Suppose that $nA \subseteq B \subseteq A$ for some $0 \neq n \in Z$. Then QE(A) and QE(B) are ring isomorphie. Furthermore, if p is a prime not dividing n then E(A)/pE(A) and E(B)/pE(B) are ring isomorphic.

The group A is strongly indecomposable if $0 \neq n \in \mathbb{Z}$ and $nA \subseteq B \oplus$

 $C \subseteq A$ imply B = 0 or C = 0. Reid [10] proves that A is strongly indecomposable if and only if $QE(A)/\mathscr{G}(QE(A))$ is a division algebra.

THEOREM 1.6. A is Q-simple and p-simple for each prime p of Z if and only if A is nearly isomorphic to B^k (the direct sum of k copies of B) where B is strongly indecomposable, Q-simple, and p-simple for each prime p.

PROOF. (\Leftarrow). In view of Corollary 1.5, it is sufficient to assume that $A = B^k$. Thus $E(A) \cong \operatorname{Mat}_k(E(B))$, where QE(B) is a division algebra and $E(B)/pE(B) \cong \operatorname{Mat}_{m_p}(F_p)$, F_p a finite field for each p. Hence, $QE(A) \cong \operatorname{Mat}_k(QE(B))$ and $E(A)/pE(A) \cong \operatorname{Mat}_{km_p}(F_p)$ so that A is Q-simple and p-simple for each p.

(⇒). Since QE(A) is a simple algebra, $QE(A) \cong \operatorname{Mat}_k(D)$ for some division algebra D. Write $QE(A) = I_1 \oplus \cdots \oplus I_k$ where each I_i is an irreducible right ideal of QE(A), $I_i = e_iQE(A)$ for some $e_i^2 = e_i \in QE(A)$, and I_i is QE(A)-isomorphic to I_j for each i and j. Then A is quasi-isomorphic to $e_i(A) \oplus \cdots \oplus e_k(A)$, $e_i(A)$ and $e_j(A)$ are quasi-isomorphic for each i, j; and $QE(e_i(A)) \cong D$ for each i (Reid [10]).

Choose $0 \neq m \in Z$ with $mA \subseteq C \subseteq A$ where $C = B_1 \oplus \cdots \oplus B_k$ and $B_i \cong e_i(A)$ is strongly indecomposable. Let X be the pure subgroup of A generated by $\{B_i | i \neq 1\}$. Then B = A/X is quasi-isomorphic to B_1 , with Hom(A, B)A = B.

It now suffices to assume that $mA \subseteq C \subseteq A$ for some $0 \neq m \in Z$ where $C = B_1 \oplus \cdots \oplus B_k$, each $B_i \cong B$ is strongly indecomposable and Q-simple, and Hom(A, C)A = C (replace each B_i by a subgroup of finite index isomorphic to B).

As a consequence of Corollary 1.4, E(A) is a maximal S-order in QE(A)and S is a principal ideal domain. Moreover, if p is a prime of Z with $pA \neq A$ and $E(A)_p = Z_p \otimes_Z E(A)$ (where Z_p is the localization of Z at p), then $E(A)_p$ is a maximal order over the discrete valuation ring S_p . Thus $\operatorname{Hom}(A, C)_p \cong E(A)_p$, since $\operatorname{Hom}(A, C)_p$ is a right ideal of $E(A)_p$ (Swan and Evans [12]). But $\operatorname{Hom}(A, C)$ and E(A) are finitely generated S-modules so there are E(A)-maps θ : $\operatorname{Hom}(A, C) \to E(A)$ and ϕ : $E(A) \to \operatorname{Hom}(A, C)$ with $\phi\theta = m \in Z$ and m relatively prime to p. Since $\operatorname{Hom}(A, C)A = C, \theta$ and ϕ induce homomorphisms $f: C \to A$ and $g: A \to C$ with gf = m. It now follows that A is nearly isomorphic to $C \cong B^*$, where B is strongly indecomposable and Q-simple.

Finally, B^k is *p*-simple for each *p* (Corollary 1.5) from which it follows that *B* is *p*-simple for each *p*.

COROLLARY 1.7. A is Q-simple and p-simple for each p if and only if $A \cong B^{k-1} \oplus B_0$ where B and B_0 are strongly indecomposable, Q-simple, p-simple for each p, and B is nearly isomorphic to B_0 . Consequently, A is indecomposable if and only if A is strongly indecomposable.

PROOF. A is nearly isomorphic to B^k if and only if $A \cong B^{k-1} \oplus B_0$ where B_0 is nearly isomorphic to B (Arnold [2]). Now apply Theorem 1.6.

2. Irreducible and *p*-irreducible groups. A is *irreducible* if B being a pure fully invariant subgroup of A implies B = 0 or B = A.

THEOREM 2.1. (REID [10]). The following are equivalent:

(a) A is irreducible;

(b) QA is an irreducible left QE(A)-module;

(c) $QE(A) \cong \operatorname{Mat}_{m}(D)$, where D is a division algebra with rank $A = m \cdot \dim_{Q} D$; and

(d) A is quasi-isomorphic to B^m where B is a strongly indecomposable irreducible group.

COROLLARY 2.2. (REID [10]). Assume that A is strongly indecomposable. Then A is irreducible if and only if QE(A) is a division algebra and rank $E(A) = \operatorname{rank} A$.

Let p be a prime of Z. Then A is p-irreducible if B being a fully invariant subgroup of A with $pA \subseteq B$ implies B = pA or B = A. Define p-rank A to be the Z/pZ-dimension of A/pA.

THEOREM 2.3. The following are equivalent:

(a) A is p-irreducible;

(b) A/pA is an irreducible left E(A)/pE(A)-module; and

(c) $E(A)/pE(A) \cong \operatorname{Mat}_m(F_p)$, F_p a finite field with p-rank $A = m \cdot \dim F_p$.

PROOF. (a) \Leftrightarrow (b) is routine.

(b) \Rightarrow (c). If $f + pE(A) \in E(A)/pE(A)$ and (f + pE(A)(A/pA) = 0 for some $f \in E(A)$ then $f \in pE(A)$. Thus E(A)/pE(A) is semi-simple since, if $I(pE(A) = \mathscr{J}(E(A)/pE(A))$, then pA = IA, in which case I = pE(A); or else IA = A which is impossible by Nakayama's Lemma. Therefore, E(A)/pE(A) is a product of simple rings. In fact, A/pA irreducible implies that E(A)/pE(A) is simple.

Write $E(A)/pE(A) \cong (A/pA)^m$, A/pA isomorphic to an irreducible left left ideal of E(A)/pE(A). Then $E(A)/pE(A) \cong \operatorname{Mat}_m(F_p)$ where $F_p = \operatorname{End}_{E(A)/pE(A)}(A/pA)$. Now p-rank $E(A) = m(p-\operatorname{rank} A) = m^2 \operatorname{dim} F_p$ so p-rank $A = m \operatorname{dim} F_p$.

(c) \Rightarrow (b). Write $E(A)/pE(A) \cong I^m$, I an irreducible left ideal of E(A)/pE(A). Since E(A)/pE(A) is simple, $A/pA \cong I^k$ for some k. But dim $I = m \dim F_p = p$ -rank A so $k \cong 1$ and A/pA is E(A)/pE(A)-irreducible.

COROLLARY 2.4. (a) If A is irreducible (p-irreducible), then A is Q-simple (p-simple).

(b) If A is quasi-isomorphic to B and A is irreducible, then B is irreducible.

246

(c) If A is nearly isomorphic to B and if A is p-irreducible, then B is p-irreducible.

PROOF. (a) Follows from Theorems 2.1 and 2.3.

(b) If A is quasi-isomorphic to B, then $QA \cong QB$ and $QE(A) \cong QE(B)$.

(c) If $nA \subseteq B \cong A$ and if p is a prime not dividing n, then $B/pB \cong A/pA$ and E(A)/pE(A) = E(B)/pE(B).

COROLLARY 2.5. Assume that A is reduced. Then A is p-irreducible for each p if and only if $A = A_1 \oplus \cdots \oplus A_k$ where (i) $\operatorname{Hom}(A_i, A_j) = 0$ if $i \neq J$; (ii) each A_i is Q-simple and p-irreducible for each p; (iii) if p is a prime then there is some j with $A/pA = A_j/pA_j$.

PROOF. Apply Theorem 1.3 and Theorem 2.3.

COROLLARY 2.6. A is Q-simple (irreducible) and p-irreducible for each p if and only if $A \cong B^{k-1} \oplus B_0$ where B and B_0 are strongly indecomposable, Q-simple (irreducible), and p-irreducible for each p.

PROOF. Apply Corollary 1.7 and the preceding results.

PROPOSITION 2.7. Assume that A is Q-simple and p-irreducible for each prime p. Let B be a pure fully invariant subgroup of A and assume that $C = A/B \neq 0$ and $B \neq 0$.

(a) *B* and *C* are *p*-irreducible for each *p* and there are ring monomorphisms $E(A) \rightarrow E(B)$ and $E(A) \rightarrow E(C)$.

(b) If p is a prime, then either pB = B, $A/pA \cong C/pC$, and there is a ring monomorphism $E(A)/pE(A) \rightarrow E(C)/pE(C)$; or else pC = C, $A/pA \cong B/pB$ and there is a ring monomorphism $E(A)/pE(A) \rightarrow E(B)/pE(B)$.

PROOF. Let p be a prime with $pB \neq B$. Since A is p-irreducible B + pA = A (the case B + pA = pA is impossible). Therefore, the natural map $B/pB \rightarrow A/pA$ is an isomorphism of E(A)/pE(A)-modules. Hence pC = C and B is p-irreducible since any E(B)/pE(B)-submodule of B/pB is an E(A)/pE(A)-submodule of $B/pB \cong A/pA$.

The natural maps $E(A)/pE(A) \rightarrow E(B)/pE(B)$ and $E(A) \rightarrow E(B)$ are non-zero, hence monic, since E(A)/pE(A) and QE(A) are simple algebras.

Similarly, if $pC \neq C$ then C is p-irreducible, $A/pA \cong C/pC$, $E(A) \rightarrow E(C)$ is monic and $E(A)/pE(A) \rightarrow E(C)/pE(C)$ is monic.

COROLLARY 2.8. Suppose that A is Q-simple and p-irreducible for each prime p. Then there are subgroups B_1, \ldots, B_k of A such that

(i) $A/(B_1 \oplus \cdots \oplus B_k)$ is torsion divisible,

(ii) For each i, B_i is a minimal non-zero pure fully invariant subgroup of A, B_i is irreducible and p-irreducible for each i,

(iii) For each i, A/B_i is p-irreducible for each p,

(iv) For each p and each i, either $pB_i = B_i$ or else $p(A/B_i) = A/B_i$,

(v) For each *i* and *j*, QB_i and QB_j are isomorphic as QE(A)-modules, hence rank B_i = rank B_j , and

(vi) If A is strongly indecomposable, then rank A = k rank E(A).

PROOF. Since QE(A) is a simple algebra, $QA = M_1 \oplus \cdots \oplus M_k$ as left QE(A)-modules where each $M_i \cong I$, an irreducible left ideal of QE(A). Let $B_i = M_i \cap A$, a minimal non-zero pure fully invariant subgroup of A. Then B_i is irreducible since any $E(B_i)$ -module of B_i is an E(A)-submodule of B_i . Moreover, $QB_i = M_i \cong M_j = QB_j$ as QE(A)-modules. In view of Proposition 2.7, each B_i and each A/B_i is p-irreducible for each p and either $pB_i = B_i$ or else $p(A/B_i) = A/B_i$.

Since $QA = QB_1 \oplus \cdots \oplus QB_k = M_1 \oplus \cdots \oplus M_k$, $A/(B_1 \oplus \cdots \oplus B_k)$ is torsion. If p is a prime with $pA \neq A$, then $pB_i \neq B_i$ for some i. Thus $p(A/B_i) = A/B_i$ so that $A/(B_1 \oplus \cdots \oplus B_k)$ is p-divisible. If A is strongly indecomposable, then QE(A) is a division algebra so rank A =rank $B_1 + \cdots +$ rank $B_k = k$ rank E(A) (since $M_i = QB_i \cong QE(A)$).

3. Strongly homogeneous groups. The group A is strongly homogeneous if whenever X and Y are two pure rank 1 subgroups of A then there is an automorphism f of A with f(X) = Y.

THEOREM 3.1. (ARNOLD [1]): The group A is strongly homogeneous if and only if A is isomorphic to the direct sum of finitely many copice of $\mathscr{R} \otimes_Z X$ where \mathscr{R} is a subring of an algebraic number field such that every element of \mathscr{R} is a rational integral multiple of a unit of \mathscr{R} and X is a rank 1 group. Moreover, \mathscr{R} may be chosen so that $E(A) \cong \operatorname{Mat}_m(\mathscr{R})$ and $\mathscr{R} \otimes_Z X$ is strongly indecomposable.

COROLLARY 3.2. If A is strongly homogeneous, then A is irreducible and p-irreducible for each p.

PROOF. As a consequence of Theorem 3.1, $QE(A) \cong \operatorname{Mat}_m(Q\mathcal{R})$ where $Q\mathcal{R}$ is a field and rank A = m rank $\mathcal{R} = m \dim_Q Q\mathcal{R}$. Furthermore, $E(A)/pE(A) \cong \operatorname{Mat}_m(\mathcal{R}/p\mathcal{R})$ where $\mathcal{R}/p\mathcal{R}$ is a field, if $\mathcal{R} \neq p\mathcal{R}$, and *p*-rank A = m *p*-rank \mathcal{R} .

COROLLARY 3.3. Suppose that A is a finitely generated E(A)-module. Then the following are equivalent:

- (a) A is strongly homogeneous;
- (b) A is irreducible and p-irreducible for each p; and
- (c) A is Q-simple and p-simple for each p.

PROOF. (a) \Rightarrow (b) Corollary 3.2.

(b) \Rightarrow (c) Corollary 2.4.

(c) \Rightarrow (a). Let S = Center E(A). Then E(A) is a free S-module and S

is a subring of an algebraic number field such that every element of S is an integral multiple of a unit of S (Corollary 1.4). Since A is a finitely generated E(A)-module, A is a finitely generated torsion free S-module. Therefore, $A \cong S^m$ so that Theorem 3.1 applies.

The ring E(A) is sub-commutative if whenever $f, g \in E(A)$, then there is $h \in E(A)$ with fg = hf. Examples of sub-commutative rings are given by Reid [11].

LEMMA 3.4. Suppose that E(A) is sub-commutative. Then (a) $QE(A)/\mathcal{J}(QE(A))$ is a product of division algebras, and (b) $(E(A)/pE(A))/\mathcal{J}(E(A)/pE(A))$ is a product of fields.

PROOF. $\mathscr{R} = QE(A)/\mathscr{J}(QE(A))$ is a semi-simple artinian sub-commutative ring hence a product of division algebras (Reid [11]). The proof of (b) is similar.

PROPOSITION 3.5. A is strongly homogeneous and strongly indecomposable if and only if A is irreducible and p-irreducible for each p, and E(A) is sub-commutative. In this case, E(A) is commutative.

PROOF. (\Rightarrow). Theorem 3.1 implies that E(A) is commutative, hence subcommutative. Now apply Corollary 3.2.

(\Leftarrow). As a consequence of Corollary 2.4.a and Lemma 3.4, QE(A) is a division algebra and E(A)/pE(A) is a field for each p. Thus A is strongly indecomposable.

Let X be a pure rank 1 subgroup of A and $\phi: E(A) \otimes X \to A$ defined by $\phi(f \otimes x) = f(x)$. Then ϕ is monic and A/E(A)X is torsion since rank $E(A) = \operatorname{rank} A$ (Corollary 2.2). Let p be a prime and $pa \in E(A)X$ for $a \in A$. Since X has rank 1, pa = f(x) for some $f \in E(A)$. Now $fE(A) \subseteq$ E(A)f, since E(A) is subcommutative, so $E(A)fE(A) \subseteq E(A)f \subseteq E(A)fE(A)$ and E(A)fE(A) = nE(A) for some $n \in Z$ (Proposition 1.2). Since QE(A)is a division algebra, f = nu for some unit u of E(S). Now pa = f(x) =nu(x) so p|n, or else $u(x)/p \in A$ implies that $x \in pA \cap X = pX$, since u is a unit of E(A). In either case, $a \in E(A)X$ and $A \cong E(A) \otimes_Z X$.

Since A is strongly indecomposable, E(A) must be strongly indecomposable. In view of Theorem 3.1 and Corollary 1.4 it suffices to prove that E(A) is commutative. For $0 \neq f \in E(A)$ define $\alpha_f : E(A) \rightarrow E(A)$ by $\alpha_f(g) = fg - gf$. Then α_f induces an endomorphism of $A \cong E(A) \otimes_Z X$ via $g \otimes x \rightarrow \alpha_f(g) \otimes x$. Since $\alpha_f(1) = 0$ and QE(A) is a division algebra, $\alpha_f = 0$. Thus fg = gf for all $g \in E(A)$.

4. Finitely faithful groups.

LEMMA 4.1. Suppose that QE(A) is semi-simple and that A is finitely faithful. Every exact sequence of groups

$$O \to B \to G \xrightarrow{II} A \to 0$$

such that Hom(A, G)A + B = G is split exact.

PROOF. Let $I = \{IIh: h \in Hom(A, G)\}$, a right ideal of E(A) with IA = A. Then E(A)/I is finite since QE(A) is semi-simple (Arnold and Lady [3], Corollary 2.3). But A is finitely faithful so I = E(A), i.e., there is $h: A \to G$ with $IIh = 1_A$.

PROPOSITION 4.2. The following are equivalent:

(a) A is finitely faithful;

(b) I = Hom(A, IA) for each maximal right ideal I of finite index in E(A); and

(c) $J_p = \text{Hom}(A, J_pA)$ for each prime p where $J_p/pE(A) = \mathcal{J}(E(A)/pE(A))$.

PROOF. (a) \Rightarrow (b). Note that $I \subseteq \text{Hom}(A, IA)$. a right ideal of E(A). Since A is finitely faithful, Hom(A, IA) = E(A) is impossible. By the maximality of I, I = Hom(A, IA).

(b) \Rightarrow (c). Clearly, $J_p = \bigcap \{I | I \text{ is a maximal right ideal of } E(A) \text{ containing } pE(A)\}$. If $f \in \text{Hom}(A, J_pA)$ then $f(A) \subseteq IA$ so that $f \in I$ for each maximal right ideal $I \subseteq pE(A)$. Thus $J_p = \text{Hom}(A, J_pA)$.

(c) \Rightarrow (a). Let *I* be a maximal right ideal of E(A) with E(A)/I finite and IA = A. Then $pE(A) \subseteq J_p \subseteq I$ for some prime *p* of *Z*. Since $E(A)/J_p$ is semi-simple, $I = eE(A) + J_p$ for some $e \in E(A)$, $e^2 - e \in J_p$. But $A = IA = eA + J_pA$ so $(1 - e)(A) \subseteq J_pA$. By (c), $1 - e \in J_p$ so $E(A) \subseteq eE(A) + J_p = I$.

COROLLARY 4.3. Assume that A is not divisible. If E(A)/pE(A) is semisimple for each p, then A is finitely faithful. Moreover, $\mathcal{N}E(A)A$ is the maximal divisible subgroup of A.

PROOF. In this case, $J_p = pE(A)$ and pE(A) = Hom(A, pA). Also $(\mathcal{N}E(A) + pE(A))/pE(A) \subseteq J_p/pE(A) = 0$ so $\mathcal{N}E(A) = p\mathcal{N}E(A)$ for each p. Thus $\mathcal{N}E(A)$ is divisible and $\mathcal{N}E(A)A \subseteq D$, the maximal divisible subgroup of A. Write $A = B \oplus D$, B reduced. Then $D = \text{Hom}(B, D)B \subseteq \mathcal{N}E(A)A$ since Hom(B, D), regarded as a left ideal of E(A), is nilpotent.

5. S-groups.

THEOREM 5.1. The following are equivalent:

(a) For each prime p, p-rank(E(A)) = (p-rank $(A))^2$;

(b) For each prime p with $pA \neq A$, $E(A)/pE(A) = \operatorname{Mat}_{m_p}(Z/pZ)$ where $m_p = p$ -rank A; and

(c) A is a finitely faithful *S*-group.

PROOF. (a) \Rightarrow (b). There is a monic ring homomorphism $E(A)/pE(A) \rightarrow$

E(A/pA). But $E(A/pA) \cong \operatorname{Mat}_{m_p}(Z/pZ)$, where $m_p = p\operatorname{-rank}(A)$, has dim $= m_p^2 \operatorname{so} E(A)/pE(A) \cong E(A/pA)$.

(b) \Rightarrow (c). Since E(A)/pE(A) is simple for each p, A is finitely faithful (Corollary 4.3).

Suppose that $nA \subseteq B \subseteq A$ for some $0 \neq n \in Z$. $B/nA = B_1/nA \oplus \cdots \oplus B_k/nA$ where each B_i/nA is cylic of prime power order.

It suffices to assume that $p^{j}A \subseteq B \subseteq A$ for some prime p and that $B/p^{j}A \cong Z/p^{i}Z$ for some i; since if $B_{i}/nA \cong Z/p^{j}Z$, then $p^{j}A \subseteq (p^{j}/n)$ $B_{i} \subseteq A$ with $(p^{j}/n)B_{i} \cong B_{i}$, and if Hom $(A, B_{i})A = B_{i}$ for $1 \leq i \leq k$, then Hom(A, B)A = B.

As a consequence of (b) there is an isomorphism $\phi: E(A)/p^{j}E(A) \rightarrow E(A/p^{j}A)$. Write $B = Zb + p^{j}A$ and choose $f' \in E(A/p^{j}A)$ with $f'(A/p^{j}A) = B/p^{j}A$. Then $f' = \phi(f + p^{j}E(A))$ for some $f \in E(A)$ so $b \in f(A) + p^{j}A$. Thus $B = Zb + p^{j}A \subseteq (fE(A) + p^{j}E(A))A \subseteq \text{Hom}(A, B)A \subseteq B$ so that B = Hom(A, B)A and A is an \mathscr{S} -group.

(c) \Rightarrow (a). Write $A/pA = B_1/pA \oplus \cdots \oplus B_m/pA$ where m = p-rank Aand $B_i/pA \cong Z/pZ$. For each i, choose a right ideal I_i of E(A) minimal with respect to $pE(A) \subseteq I_i$ and $I_iA = B_i$. Then $A = B_1 + \cdots + B_m =$ $(I_1 + \cdots + I_m)A$ so $E(A) = I_1 + \cdots + I_m$ since A is finitely faithful. Also $E(A)/pE(A) = I_1/pE(A) \oplus \cdots \oplus I_m/pE(A)$ and each $I_i/pE(A)$ is a minimal right ideal of E(A)/pE(A) by the choice of I_i and the fact that $I_iA = B$ and $B_i/pA \cong Z/pZ$. Therefore E(A)/pE(A), being the direct sum of minimal right ideals, must be semi-simple.

In fact, E(A)/pE(A) is simple. Otherwise, $E(A)/pE(A) = I/pE(A) \oplus J/pE(A)$ is the direct sum of non-zero ideals. Since A is finitely faithful, $IA \neq A, JA \neq A$. Choose $a_1 \in IA \setminus JA, a_2 \in JA \setminus IA$, noting that A = IA + JA. Let $a = a_1 + a_2 \in A \setminus (IA \cup JA)$ and B = Za + pA. Then LA = B for some right ideal L of E(A). Since E(A) = I + J, $L = L \cap I + L \cap J$ so $L/pE(A) = (L \cap I)/pE(A) \oplus (L \cap J)/pE(A)$. But $B/pA \cong Z/pZ \cong LA/pA \cong (L \cap I)(A)/pA \oplus (L \cap J)(A)/pA$. Thus, for example, $(L \cap I)$ A = B and $a \in B \subseteq (L \cap I)A \subseteq IA$, a contradiction.

Write $E(A)/pE(A) = \operatorname{Mat}_m(F)$, $F = \operatorname{End}_{E(A)/pE(A)}(I_i/pE(A))$, recalling that m = p-rank (A). Thus p-rank $(E(A)) = m^2 \operatorname{dim}(F) \leq m^2$ so $\operatorname{dim}(F) = 1$ and p-rank (E(A)) = (p-rank $(A))^2$.

COROLLARY 5.2. A is a finitely faithful \mathcal{G} -group if and only if Ext(A, A) is torsion free.

PROOF. Warfield [13] proves that Ext(A, A) is torsion free if *p*-rank $(E(A)) = (p-\operatorname{rank} (A))^2$ for each prime *p*.

COROLLARY 5.3. Assume A is a finitely faithful *S*-group.

- (a) A is p-irreducible for each p.
- (b) If B is quasi-isomorphic to A, then B is a finitely faithful \mathcal{G} -group.

PROOF. (a) follows from Theorem 5.1 and Theorem 2.3.

(b) Note that *p*-rank (B) = p-rank (A) and *p*-rank (E(B)) = p-rank(E(A)) for each prime *p* and apply Theorem 5.1.

COROLLARY 5.4. (a) A is a finitely faithful \mathcal{S} -group if and only if $A = A_1 \oplus \cdots \oplus A_k$ where $\operatorname{Hom}(A_i, A_j) = 0$ if $i \neq j$; each A_i is a Q-simple finitely faithful \mathcal{S} -group; and if p is a prime, then is some j with $A/pA = A_j/pA_j$.

(b) A is a Q-simple finitely faithful \mathscr{G} -group if and only if $A \cong B^{k-1} \oplus B_0$ where B and B_0 are Q-simple strongly indecomposable finitely faithful \mathscr{G} -groups and B is nearly isomorphic to B_0 . In this case, if S = Center E(A), then $S/pS \cong Z/pZ$ for each prime p with $pA \neq A$.

(c) Assume that A is a Q-simple finitely faithful \mathcal{G} -group. Then there are pure fully invariant subgroup B_1, \ldots, B_k of A such that $A/(B_1 \oplus \cdots \oplus B_k)$ is torsion divisible; for each i, B_i is an irreducible finitely faithful \mathcal{G} -group; and if p is a prime then either $pB_i = B_i$ or else $p(A/B_i) = A/B_i$.

PROOF. Apply Theorem 5.1 and the results of §2.

COROLLARY 5.5. Assume that A is finitely faithful. Then A is an \mathcal{S} -group if and only if whenever B is a subgroup of finite index in A then B is nearly isomorphic to A.

PROOF. (\Leftarrow). Let *B* be a subgroup of finite index in *A*. Since *B* is nearly isomorphic to *A*, $B \oplus B_0 \cong A \oplus A$ for some B_0 (Lady [7]). Then Hom(*A*, *B*)*A* = *B* so that *A* is an \mathscr{G} -group.

 (\Rightarrow) . As a consequence of Corollary 5.4, it suffices to assume that A is Q-simple. Let B be a subgroup of finite index in A. Then Hom(A, B) is a right ideal of E(A) and E(A) is a maximal S-order in QE(A) (Corollary 1.4). Thus Hom(A, B) is a projective right ideal of E(A) (Swan and Evans [12]). Since Hom(A, B)A = B, B is nearly isomorphic to A (as in the proof of Theorem 1.6).

6. *g*-groups.

THEOREM 6.1. If A is reduced, then the following are equivalent:

(a) A is a finitely faithful \mathcal{J} -group;

(b) A is a finitely faithful \mathcal{G} -group and every right ideal of finite index in E(A) is principal; and

(c) A is a \mathcal{J} -group and QE(A) is semi-simple.

PROOF. (a) \Rightarrow (b). Every finitely faithful \mathscr{J} -group is a finitely faithful \mathscr{J} -group. Let I be a right ideal of E(A) with E(A)/I finite. Then A/IA is finite so choose $f \in E(A)$, f(A) = IA. Then $A = f^{-1}IA$ so $f^{-1}I = E(A)$, since A is finitely faithful, and I = fE(A).

(b) \Rightarrow (c). Clearly, A is a \mathcal{J} -group and QE(A) is semi-simple (Theorem 5.1 and Corollary 4.3).

(c) \Rightarrow (a). Since QE(A) is semi-simple, there is $0 \neq n \in Z$, $n\mathscr{R} \subseteq E(A) \subseteq \mathscr{R} = \mathscr{R}_1 \times \cdots \times \mathscr{R}_k$, $Q\mathscr{R}_i$ a simple algebra, \mathscr{R}_i an S_i -order where $S_i = C$ enter \mathscr{R}_i (as in Theorem 1.3). There is a maximal S_i -order $\overline{\mathscr{R}}_i$ in $Q\mathscr{R}_i$ with $\overline{\mathscr{R}}_i/\mathscr{R}_i$ finite (Swan and Evans [12]). Hence there is $0 \neq m \in Z$, $m\overline{\mathscr{R}} \subseteq E(A) \subseteq \overline{\mathscr{R}} = \overline{\mathscr{R}}_1 \times \cdots \times \overline{\mathscr{R}}_k$. Let $B_i = \overline{\mathscr{R}}_i A$ and $B = B_1 \oplus \cdots \oplus B_k$. Them $mB \subseteq A \subseteq B = B_1 \oplus \cdots \oplus B_k$ and $E(B_i) = \overline{\mathscr{R}}_i$. Since A is a \mathscr{J} -group, $A \cong B$ and $E(A) \cong \overline{\mathscr{R}}_1 \times \cdots \times \overline{\mathscr{R}}_k$. Consequently, every right ideal of E(A) is projective, since every right ideal of the maximal order $\overline{\mathscr{R}}_i$ is projective (Swan and Evans [12]). Let I be a maximal right ideal of finite index in E(A). Since I is E(A)-projective, I = Hom(A, IA) (Arnold and Lady [3]). Thus A is finitely faithful by Proposition 4.2.

The group A is a Murley group if p-rank $(A) \leq 1$ for each prime p of Z. If A is a Murley group, then A is a \mathcal{J} -group. If, in addition, A is indecomposable, then E(A) is an integral domain with $E(A)/pE(A) \approx Z/pZ$ or 0. Furthermore, an indecomposable Murley group is irreducible if and only if it is strongly homogeneous (Murley [8]).

COROLLARY 6.2. Suppose that $A \cong B^*$ where B is an indecomposable Murley group. Then A is a finitely faithful \mathcal{J} -group. Moreover A is irreducible if and only if A is strongly homogeneous.

COROLLARY 6.3. A is a strongly homogeneous finitely faithful S-group if and only if $A \cong B^k$ where B is a strongly homogeneous indecomposable Murley group.

PROOF. (\Leftarrow). Corollary 6.2.

(⇒). Write $A \cong (R \otimes_Z X)^m$ so that $E(A) \cong \operatorname{Mat}_m(\mathscr{R})$ and $\mathscr{R} \otimes_Z X$ is strongly indecomposable. Then $E(A)/pE(A) \cong \operatorname{Mat}_m(\mathscr{R}/p\mathscr{R}) \cong$ Mat_n(Z/pZ) where p-rank (A) = m · p-rank (\mathscr{R}) = n. The uniqueness of Wedderburn-Artin theory implies that m = n and $\mathscr{R}/p\mathscr{R} \cong Z/pZ$. Thus, $\mathscr{R} \otimes_Z X$ is a strongly indecomposable Murley group since dim $(\mathscr{R} \otimes_Z X)/p(\mathscr{R} \otimes_Z X) \leq 1$ for each p. Also $\mathscr{R} \otimes_Z X$ is a strongly homogeneous group.

COROLLARY 6.4. Assume that A is semi-local (pA = A for all but a finite number of primes p). Then A is a finitely faithful \mathcal{G} -group if and only if A is a finitely faithful \mathcal{G} -group.

PROOF. Apply Theorem 6.1, Corollary 5.4, and Theorem 1.4, noting that if A is Q-simple and semi-local, then A = Center E(A) has only finitely many maximal ideals and E(A) is a maximal S-order. Thus every right ideal of E(A) is principal (Swan and Evans [12]).

COROLLARY 6.5. Assume that E(A) is subcommutative. Then A is a finitely faithful S-group if and only if $A = A_1 \oplus \cdots \oplus A_k$ where each A_i is fully invariant in A and each A_i is an indecomposable Murley group.

PROOF. (\Leftarrow). Each A_i is a finitely faithful \mathscr{S} -group (Corollary 6.2) so that $A = A_1 \oplus \cdots \oplus A_k$ is a finitely faithful \mathscr{S} -group (Corollary 5.4).

 (\Rightarrow) . As a consequence of Theorem 5.1 and Lemma 3.4, E(A)/pE(A) is a field isomorphic to Z/pZ for each prime p with $pA \neq A$ and $\dim(A/pA) = 1$. Thus $A = A_1 \oplus \cdots \oplus A_k$ where each A_i is a fully invariant indecomposable Murley group.

7. Examples. Let S be a commutative ring and $H(S) = S \oplus Si \oplus Sj \oplus Sk$ the ring of Hamiltonian quaternions over S. Then $H(S) \subseteq QH(S) = H(QS)$. Moreover, $H(Z)/pH(Z) \cong H(Z/pZ) \cong Mat_2(Z/pZ)$ for each prime $p \neq 2$ of Z and H(Q) is a division algebra. Let Z[1/2] be the subring of Q generated by Z and 1/2. Then $H(Z[1/2])/pH(Z[1/2]) \cong H(Z/pZ)$ if $p \neq 2$ while 2H(Z[1/2]) = H(Z[1/2]).

EXAMPLE 7.1. There is a torsion free group A of rank 8 with $E(A) \cong H(Z[1/2])$, p-rank $A = \dim E(A)/pE(A) = 4$ for $p \neq 2$, and 2-rank(A) = 0 (Corner [5]). Then A is strongly indecomposable, Q-simple, p-simple for each p but is not irreducible or p-irreducible for $p \neq 2$.

EXAMPLE 7.2. There is a torsion free group A of rank 4 with $E(A) \cong H(Z)$ and p-rank A = p-rank H(Z) = 4 for each p (Zassenhaus [14]). Then A is strongly indecomposable, irreducible, p-simple for $p \neq 2$, but not p-irreducible for any p (note that H(Z)/2H(Z) is not semi-simple).

EXAMPLE 7.3. There is a torsion free group A of rank 2 with $E(A) \cong Z$ and p-rank A = 1 for each p (Corner [5]). Then A is a strongly indecomposable Q-simple Murley group that is not irreducible. Moreover, A satisfies the conclusions of Corollary 2.8 with k > 1.

Assume that \mathscr{R} is a subring of \mathscr{QR} and that \mathscr{QR} is a finite dimensional Q-algebra. For a prime p of Z, define \mathscr{R}_p^* to be the p-adic completion of \mathscr{R} . Then \mathscr{R}_p^* is complete in the p-adic topology. Moreover, if S =Center \mathscr{R} then $S_p^* =$ Center \mathscr{R}_p^* .

LEMMA 7.4. Suppose that $\mathscr{R}/p\mathscr{R} \cong \operatorname{Mat}_m(F)$, where F is a finite field. Then $\mathscr{R}_p^* = \mathscr{R}_p^* e_1 \oplus \cdots \oplus \mathscr{R}_p^* e_m$, where $e_i^2 = e_i$ and $\dim(\mathscr{R}_p^* e_i/p\mathscr{R}_p^* e_i) = m \dim(\mathscr{R}/p\mathscr{R})$.

PROOF. Write $\mathscr{R}/p\mathscr{R} = I_1 \oplus \cdots \oplus I_m$, where $I_i = (\mathscr{R}/p\mathscr{R})f_i$ is an irreducible left ideal, $f_i^2 = f_i$, and $\dim(I_i) = m \dim(F)$ for each *i*. Then $\mathscr{R}_p^*/p\mathscr{R}_p^*$ is isomorphic to $\mathscr{R}/p\mathscr{R}$. Since \mathscr{R}_p^* is complete in the *p*-adic topology, $\mathscr{R}_p^* = \mathscr{R}_p^*e_1 \oplus \cdots \oplus \mathscr{R}_p^*e_m$, where $e_i^2 = e_i$ and $e_i + p\mathscr{R}_p^* = f_i$ for each *i*. Thus $\dim(\mathscr{R}_p^*e_i/p\mathscr{R}_p^*e_i) = \dim(I_i) = m \dim(F)$ for each *i*.

LEMMA 7.5. Suppose that $\Re \subseteq Q\Re$, $Q\Re$ is a division algebra, S =Center \Re , \Re is p-local ($q\Re = \Re$ for each prime $q \neq p$) and that $\Re/p\Re \cong$ Mat_m(F), F a finite field. Then there is a finite rank torsion free p-local group A such that $E_S(A) \cong \mathcal{R}$ and p-rank $(A) = m \dim(F)$.

PROOF. The construction of A is a mild variation of the construction given by Corner [5]. As in Lemma 7.4, write $\mathscr{R}_p^* = \mathscr{R}_p^* e_1 \oplus \cdots \oplus \mathscr{R}_p^* e_m$ where $e_i^2 = e_i$ and dim $(\mathscr{R}_p^* e_i / p \mathscr{R}_p^* e_i) = m \dim(F)$ for each *i*. Then \mathscr{R} is a free S-module, a maximal S-order in $Q\mathscr{R}$, and S is a discrete valuation ring with unique maximal ideal pS (Corollary 1.4).

Now $\Re e_1 \subseteq \Re_p^* e_1$ and $\Re \cong \Re e_1$ since $Q\mathfrak{R}$ is a division algebra. Let $\{\xi_1, \ldots, \xi_{\ell'}\}$, where $\ell \dim(S_p^*/pS_p^*) = \dim(\mathfrak{R}_p^*e_1) = m \dim(F)$, be an S_p^* -basis for $\mathfrak{R}_p^*e_1$ and choose $\{\xi_{\ell+1}, \ldots, \xi_k\} \subseteq \mathfrak{R}_p^*e_2 \oplus \cdots \mathfrak{R}_p^*e_m$ such that $\{\xi_1, \ldots, \xi_k\}$ is an S_p^* -basis for \mathfrak{R}_p^* where $k \dim(S_p^*/pS_p^*) = m^2 \dim(F)$.

Define T to be the pure subring of S_p^* generated by $\{\Pi_i | r = \Pi_1 \xi_1 + \cdots + \Pi_k \xi_k \text{ for some } r \in \mathcal{R}\}$. Then T is countable and S_p^* is uncountable so there are n = S-rank (\mathcal{R}) elements ρ_1, \ldots, ρ_n of S_p^* algebraically independent over T.

Let $\{\alpha_1 = 1, \alpha_2, \dots, \alpha_n\}$ be an S-basis of \mathscr{R} and let $e = \rho_1 \alpha_1 + \dots + \rho_n \alpha_n \in \mathscr{R}_p^*$. Define A to be the pure S_p -submodule of $\mathscr{R}_p^* e_1$ generated by $\{\mathscr{R}e_1, \mathscr{R}ee_1\}$. Then $A_p^* = \mathscr{R}_p^* e_1$ since $\mathscr{R}_p^*/\mathscr{R}$, hence $(\mathscr{R}_p^* e_1)/(\mathscr{R}e_1)$, is divisible and A is pure in $\mathscr{R}_p^* e_1$. Thus dim $(A/pA) = \dim(A_p^*/pA_p^*) = m \dim(F)$.

There is a ring monomorphism $\phi: \mathscr{R} \to E_s(A)$, given by $\phi(r) = \text{left}$ multiplication by r since $\mathscr{R}A \subseteq A$. To show that ϕ is into, let $f \in E_s(A)$. Then f lifts to an S_p^* -homomorphism $f^*: \mathscr{R}_p^*e_1 \to \mathscr{R}_p^*e_1$. Hence $f(ee_1) = \rho_1 f(\alpha_1 e_1) + \cdots + \rho_n f(\alpha_n e_1)$ and for some $0 < j \in Z$, $p^j f(ee_1) = \beta_0 + \gamma_0 ee_1$ and $p^j f(\alpha_i e_1) = \beta_i + \gamma_i ee_1$ for $\beta_i \in \mathscr{R}e_1$, $\gamma_i \in \mathscr{R}$, $0 \leq i \leq n$. Therefore, $\beta_0 + \gamma_0(\rho_1\alpha_1 e_1 + \cdots + \rho_n\alpha_n e_1) = \rho_1(\beta_1 + \gamma_1(\rho_1\alpha_1 e_1 + \cdots + \rho_n\alpha_n e_1)) + \cdots + \rho_n(\beta_n + \gamma_n(\rho_1\alpha_1 e_1 + \cdots + \rho_n\alpha_n e_1))$. Note that ρ_1, \ldots, ρ_n are algebraically independent over the pure subring of S_p^* generated by $\{\Pi_i | re_1 = \Pi_1 \xi_1 + \cdots + \Pi_r \xi_r\}$ for some $re_1 \in \mathscr{R}e_1$ since $r = re_1 + \cdots + re_m = (\Pi_1 \xi_1 + \cdots + \Pi_r \xi_r) + (\Pi_{r+1} \xi_{r+1} + \cdots + \Pi_k \xi_k)$ by the choice of the ξ_i 's. It follows that $p^j f(ee_1) = \gamma_0 ee_1$ and $p^j f(\alpha_i e_1) = \beta_i = \gamma_0(\alpha_i e_1)$ for $1 \leq i \leq n$.

Since $\{\alpha_1, \ldots, \alpha_n\}$ is an S-basis of $\mathscr{R} \cong \mathscr{R}e_1$, $S = \text{Center } \mathscr{R}$, and $f \in E_S(A)$, $p^i f(re_1) = \gamma_0(re_1)$ for all $re_1 \in \mathscr{R}e_1$. Now $p^j f^* - \phi(\gamma_0) : \mathscr{R}_p^* e_1 \to \mathscr{R}_p^* e_1$ with $(p^j f^* - \phi(\gamma_0)) (\mathscr{R}e_1) = 0$. Since $\mathscr{R}_p^* e_1 / \mathscr{R}e_1$ is divisible and $\mathscr{R}_p^* e_1$ is reduced, $p^j f^* = \phi(\gamma_0)$ and $p^j f = \phi(\gamma_0)$. Thus $E_S(A) / \phi(\mathscr{R})$ is torsion so it suffices to assume $\mathscr{R} \subseteq E_S(A) \subseteq Q\mathscr{R} = QE_S(A)$. But $S = \text{Center } \mathscr{R}$, $S \subseteq \text{Center } E_S(A) \subset \text{Center } (Q\mathscr{R}) = QS$ and S is a discrete valuation ring. Thus $S = \text{Center } E_S(A)$ so that \mathscr{R} and $E_S(A)$ are S-orders in $Q\mathscr{R}$ (Pierce [9]). But \mathscr{R} is a maximal S-order in $Q\mathscr{R}$ so that $\mathscr{R} = E_S(A)$.

EXAMPLE 7.6. For each $p \neq 2$ there is a *p*-local strongly indecomposable \mathscr{J} -group A such that QE(A) is a division algebra but A is not a Murley group.

PROOF. Let $\mathscr{R} = H(Z_p)$ so that $\mathscr{R}/p\mathscr{R} \cong \operatorname{Mat}_2(Z/pZ)$ and $S = \operatorname{Center} \mathscr{R} \cong Z_p$. By Lemma 7.5 there is a *p*-local group *A* with $E(A) \cong \mathscr{R}$ and dim(A/pA) = 2. Since dim $(E(A)/pE(A)) = 4 = (\dim(A/pA)^2, A \text{ is a finitely faithful } \mathscr{G}\text{-group}$, hence a finitely faithful $\mathscr{G}\text{-group}$ (Theorem 5.1 and Corollary 6.4). Also *A* is strongly indecomposable since $QE(A) \cong Q\mathscr{R} \cong H(Q)$ is a division algebra.

The following question, arising from Theorem II, remains open: If A is strongly indecomposable, Q-simple, p-simple for each p and if B is nearly isomorphic to A, then is $B \cong A$? Equivalently, if R is a maximal Center (R)-order in a finite dimensional division algebra QR and if every ideal in R is generated by an element of Z, then is every right ideal of R principal?

REFERENCES

1. D. Arnold, Strongly homogeneous torsion free abelian groups of finite rank, Proc. A.M.S. 56 (1975), 67-72.

2. — , Genera and direct sum decompositions of torsion free modules, Lecture Notes in Mathematics #616, Springer, New York, (1977), 197–218.

3. — and E. Lady, Endomorphism rings and direct sums of torsion free abelian groups, Trans. A.M.S., 211 (1975), 225–237.

4. _____, B. O'Brien and J. Reid, Quasi-pure injective and projective torsion free abelian groups of finite rank, Proc. London Math. Soc. 38 (1979), 532-544.

5. A.L.S. Corner, Every countable reduced torsion free ring is an endomorphism ring, Proc. London Math. Soc. 13 (1963), 687–710.

6. L. Fuchs, *Infinite Abelian Groups*, Vol. I and II, Academic Press, New York, 1970, 1973.

7. E.L. Lady, Nearly isomorphic torsion-free abelian groups, J. Alg. 35 (1975), 235-238.

8. C.E. Murley, The classification of certain classes of torsion free abelian groups of finite rank, Pac. J. Math. 40 (1972), 647–665.

9. R.S. Pierce, Subrings of simple algebras, Mich. Math. J. 7 (1960), 241-243.

10. J. Reid, On the ring of quasi-endomorphisms of torsion free groups, Topics in Abelian Groups, Scott-Foresman, Chicago, 1963, 51–68.

11. ——, On subcommutative rings, Acta Math. Acad. Sci. Hungar 16 (1965), 23–26. 12. R.G. Swan and E.G. Evans, *K-Theory of finite groups and orders*, Lecture Notes in Mathematics 149, Springer, New York, 1970.

13. R.B. Warfield, Jr., *Extensions of torsion free abelian groups of finite rank*, Arch. Math. 23 (1972), 145–150.

14. H.J. Zassenhaus, Orders as endomorphism rings of modules of the same rank, J. London Math. Soc. 42 (1967), 180–182.

NEW MEXICO STATE UNIVERISTY, LAS CRUCES, NM 88003.