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GENERALIZED INVERSE SEMIGROUPS WITH INVOLUTION
H. E. SCHEIBLICH

ABsTrRACT. This paper considers orthodox semigroups which
have a normal band and which admit a unary involution operation.
A structure theorem is proved and the free such semigroup is found.
The partial order is also considered.

1. Introduction and preliminaries. Let S be a regular semigroup. Then S
is orthodox provided the set E = E(S) of idempotents of .S is a subsemi-
group of S. Sis a generalized inverse semigroup provided S is orthodox and
the band E is normal, i.e., eghf = ehgf for all e, g, h, f € E. The structure
of all generalized inverse semigroups has been found by Yamada [10], in
terms of inverse semigroups and normal bands. Yamada’s structure
theorem will play an important role in this paper. It is described below.

In [5], the authors consider a class of unary semigroups, i.e., semigroups
which are equipped with a unary operator, x — x*. The * operator
satisfies the axioms (1) x** = x, (2) xx*x = x, and an involution axiom
(3) (xy)* = y*x*. These semigroups are called regular * semigroups.
In that same paper, a regular * semigroup S is shown to be orthodox
(FE < E) if and only if S satisfies the identity [(xx*)(yy*)(zz*)]? =
[(xx*)(yy*)(zz*)]. Thus, the class of all orthodox * semigroups forms a
variety.

In [1], it is shown that an orthodox * semigroup S is a generalized
inverse semigroup (has a normal band) if and only if S satisfies the identity
a(xx*)(x*x)b = a(x*x)(xx*)b. Thus, the generalized inverse * semigroups
form a variety.

The purpose of this note is to study generalized inverse * semigroups.
In Sections (2), (3), and (4) we shall: (2) specialize Yamada’s structure
theorem to the * case, (3) find the free generalized inverse * semigroup,
and (4) consider the natural partial order on a generalized inverse semi-

group.

2. The structure theorem. First, we will review Yamada’s structure
theorem for generalized inverse semigroups. Let S be an inverse semigroup
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with semilattice E. Let L, R be left and right normal bands, respectively,
each with structure semilattice E. Thus, L = | ),czL, and R = ) <z R,.
Now let Q =[L: S: Rl ={(a, x, b)eL x S x R: aeL,,-1 and be
R,-1,}. Define multiplication in Q by the rule (a, x, b)(c, y, d) = (au, xy,
vd) where u € L,y y-1and v e R, )11, @ is called the quasi direct
product of L, S, and R.

THEOREM 2.1. [10]. The quasi direct product [L: S: R) is a generalized
inverse semigroup. Conversely, if T is a generalized inverse semigroup, then
the mapping a — (R, a%, L,,) is an isomorphism of T onto the quasi
direct product [E(T)|%: T|% : E(T)|%].

In the second part of the theorem just stated, £(7) is the band of T,
and #, ¥ denote the usual Green’s relations on E(T). Thus, R, is the
Z class of E(T) which contains aa’ where &’ is an inverse of a. % is the
smallest inverse semigroup congruence on 7.

Let S be an inverse semigroup with semilattice E. Let L be a left normal
band with F as its structure semilattice. Let L4 be the band dual to L. Of
course, L9 is right normal and E is the structure semilattice of L. Define
the unary operation * on the quasi direct product Q = [L: S: L4] by
(a, x, b)* = (b, x71, a).

THEOREM 2.2. The quasi direct product Q = [L: S: L9 is a generalized
inverse * semigroup. Conversely, if T is a generalized inverse * semigroup,
then the mapping ¢: a > (R,,., a%, R,.,) is an isomorphism of T onto
(E(T)|%: T|% : (E(T)|%)"].

ProoF. It will be shown first that Q = [L: S: L9] is a generalized inverse
* semigroup. By Theorem 1.1, it will only be necessary to check that the
unary operation * has the required properties. Notice that with L9 in the
third coordinate, the multiplication in Q = [L: S: L4] becomes (a, x, b)
(c, y, d) = (au, xy, dv) where u € L(,)(,,y-1 and v € L(,y)-1(4y)-

It is easy to see that (a, x, b)** = (aq, x, b). Further (a, x, b)(a, x, b)* =
(a, x, b)(b, x71, a) = (au, xx~1, av) where u, v€ L, -1. Noting that L, is a
left zero semigroup for all e € E, (au, xx71, av) = (a, xx~1, a). Thus,
(a, x, b)(a, x, b)*(a, x, b) = (a, xx71, a)(a, x, b) = (au, xx~1x, bv) =
(a, x, b) since a, u € L,,-1 and b, v € L -1,. Finally, in order to compute
[(a, x, b)(c, y, d)I*, let u € L,-1 and v € L, -1,y Then [(a, x, b)
(¢, y, DI* = (au, xy, dv)* = (dv, (x»)7, au) = (d,y7, c)(b, x71,a) =
(c, y. d)*(a, x, b)*. This completes the argument that Q = [L: S: L4]is a
generalized inverse * semigroup.

Turning to the second part of the theorem, Theorem 2.1 says that the
mapping 0: a —» (R,,., a%, L,.,) is an isomorphism of T onto [E(T)/%:
T/%: E(T)| <]

Consider now the map f: L, — R, of E(T)/&¢ onto E(T)/% where p is a
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projection (p = p*) in E(T). This is a well defined map as each #[#] class
contains a unique projection [5, Theorem 2.2]. Also fis an antimorphism
since f[L,L,] = f[Lp)] = fILtpgrop) = SILgrprpd = FlLopdl = Ropy =
R,y = RR, = f(L)f(L,). Thus f isan isomorphism from E(7)/¥ onto
[E(T)/#])e. It now follows that ¢: a — (R, a%, R,,) is an isomorphism
of T onto [E(T)/%: T|#% : [E(T)/#]4]. This ismorphism ¢ also preserves *
since [@(a)]* = (Rype, A%, Rp)* = (Rpsgy (%), Ryp) = (Rpsgy a*%, R,0)
= ¢(a*).

COROLLARY 2.3. Let T be a generalized inverse semigroup. Then T admits
an involution * if and only if E(T) admits an involution *. If T admits an
involution *, it admits only one (up to isomorphism).

Proor. The uniqueness of * on 7, if it exists, follows directly from
Theorem 2.2. Suppose that E(7T) admits *. Then E(T) =~ E(T)/2®
[E(T)/#)¢, the spined product of E(T)/# with [E(T)/R]¢. This is a part
of the proof of Theorem 2.2. Alternately, it is proved directly in [9]. It
follows that T' = [L: S: L4] by Theorem 2.1. Thus T admits * by Theo-
rem 2.2,

3. The free generalized inverse * semigroup. The purpose of this section
is to give a characterization of the free generalized inverse * semigroup.
The construction depends upon the free inverse semigroup, so let us review
that construction before proceeding.

Let X be a non-empty set and let ¥ = X (J X 1. Let F be the free semi-
group on X and let G be the free group on X. Let R be the set of all reduced
words in Y (x never stands next to x~!) so that G = R {J {1} where 1 is
the empty word. For each y € Y, let j: G — G be defined by

Jl ifv=1
Wy =y lifv=y
1 y~1.v otherwise.

Forw = y1y,---y,€G,letw = y, 7, -+ y,. When 4 < G, let Aw = {aw:
ac A4}

Now let E be the set of all non-empty finite subsets of R which are closed
under the operation of taking initial segments. Let I = {(4, w) € E x G:
w € A1}. Define multiplication in 7 by (4, w)(B, v) = (4 U B(w)~1, w-v).
Then & = (I, ¢) is a free inverse semigroup on X where ¢: X — I by e(x) =
({x}, 2 7).

The idempotents of I are the sets (4, 1) where 4 € E. The idempotent
(4, 1) is used to represent the product II,., ww~l. For example, if
A ={x, xy, xz71}, then (4, 1) = (xxD)(xyyxY(xz-1zx1) = (xpy—1x1)
(xz71zx~1). Notice that in a generalized inverse semigroup where the band
is normal, these two idempotents would still commute since (xy—1yx—1)
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(xz7lzx ) = Qex D) (xylyx) (xz7lzx ) (xx1) = (xx~) (xz71zx7D)
oy lyx™) (xx71) = (xz71zx7 1) (xy~lyx—1). Of course, two idempotents
ww™l and vv~! would always commute when w and v have the same first
letter. Now let C = {x, xy, xz71, r, rs}. In an inverse semigroup, Il,.c
ww~1 would be (xyy~Ix—1)(xz~lzx 1)(rss~1r-1). However, in a generalized
inverse semigroup, these three idempotents would form four distinct
products, namely (xyy~lx—1)(xz=lzx~1) (rss~1r1), (xyy~—ix—1) (rss—1r 1)
(xz71zx71), (rss™1r71) (xyy—Ix7Y) (xz71zx7Y), and (rss—ir-1) (xyy—1lx-1)
(xz71zx~Y)(rss~1r~1). The order in which the idempotents appear really
depends only on the first letter of the first word and the last letter of
the last word.

Now let L = {(x, A) € Y x E: x € A}. Define multiplication on L by
(x, A)(y, B) = (x, A U B). Then L is a left normal band with structure
semilattice £ = E(I). L is constructed in such a way that the spined
product L ® L4 of L with the dual of L will play the role of the band of
idempotents in the free generalized inverse * semigroup.

Let L be the left normal band constructed above, and let I be the free
inverse semigroup. Let [L: I: L4] be the quasi direct product of L, I, and
L dual. Define i: X — [L: I L4] by i(x) = [(x, {x}), e(x), (x71, {x71})].

THEOREM 3.1. ([L: I: L4, i) is a free generalized inverse * semigroup on
the set X.

PRroOF. Let T be any generalized inverse * semigroup, and let f: X — T.
By Theorem 2.2, there is a left normal band M and an inverse semigroup
S such that T = [M: S: M4].

Since f: X — [M: S: M4, f factors into coordinate maps, f = (a, g, f),
where @, f: X > M = |J),cgM, and g: X —» S. Now extend a: X - M
to a: Y > M by a(x1) = f(x) when x € X.

Since g: X — S and (J, ¢) is a free inverse semigroup on X, thereisa
homomorphism ¢: I — S such that o e = g.

Now define a mapping 0: [L: I: L] — [M: S: M4] by

0l(x, A), (4, w), (v, AW)] = [a(X)u, (4, w), a(y)V]

where u € My, 1y and v e My 4z 1)

It must be checked, of course, that the right hand member of equation
(1) actually belongs to the * semigroup [M: S: M4]. To do this, it will be
necessary to show that a(x)u € Miya wyreca,wn-1 When u € My, 1), that
a(¥)V € My, w1004, When v € My 4z 1), and that the products a(x)u,
a(y)v are independent of the choice of u, v. Notice that [¢(4, w)]
[¢(A, w)]"1 = ¢[(4, w)(4, w)Tl] = ¢(A1 1) and [¢(A’ w)]_l[¢(A’ w)] =
Bl(4,w)"1(A4, w)] = ¢(Aw, 1). It will be shown that when x € 4, then a(x)
€ M, where e € E(S) and e 2 ¢(4, 1). The same argument will say that
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when y € 4w, then a(y) € M, where f € E(S) and f = ¢(4w, 1) From
this will follow the desired result.

Suppose first that x € X. Since f(x) = [a(x), g(x), f(x)] e[L: S: L4],
a(x) € Migorsir-1- Thus, it is enough to show that [g(x)][g(x)]! =
#(4, 1). From x € A follows that ({x}, x)({x}, x)=1 = (4, 1) so that
[6({x}, UG}, DI 2 §(4, 1). Thus, [ENI = ¢4, 1).

Now let x = ¢~! where t € X. Since f() = [a(?), g(¢), f(t)], a(x) = B(t) €
M y1-10g¢0- S0, it must be shown that [g(1)]"Y[g(r)] = $(4, 1). Now
{t}, 7({t}, ) = ({t71}, 1) Z (4, 1) so that [¢({r}, O [({t}, )] 2
é(4, 1). Thus [g(1)]g(z)] = ¢(4, 1) as required.

It is now routine (although tedious) to calculate that ¢ is a homomor-
phism and that ¢ preserves the involution *. Further, when x € X then
(0 0 )(x) = 61Cx, {x)), ((x}, ), (L, {x1D)] = [, $({x}, X), alxv] =
[a(x)u, g(x), a(x1)v] where u € Miy(yyp-1 and v € Miy(y 15000 But
a(x) € Mi (yipe1-1 0 that a(x)u = a (x). Similarly, a(x1)y = a(xD).
Thus, (00 1)(x) = [a(x), g(x), a(x1)] = [a(x), g(x), A(x)] = f(x) so that
0 o i = f. Finally, it is easy to see that i(X) generates [L: I: L4] since &(X)
generates I. Thus, the homomorphism 6 is unique.

COROLLARY 2.3. The band of the free generalized inverse * semigroup
[L: I: L4] is isomorphic to {(x, A, y) € Y x E x Y: x, y € A} with multi-
plication (x, A, y)(r, B, s) = (x, A |J B, s).

REMARK 2.4. Suppose now that X = {x}, a singleton set. Let / be the
free semigroup on X with semilattice £ and let G be the free generalized
inverse * semigroup on X with band B. Of course, B has F as its structure
semilattice. Every maximal rectangular subband of B will have either one
or four elements. To see how this works, let us take two examples of
elements of E.

If A = {x, x2, x3} € E, then (4, 1) = x3x~3 in E. In B, the rectangular
band at A4 is just (x, 4, x) = x3x3.

Now let C = {x, x2, x3, x71, x~2}. Then (C, 1) = (x3x3)(x2x2) in E.
In B, the 2 x 2 rectangular band at A consists of

(x, 4, x) = (x3x3)(x2x2)(x3x73)
(x, A, x71) = (x3x73)(x2x2)
(x71, 4, x) = (x"2x2)(x3x73)
(x71, 4, x7 1) = (x2x2)(x3x3)(x2x2).
One might wish to compare this with the band of H, where H is the

free orthodox * semigroup on X = {x}. In the band of H, the sizes of the
maximal rectangular subbands are unbounded [8].

4. The natural partial order. The aim of this section will be to discuss
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the natural partial order on a generalized inverse semigroup 7. We shall
also characterize this partial order when T has an involution.

First let S be any semigroup and let E = E(S) be the set of idempotents
of S. Recall that the set E has a partial order defined by e £ fmeans e =
ef = fe. In the case where S is an inverse semigroup with semilattice E
the partial order on E extends to a partial order on S defined by a < b
means aa~! = ba~l. This partial order is compatible with multiplication
and inversion. It is equivalent to define < by a < bmeans ala = a~b
[2].

Now let S be any regular semigroup with set E of idempotents. The
partial order on E extends to a partial order on S defined by a £ b means
a = eb = bf for some e, f € E [4]. This partial order £ is compatible with
multiplication if and only if S is pseudo-inverse, i.e., eSe is an inverse
semigroup for each e € E [6)].

Generalized inverse semigroups are pseudo-inverse [6]. Thus, the natural
partial order on a generalized inverse semigroup is compatible with
multiplication. Let us derive an alternate characterization of <. In what
follows, V(a) will denote the set of inverses of a.

LemMA 4.1. [3, Lemma 2.1]. Let T be a generalized inverse semigroup
and let a, b € T. The following are equivalent.

1. There exists e € E(T) such that a = be.

2. For each a’' € V(a), a = ba'a.

COROLLARY 4.2. Let T be a generalized inverse semigroup andlet a, b e T.
The following are equivalent.

1. There exists e € E(T) such that a = be.

2. There exists a’ € V(a) such that @ = ba’a, aa’ = ba'.

3. For each a’' € V(a), a = ba'a, aa’ = ba'.

PROPOSITION 4.3. Let T be a generalized inverse semigroup, The natural
partial order < on T may be characterized by (1) a < b means there exists
a' € V(a) such that aa’ = ba', a'a = a'b, or equivalently by (2) a < b
means for each a' € V(a) then aa’ = ba', a'a = a'b.

REMARK 4.4. Let T be a generalized inverse semigroup, say T =
[L: S: R] for a left (right) normal band L(R) and an inverse semigroup
S. Let A =(a, x, b)and B = (c, y, d) e T. We shall see that 4 < B if
andonlyifa < ¢, x £ y,and b £ d.

Assume first that 4 < B. Let A’ = (r, x1, s) e T. It is routine to check
that A’ € V(A4). Now AA' = (a, x, b)(r, x71, 5) = (au, xx71, vs) where
ueL, -1, veR,-1 = (a, xx71, 5). Also BA' = (c, y, d)(r, x71,5) =
(cU, xy71, Vs) where U € Li,-1yqe-1y-1and V € Riyu-1)-1(54-1). Since
AA" = BA', then xx~1 = yx~l and a = c¢Y. From this follows x < y and
a £ c. Similarly, A’A = A’'B implies b < d.
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Assume now that a < ¢, x £y, and b < d. As before, let 4" =
(r, x71, s) € V(A). Since x < y, then xx~! = yx~1. Thus BA’ = (¢, y,d)
(r,x7Y,5) = (ca, yx71,ss) (since ae L, and se R,,-1) = (a,xx71,5) =
AA'. Similarly, 4’4 = A4'B.

COROLLARY 4.5. Let (T, -, *) be a generalized inverse * semigroup. The
relation £ defined by a £ b means aa* = ba* and a*a = a*b is a partial
order on T which is compatible with - and *, and which extends the natural
partial order on E.
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