GENERALIZED INVERSE SEMIGROUPS WITH INVOLUTION

H. E. SCHEIBLICH

ABSTRACT. This paper considers orthodox semigroups which have a normal band and which admit a unary involution operation. A structure theorem is proved and the free such semigroup is found. The partial order is also considered.

1. Introduction and preliminaries. Let S be a regular semigroup. Then S is orthodox provided the set E = E(S) of idempotents of S is a subsemigroup of S. Sis a generalized inverse semigroup provided S is orthodox and the band E is normal, i.e., eghf = ehgf for all e, g, h, $f \in E$. The structure of all generalized inverse semigroups has been found by Yamada [10], in terms of inverse semigroups and normal bands. Yamada's structure theorem will play an important role in this paper. It is described below.

In [5], the authors consider a class of unary semigroups, i.e., semigroups which are equipped with a unary operator, $x \to x^*$. The * operator satisfies the axioms (1) $x^{**} = x$, (2) $xx^*x = x$, and an involution axiom (3) $(xy)^* = y^*x^*$. These semigroups are called regular * semigroups. In that same paper, a regular * semigroup S is shown to be orthodox $(EE \subset E)$ if and only if S satisfies the identity $[(xx^*)(yy^*)(zz^*)]^2 = [(xx^*)(yy^*)(zz^*)]$. Thus, the class of all orthodox * semigroups forms a variety.

In [1], it is shown that an orthodox * semigroup S is a generalized inverse semigroup (has a normal band) if and only if S satisfies the identity $a(xx^*)(x^*x)b = a(x^*x)(xx^*)b$. Thus, the generalized inverse * semigroups form a variety.

The purpose of this note is to study generalized inverse * semigroups. In Sections (2), (3), and (4) we shall: (2) specialize Yamada's structure theorem to the * case, (3) find the free generalized inverse * semigroup, and (4) consider the natural partial order on a generalized inverse semigroup.

2. The structure theorem. First, we will review Yamada's structure theorem for generalized inverse semigroups. Let S be an inverse semigroup

AMS (MOS) subject classification (1970): Primary 20M05, 20M10.

Key words and pharases: generalized inverse semigroup, involution operator, free, partial order.

Received by the editors on November 17, 1980, and in revised form on March 17, 1981.

Copyright © 1982 Rocky Mountain Mathematics Consortium

with semilattice E. Let L, R be left and right normal bands, respectively, each with structure semilattice E. Thus, $L = \bigcup_{e \in E} L_e$ and $R = \bigcup_{e \in E} R_e$. Now let $Q = [L: S: R] = \{(a, x, b) \in L \times S \times R: a \in L_{xx^{-1}} \text{ and } b \in R_{x^{-1}x}\}$. Define multiplication in Q by the rule (a, x, b)(c, y, d) = (au, xy, vd) where $u \in L_{(xy)(xy)^{-1}}$ and $v \in R_{(xy)^{-1}(xy)}$. Q is called the quasi direct product of L, S, and R.

Theorem 2.1. [10]. The quasi direct product [L: S: R] is a generalized inverse semigroup. Conversely, if T is a generalized inverse semigroup, then the mapping $a \to (R_{aa'}, a\mathscr{Y}, L_{a'a})$ is an isomorphism of T onto the quasi direct product $[E(T)/\mathscr{R}: T/\mathscr{Y}: E(T)/\mathscr{L}]$.

In the second part of the theorem just stated, E(T) is the band of T, and \mathcal{R} , \mathcal{L} denote the usual Green's relations on E(T). Thus, $R_{aa'}$ is the \mathcal{R} class of E(T) which contains aa' where a' is an inverse of a. \mathcal{Y} is the smallest inverse semigroup congruence on T.

Let S be an inverse semigroup with semilattice E. Let L be a left normal band with E as its structure semilattice. Let L^d be the band dual to L. Of course, L^d is right normal and E is the structure semilattice of L^d . Define the unary operation * on the quasi direct product $Q = [L: S: L^d]$ by $(a, x, b)^* = (b, x^{-1}, a)$.

THEOREM 2.2. The quasi direct product $Q = [L: S: L^d]$ is a generalized inverse * semigroup. Conversely, if T is a generalized inverse * semigroup, then the mapping $\phi: a \to (R_{aa^*}, a\mathscr{Y}, R_{a^*a})$ is an isomorphism of T onto $(E(T)/\mathscr{R}: T/\mathscr{Y}: (E(T)/\mathscr{R})^d]$.

PROOF. It will be shown first that $Q = [L: S: L^d]$ is a generalized inverse * semigroup. By Theorem 1.1, it will only be necessary to check that the unary operation * has the required properties. Notice that with L^d in the third coordinate, the multiplication in $Q = [L: S: L^d]$ becomes (a, x, b) (c, y, d) = (au, xy, dv) where $u \in L_{(xy)(xy)^{-1}}$ and $v \in L_{(xy)^{-1}(xy)}$.

It is easy to see that $(a, x, b)^{**} = (a, x, b)$. Further $(a, x, b)(a, x, b)^{*} = (a, x, b)(b, x^{-1}, a) = (au, xx^{-1}, av)$ where $u, v \in L_{xx^{-1}}$. Noting that L_e is a left zero semigroup for all $e \in E$, $(au, xx^{-1}, av) = (a, xx^{-1}, a)$. Thus, $(a, x, b)(a, x, b)^{*}(a, x, b) = (a, xx^{-1}, a)(a, x, b) = (au, xx^{-1}x, bv) = (a, x, b)$ since $a, u \in L_{xx^{-1}}$ and $b, v \in L_{x^{-1}x}$. Finally, in order to compute $[(a, x, b)(c, y, d)]^{*}$, let $u \in L_{(xy)(xy)^{-1}}$ and $v \in L_{(xy)^{-1}(xy)}$. Then $[(a, x, b)(c, y, d)]^{*} = (au, xy, dv)^{*} = (dv, (xy)^{-1}, au) = (d, y^{-1}, c)(b, x^{-1}, a) = (c, y, d)^{*}(a, x, b)^{*}$. This completes the argument that $Q = [L: S: L^{d}]$ is a generalized inverse * semigroup.

Turning to the second part of the theorem, Theorem 2.1 says that the mapping $\theta: a \to (R_{aa^*}, a\mathscr{Y}, L_{a^*a})$ is an isomorphism of T onto $[E(T)/\mathscr{R}: T/\mathscr{Y}: E(T)/\mathscr{L}]$.

Consider now the map $f: L_p \to R_p$ of $E(T)/\mathscr{L}$ onto $E(T)/\mathscr{R}$ where p is a

projection $(p=p^*)$ in E(T). This is a well defined map as each $\mathscr{L}[\mathscr{R}]$ class contains a unique projection [5, Theorem 2.2]. Also f is an antimorphism since $f[L_pL_q]=f[L_{pq}]=f[L_{(pq)^*(pq)}]=f[L_{q^*p^*pq}]=f[L_{qpq}]=R_{qpq}=R_{qp}=R_qR_p=f(L_q)f(L_p)$. Thus f is an isomorphism from $E(T)/\mathscr{L}$ onto $[E(T)/\mathscr{R}]^d$. It now follows that $\phi\colon a\to (R_{aa^*},a\mathscr{V},R_{a^*a})$ is an isomorphism of T onto $[E(T)/\mathscr{R}\colon T/\mathscr{V}\colon [E(T)/\mathscr{R}]^d]$. This ismorphism ϕ also preserves * since $[\phi(a)]^*=(R_{aa^*},a\mathscr{V},R_{a^*a})^*=(R_{a^*a},(a\mathscr{V})^{-1},R_{aa^*})=(R_{a^*a},a^*\mathscr{V},R_{aa^*})=\phi(a^*)$.

COROLLARY 2.3. Let T be a generalized inverse semigroup. Then T admits an involution * if and only if E(T) admits an involution *. If T admits an involution *, it admits only one (up to isomorphism).

PROOF. The uniqueness of * on T, if it exists, follows directly from Theorem 2.2. Suppose that E(T) admits *. Then $E(T) \cong E(T)/\mathscr{R} \otimes [E(T)/\mathscr{R}]^d$, the spined product of $E(T)/\mathscr{R}$ with $[E(T)/R]^d$. This is a part of the proof of Theorem 2.2. Alternately, it is proved directly in [9]. It follows that $T = [L: S: L^d]$ by Theorem 2.1. Thus T admits * by Theorem 2.2.

3. The free generalized inverse * semigroup. The purpose of this section is to give a characterization of the free generalized inverse * semigroup. The construction depends upon the free inverse semigroup, so let us review that construction before proceeding.

Let X be a non-empty set and let $Y = X \cup X^{-1}$. Let F be the free semi-group on X and let G be the free group on X. Let R be the set of all reduced words in Y(x) never stands next to x^{-1}) so that $G = R \cup \{1\}$ where 1 is the empty word. For each $y \in Y$, let $\bar{y} : G \to G$ be defined by

$$(v)\bar{y} = \begin{cases} 1 & \text{if } v = 1\\ y^{-1} & \text{if } v = y\\ y^{-1} \cdot v & \text{otherwise.} \end{cases}$$

For $w = y_1 y_2 \cdots y_n \in G$, let $\overline{w} = \overline{y}_1 \overline{y}_2 \cdots \overline{y}_n$. When $A \subset G$, let $A\overline{w} = \{a\overline{w} : a \in A\}$.

Now let E be the set of all non-empty finite subsets of R which are closed under the operation of taking initial segments. Let $I = \{(A, w) \in E \times G : w \in A^1\}$. Define multiplication in I by $(A, w)(B, v) = (A \cup B(\overline{w})^{-1}, w \cdot v)$. Then $\mathscr{F} = (I, \varepsilon)$ is a free inverse semigroup on X where $\varepsilon : X \to I$ by $\varepsilon(X) = (\{x\}, x)$ [7].

The idempotents of I are the sets (A, 1) where $A \in E$. The idempotent (A, 1) is used to represent the product $\prod_{w \in A} ww^{-1}$. For example, if $A = \{x, xy, xz^{-1}\}$, then $(A, 1) \equiv (xx^{-1})(xyy^{-1}x^{-1})(xz^{-1}zx^{-1}) = (xyy^{-1}x^{-1})(xz^{-1}zx^{-1})$. Notice that in a generalized inverse semigroup where the band is normal, these two idempotents would still commute since $(xy^{-1}yx^{-1})$

 $(xz^{-1}zx^{-1})=(xx^{-1})$ $(xy^{-1}yx^{-1})$ $(xz^{-1}zx^{-1})$ $(xx^{-1})=(xx^{-1})$ $(xz^{-1}zx^{-1})$ $(xy^{-1}yx^{-1})$ $(xx^{-1})=(xz^{-1}zx^{-1})$ $(xy^{-1}yx^{-1})$. Of course, two idempotents ww^{-1} and vv^{-1} would always commute when w and v have the same first letter. Now let $C=\{x,\,xy,\,xz^{-1},\,r,\,rs\}$. In an inverse semigroup, $\Pi_{w\in C}$ ww^{-1} would be $(xyy^{-1}x^{-1})(xz^{-1}zx^{-1})(rss^{-1}r^{-1})$. However, in a generalized inverse semigroup, these three idempotents would form four distinct products, namely $(xyy^{-1}x^{-1})(xz^{-1}zx^{-1})(rss^{-1}r^{-1})$, $(xyy^{-1}x^{-1})(rss^{-1}r^{-1})$ $(xz^{-1}zx^{-1})$, $(rss^{-1}r^{-1})(xyy^{-1}x^{-1})$ $(xz^{-1}zx^{-1})(rss^{-1}r^{-1})$. The order in which the idempotents appear really depends only on the first letter of the first word and the last letter of the last word.

Now let $L = \{(x, A) \in Y \times E : x \in A\}$. Define multiplication on L by $(x, A)(y, B) = (x, A \cup B)$. Then L is a left normal band with structure semilattice E = E(I). L is constructed in such a way that the spined product $L \otimes L^d$ of L with the dual of L will play the role of the band of idempotents in the free generalized inverse * semigroup.

Let L be the left normal band constructed above, and let I be the free inverse semigroup. Let $[L: I: L^d]$ be the quasi direct product of L, I, and L dual. Define $i: X \to [L: I: L^d]$ by $i(x) = [(x, \{x\}), \varepsilon(x), (x^{-1}, \{x^{-1}\})]$.

THEOREM 3.1. ([L: I: L^d], i) is a free generalized inverse * semigroup on the set X.

PROOF. Let T be any generalized inverse * semigroup, and let $f: X \to T$. By Theorem 2.2, there is a left normal band M and an inverse semigroup S such that $T = [M: S: M^d]$.

Since $f: X \to [M: S: M^d]$, f factors into coordinate maps, $f = (\alpha, g, \beta)$, where $\alpha, \beta: X \to M = \bigcup_{e \in E} M_e$ and $g: X \to S$. Now extend $\alpha: X \to M$ to $\alpha: Y \to M$ by $\alpha(x^{-1}) = \beta(x)$ when $x \in X$.

Since $g: X \to S$ and (I, ε) is a free inverse semigroup on X, there is a homomorphism $\phi: I \to S$ such that $\phi \circ \varepsilon = g$.

Now define a mapping $\theta: [L: I: L^d] \to [M: S: M^d]$ by

$$\theta[(x, A), (A, w), (y, A\overline{w})] = [\alpha(x)u, \phi(A, w), \alpha(y)v]$$

where $u \in M_{\phi(A,1)}$ and $v \in M_{\phi(A\bar{w},1)}$.

It must be checked, of course, that the right hand member of equation (1) actually belongs to the * semigroup $[M: S: M^d]$. To do this, it will be necessary to show that $\alpha(x)u \in M_{[\phi(A,w)][\phi(A,w)]^{-1}}$ when $u \in M_{\phi(A,1)}$, that $\alpha(y)v \in M_{[\phi(A,w)]^{-1}[M(A,w)]}$ when $v \in M_{\phi(A\overline{w},1)}$, and that the products $\alpha(x)u$, $\alpha(y)v$ are independent of the choice of u, v. Notice that $[\phi(A,w)]$ $[\phi(A,w)]^{-1} = \phi[(A,w)(A,w)^{-1}] = \phi(A,1)$ and $[\phi(A,w)]^{-1}[\phi(A,w)] = \phi[(A,w)^{-1}(A,w)] = \phi(A\overline{w},1)$. It will be shown that when $x \in A$, then $\alpha(x) \in M_e$ where $e \in E(S)$ and $e \geq \phi(A,1)$. The same argument will say that

when $y \in A\overline{w}$, then $\alpha(y) \in M_f$ where $f \in E(S)$ and $f \ge \phi(A\overline{w}, 1)$ From this will follow the desired result.

Suppose first that $x \in X$. Since $f(x) = [\alpha(x), g(x), \beta(x)] \in [L: S: L^d]$, $\alpha(x) \in M_{[g(x)][f(x)]^{-1}}$. Thus, it is enough to show that $[g(x)][g(x)]^{-1} \ge \phi(A, 1)$. From $x \in A$ follows that $(\{x\}, x)(\{x\}, x)^{-1} \ge (A, 1)$ so that $[\phi(\{x\}, x)][\phi(\{x\}, x)]^{-1} \ge \phi(A, 1)$. Thus, $[g(x)][g(x)]^{-1} \ge \phi(A, 1)$.

Now let $x = t^{-1}$ where $t \in X$. Since $f(t) = [\alpha(t), g(t), \beta(t)], \alpha(x) = \beta(t) \in M_{[g(t)]^{-1}[g(t)]}$. So, it must be shown that $[g(t)]^{-1}[g(t)] \ge \phi(A, 1)$. Now $(\{t\}, t)^{-1}(\{t\}, t) = (\{t^{-1}\}, 1) \ge (A, 1)$ so that $[\phi(\{t\}, t)]^{-1}[\phi(\{t\}, t)] \ge \phi(A, 1)$. Thus $[g(t)]^{-1}[g(t)] \ge \phi(A, 1)$ as required.

It is now routine (although tedious) to calculate that ϕ is a homomorphism and that ϕ preserves the involution *. Further, when $x \in X$ then $(\theta \circ i)(x) = \theta[(x, \{x\}), (\{x\}, x), (x^{-1}, \{x^{-1}\})] = [\alpha(x)u, \phi(\{x\}, x), \alpha(x^{-1})v] = [\alpha(x)u, g(x), \alpha(x^{-1})v]$ where $u \in M_{[g(x)][g(x)]^{-1}}$ and $v \in M_{[g(x)]^{-1}[g(x)]}$. But $\alpha(x) \in M_{[g(x)][g(x)]^{-1}}$ so that $\alpha(x)u = \alpha(x)$. Similarly, $\alpha(x^{-1})v = \alpha(x^{-1})$. Thus, $(\theta \circ i)(x) = [\alpha(x), g(x), \alpha(x^{-1})] = [\alpha(x), g(x), \beta(x)] = f(x)$ so that $\theta \circ i = f$. Finally, it is easy to see that i(X) generates $[L: L^d]$ since $\varepsilon(X)$ generates I. Thus, the homomorphism θ is unique.

COROLLARY 2.3. The band of the free generalized inverse * semigroup [L: I: L^d] is isomorphic to $\{(x, A, y) \in Y \times E \times Y: x, y \in A\}$ with multiplication $(x, A, y)(r, B, s) = (x, A \cup B, s)$.

REMARK 2.4. Suppose now that $X = \{x\}$, a singleton set. Let I be the free semigroup on X with semilattice E and let G be the free generalized inverse * semigroup on X with band B. Of course, B has E as its structure semilattice. Every maximal rectangular subband of B will have either one or four elements. To see how this works, let us take two examples of elements of E.

If $A = \{x, x^2, x^3\} \in E$, then $(A, 1) \equiv x^3x^{-3}$ in E. In B, the rectangular band at A is just $(x, A, x) \equiv x^3x^{-3}$.

Now let $C = \{x, x^2, x^3, x^{-1}, x^{-2}\}$. Then $(C, 1) \equiv (x^3x^{-3})(x^{-2}x^2)$ in E. In B, the 2 \times 2 rectangular band at A consists of

$$(x, A, x) \equiv (x^3x^{-3})(x^{-2}x^2)(x^3x^{-3})$$

$$(x, A, x^{-1}) \equiv (x^3x^{-3})(x^{-2}x^2)$$

$$(x^{-1}, A, x) \equiv (x^{-2}x^2)(x^3x^{-3})$$

$$(x^{-1}, A, x^{-1}) \equiv (x^{-2}x^2)(x^3x^{-3})(x^{-2}x^2).$$

One might wish to compare this with the band of H, where H is the free orthodox * semigroup on $X = \{x\}$. In the band of H, the sizes of the maximal rectangular subbands are unbounded [8].

4. The natural partial order. The aim of this section will be to discuss

the natural partial order on a generalized inverse semigroup T. We shall also characterize this partial order when T has an involution.

First let S be any semigroup and let E = E(S) be the set of idempotents of S. Recall that the set E has a partial order defined by $e \le f$ means e = ef = fe. In the case where S is an inverse semigroup with semilattice E the partial order on E extends to a partial order on S defined by $a \le b$ means $aa^{-1} = ba^{-1}$. This partial order is compatible with multiplication and inversion. It is equivalent to define \le by $a \le b$ means $a^{-1}a = a^{-1}b$ [2].

Now let S be any regular semigroup with set E of idempotents. The partial order on E extends to a partial order on S defined by $a \le b$ means a = eb = bf for some $e, f \in E$ [4]. This partial order \le is compatible with multiplication if and only if S is pseudo-inverse, i.e., eSe is an inverse semigroup for each $e \in E$ [6].

Generalized inverse semigroups are pseudo-inverse [6]. Thus, the natural partial order on a generalized inverse semigroup is compatible with multiplication. Let us derive an alternate characterization of \leq . In what follows, V(a) will denote the set of inverses of a.

LEMMA 4.1. [3, Lemma 2.1]. Let T be a generalized inverse semigroup and let $a, b \in T$. The following are equivalent.

- 1. There exists $e \in E(T)$ such that a = be.
- 2. For each $a' \in V(a)$, a = ba'a.

COROLLARY 4.2. Let T be a generalized inverse semigroup and let $a, b \in T$. The following are equivalent.

- 1. There exists $e \in E(T)$ such that a = be.
- 2. There exists $a' \in V(a)$ such that a = ba'a, aa' = ba'.
- 3. For each $a' \in V(a)$, a = ba'a, aa' = ba'.

PROPOSITION 4.3. Let T be a generalized inverse semigroup, The natural partial order \leq on T may be characterized by (1) $a \leq b$ means there exists $a' \in V(a)$ such that aa' = ba', a'a = a'b, or equivalently by (2) $a \leq b$ means for each $a' \in V(a)$ then aa' = ba', a'a = a'b.

REMARK 4.4. Let T be a generalized inverse semigroup, say T = [L: S: R] for a left (right) normal band L(R) and an inverse semigroup S. Let A = (a, x, b) and $B = (c, y, d) \in T$. We shall see that $A \leq B$ if and only if $a \leq c$, $x \leq y$, and $b \leq d$.

Assume first that $A \leq B$. Let $A' = (r, x^{-1}, s) \in T$. It is routine to check that $A' \in V(A)$. Now $AA' = (a, x, b)(r, x^{-1}, s) = (au, xx^{-1}, vs)$ where $u \in L_{xx^{-1}}$, $v \in R_{xx^{-1}} = (a, xx^{-1}, s)$. Also $BA' = (c, y, d)(r, x^{-1}, s) = (cU, xy^{-1}, Vs)$ where $U \in L_{(yx^{-1})(yx^{-1})^{-1}}$ and $V \in R_{(yx^{-1})^{-1}(yx^{-1})}$. Since AA' = BA', then $xx^{-1} = yx^{-1}$ and a = cY. From this follows $x \leq y$ and $a \leq c$. Similarly, A'A = A'B implies $b \leq d$.

Assume now that $a \le c$, $x \le y$, and $b \le d$. As before, let $A' = (r, x^{-1}, s) \in V(A)$. Since $x \le y$, then $xx^{-1} = yx^{-1}$. Thus BA' = (c, y, d) $(r, x^{-1}, s) = (ca, yx^{-1}, ss)$ (since $a \in L_{xx^{-1}}$ and $s \in R_{xx^{-1}}$) $= (a, xx^{-1}, s) = AA'$. Similarly, A'A = A'B.

COROLLARY 4.5. Let $(T, \cdot, *)$ be a generalized inverse * semigroup. The relation \leq defined by $a \leq b$ means $aa^* = ba^*$ and $a^*a = a^*b$ is a partial order on T which is compatible with \cdot and *, and which extends the natural partial order on E.

ACKNOWLEDGEMENT. Corollary 2.3 is due to Celia L. Adair.

REFERENCES

- 1. C.L. Adair, Varieties of * orthodox semigroups, Ph.D. Thesis, University of South Carolina (1979).
- 2. A.H. Clifford and G.B. Preston, *The Algebraic Theory of Semigroups*, II, The Amer. Math. Soc. Math. Surveys 7 (1967).
- 3. S. Madhaven, Some results on generalized inverse semigroups, Semigroup Forum 16 (1978), 355-367.
- **4.** K.S.S. Nambooripad, *The natural partial order on a regular semigroup*, Proc. Edinburgh Math. Soc., to appear.
- 5. T.E. Nordahl and H.E. Scheiblich, *Regular * semigroups*, Semigroup Forum 16 (1978), 369-377.
 - **6.** F. Pastijn, *The structure of pseudo-inverse semigroups*, preprint.
 - 7. H.E. Scheiblich, Free inverse semigroups, Proc. of the Amer. Math. Soc. 38 (1973).
- 8. —, The free elementary * orthodox semigroup, Semigroups, Academic Press (1980), 191-206.
 - **9.** ——, *Projective and injective bands with involution*, submitted.
- 10. Yamada, M., Regular semigroups whose idempotents satisfy permutation identities, Pacific Journal of Mathematics 21 (1967), 371–392.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208