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ASYMPTOTIC STABILITY OF A COUPLED DIFFUSION 
SYSTEM ARISING FROM GAS-LIQUID REACTIONS 

C.V. PAO 

ABSTRACT. This paper is concerned with the asymptotic behavior 
of the time dependent solution in relation to the corresponding 
steady-state solution for a nonlinear coupled reaction-diffusion 
system arising from gas-liquid absorption. Existence and unique
ness of both time-dependent and steady-state solutions are dis
cussed, and various boundary conditions are included in the 
discussion. It is shown in the case of a homogeneous system 
that for any non-negative initial function the time dependent solu
tion converges exponentially to zero as t -• oo when the boundary 
condition is of either Dirichlet or mixed type. However, for Neu
mann type boundary condition, multiple constant steady-state 
solutions exist and the time-dependent solution may converge 
to any one of these steady-states. Depending on the relative magni
tude between the initial functions, convergence of the time-depen
dent solution to one of these constant states is explicitly given. 
For a nonhomogeneous system with nonzero boundary or internal 
data the convergence of the time-dependent solutions also depends 
on the relative magnitude between the components of the steady-
state solution. A characterization of the stability and instability 
of a steady-state solution is established, and in the case of stability 
an estimate of the stability region is given. 

1. Introduction. In the theory of a gas-liquid diffusion reaction system 
in a /^-dimensional medium Q the concentration of the dissolved gas 
u = u(t, x) and the reactant v = v(t9 x) are governed by the coupled 
reaction-diffusion equations (cf. [2-4, 6, 12]) 

ut — Diâu = — kxuv 
(1.0) (t>0,xeQ) 

vt — D2Av = —k2uv 

where A is the Laplacian operator, DÌ9 D2 are the diffusion coefficients, 
k\9 k2 are the reaction rate constants and r{ = —k-uv represent the rate 
of reactions. A more general reaction rate is given by 

rx(w, v) = — kxu
mvm\ r2(u9 v) = —k2u

nvn' 

and is called the (m, n)th order reaction (cf. [4]). Motivated by the above 
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gas-liquid models we consider a more general coupled reaction-diffusion 
system in the form 

ut — L\u — —fi(t, x, u, v) 
(1.1) (t>09xeQ), 

vt - L2v = -f2(t, x, u, v) 

where Q is a bounded domain in the Euclidean space Rp(p = 1, 2, . . . ) , 
fl9 f2 are continuous functions of R+ x Q x R+ x R+ (R+ = [0, oo)), 
and for each / = 1,2, L{ is a uniformly elliptic operator in the form 

Li = S ai/(x)d2/dxkdx/ + £ b%x)dldx/. 
k,/=\ / = i 

On the boundary surface dQ and at time / = 0we consider the following 
mixed boundary condition 

(ßi(x)du/dv + u = hx(x) ( / > 0 , i e rx) 
BM = 

[du/dv = 0 (t >0,xedQ -Ti) 
(1.2) 

(ß2(x)dvldv + v = h2(x) (t > 0, x e F2) 
B2[v] = 

[9v/3v = 0 (/ > 0, x G dQ - F2) 

and the initial condition 

(1.3) w(0, x) = u0(x), v(0, x) = v0(x) (x e Û), 

where Fi9 F2 are portions of the boundary dû, v is the outward normal 
(or conormal) derivative on F\ orF2 and ßl9 ß2 are non-negative functions 
on Fi, F2, respectively. The surface Fi or F2(or both) is allowed to be the 
whole boundary dQ but we assume that neither of them is empty. The 
pure Neumann-type boundary condition (i.e., both F\, F2 are empty) 

(1.4) dujdv = dvldv = 0 (/ > 0, x e dQ) 

will be given special attention. The consideration of the boundary condi
tion (1.2) is motivated by the physical situation which often involves vari
ous mixed type boundary conditions, including the present gas-liquid 
problem. An important example is the one-dimensional gas-liquid absorp
tion problem considered in [4] where the boundary condition is given by 

(1.5) u(t, 0) = u(t, /) = 0, vx(t, 0) = 0, v(/, 0) = fc0 (*o > 0). 

A different nonhomogeneous boundary condition was considered in 
[2, 6]. In the present boundary condition (1.2) the values of ßi, ß2 are 
allowed to be zero on part or the whole of F{ so that (1.2) includes the 
Dirichlet or a combination of Dirichlet, Neumann and third type boundary 
conditions. 
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The model given by (1.0) was investigated by a number of researches in 
recent years (cf. [2-4, 6, 9, 12]). The work in [3, 6] gives some results on 
the asymptotic behavior of the solution under a Dirichlet type boundary 
condition. The more general (m, n)-th order reaction model was discussed 
in [4] in relation to the film model in gas-liquid absorption. The main 
purpose of this paper is to investigate the asymptotic behavior of the 
time-dependent solution of the gas-liquid problem in relation to the cor
responding steady-state solution. Special attention is given to the model 
(1.0) under the Neumann boundary condition (1.4). A comparison be
tween the two types of boundary conditions (1.2) and (1.4) exhibits some 
rather different asymptotic behavior of the solution. Existence and uni
queness of both time-dependent and steady-state solutions are included 
in the discussion. Our investigation of the stability problem also includes 
some explicit estimates for the stability and the instability regions of a 
steady-state solution. Here the definition of stability and instability is in 
the usual sense of Lyapunov in the space of continuous functions in Q. 
It turns out that the estimated stability region is also an invariant set of 
the system. 

In §2 we investigate the asymptotic behavior of the solution for the 
gas-liquid model (1.0) under the homogeneous boundary condition (1.2) 
and (1.4). It is shown that for the Neumann boundary condition (1.4), the 
time-dependent solution converges to one of the steady-state solutions in 
the form (0, c{) or (c2, 0), and the value of cx or c2 depends explicitly on 
the relative magnitude of the spatial averages of the initial functions w0, v0. 
The convergence of the solution is usually at an exponential rate, but in 
certain special situations it converges at the rate 0{\jt). However, for a 
Dirichlet or mixed boundary condition the time-dependent solution always 
converges to zero exponentially, and independently of the initial func
tion. In §3, we establish an existence-comparison theorem, in terms of 
upper and lower solutions, for the general system (1.1)—(1.3) using mono
tone arguments. This theorem not only leads to some information con
cerning the existence and the rate of convergence of the time-dependent 
solution, but more importantly it is the main tool in establishing the 
stability and instability criteria for the steady-state solutions of certain 
nonhomogeneous systems. §4 is devoted to such a nonhomogeneous sys
tem in relation to the gas-liquid problem. Here we prove the existence of 
a non-negative steady-state solution and establish conditions for ensuring 
the stability and instability of this solution. These conditions characterize 
the asymptotic behavior of the time-dependent solution under initial 
perturbations from a given steady-state solution. 

2. The homogeneous gas-liquid problem. In this section we investigate the 
asymptotic behavior of the solution for the gas-liquid equation (1.0) under 
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either the homogeneous boundary condition (1.2) (i.e., hi = h2 = 0) or 
the Neumann boundary condition (1.4). Due to the distinct behavior of 
the solution under these two types of boundary conditions it becomes 
necessary to treat these systems by different arguments. We first discuss 
the Neumann boundary problem. 

For the Neumann problem (1.0) (1.3) (1.4) there are infinitely many 
constant steady-state solutions in the form (cl5 0), (0, c2), where ch c2 

are arbitrary constants. An interesting and delicate question about this 
system is whether the time-dependent solution converges to one of these 
constant solutions, and if it does to which one it converges. We shall 
answer this question in the affirmative and show that the limit of the 
solution depends solely on the relative magnitude of the spatial "averages" 
ÛQ, V0, where 

" o = l Uo(x)dx, v0 = | v0(x)dx. 
Jo Jo 

In the following theorem we assume that the system (1.0)(1.3)(1.4) has a 
unique non-negative solution. The existence of such a solution will be 
justified in the next section. 

THEOREM 2.1. Let kx > 0, k2 > 0, uQ ^ 0, v0 ^ 0, and let (u, v) be the 

non-negative solution of (Ì.0), (1.3), (1.4). Then for ki% ^ k2u0, the solution 
(w, v) satisfies the relation 

(2.1) lim u(t, x) = 0, lim v(t, x) = v0 — (Â;2/&i)w0; (x e Q) 

while for k^Q ^ k2û0, 

(2.2) lim u(t, x) = ÛQ — (kJk^VQ, lim v(t, x) = 0. (x G Q) 

PROOF. By integrating (1.0) over Q, applying the divergence theorem and 
using the boundary condition (1.4) we obtain 

(2.3) u' — —kxuv, v' = —k2uv (ûf = dû/dt, etc) 

where uv = m{Q)~l \Q uvdx. These equations imply that w, vare monotone 
nonincreasing and 

(2.4) kxv — k2u = k^Q — k2u0 = const. (/ ^ 0) 

It follows from the non-negative property of the solution that u, v must 
approach some limits u^, Voo as t -> oo. We first show that u(t, x) -> u^, 
v(t, x) -+ Voo as t -> oo. 

Let q(t, x) = -k2(uv - uv), V0(x) = v0(x) - v0, and consider the 
linear system 
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Vt - D2A
2V = q(t9 x) (t > 0, x G Q) 

(2.5) 3F/3v = 0 ( / > 0, x e 3D) 

K(0,JC) = K0(JC) (xeû) 

Then by the principle of superposition we may write V = Vx + K2, where 
Ki, V2 are solutions of (2.5) corresponding to V0 and #, respectively. Notice 
that J0 F0dx = §0 #(*, x)öfx = 0 and dqldv = 0 for all t ^ 0. By eigenfunc-
tion expansion, the solutions Kf- may be written as 

oo 

(2.6) F, = 2 a?(t)<f>j(x), i = 1, 2, 

where ^y 's are the (normalized) eigenfunctions of the operator D2V
2 under 

the Neumann boundary condition. For i = 1 (q = 0), the Fourier coef
ficients <x̂ } are given by a(p = cyexp( —^,0 where /iy are the eigenvalues 
corresponding to fa and Cj = JoKo^y dx. Since c0 = §QV0dx = 0, /l0 = 0, 
/l„ > 0 for n = 1, 2, . . . , it follows from (2.6) that V^t, x) -> 0 as f -> oo. 
For i = 2 (F0 = 0) the functions a(/} are determined from the Cauchy 
problem 

(2.7) (o f ) ' + Xjccf = Tj(tl a/0) = 0, y = 1, 2, . . . , 

where 7-/s are the Fourier coefficients of q given by 

r / 0 = I q(t> x)<f>j(x)dx, j = o, i, 2, .... 

Since T'o = 0 and fj(t) -> 0 as t -» oo the solution a^} of (2.7) satisfies 
the relation a0 = 0 and ay(f) -» 0 as t -• oo. By (2.6), V2(t, x) -+ 0 and 
therefore V(t, x) -+ 0 as / -> oo. But by uniqueness, the solution F of 
(2.5) coincides with v — v; we conclude that lim v(t9 x) = Voo as / -» oo. 
A similar argument gives w(J, x) -> w^ as ? -» oo. The above result implies 
that uv -> m(Q)u00v00 as / -> oo. It follows from 

lim I uv{z)dz = &5T1 lim (w0 — u(0) = ^(ÛQ — wœ) 
£-•00 J 0 f-»oo 

that WooVoo = 0, that is, either Wco = 0 or v^ = 0 (or both). Since by (2.4), 
&1V00 — A:2Woo = kiv0 — k2ûQ, we conclude that Uoo = 0, Voo = v0 — 
(k^k^ûo when kx% - k2u0 ^ 0, and Voo = 0, u^ = u0 - {kijk^v^ 
when kiVQ — k2û0 ^ 0. The results of (2.1) and (2.2) follow immediately 
from u(t, x) -> Woo, v(r, x) -» Vco as / -» oo. 

We next consider (1.0) under the Dirichlet or the mixed boundary 
condition (1.2). It is well-known that for any non-negative initial function 
there exists a constant p( ^ 0 such that the solution u£ of the linear scalar 
system 
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(2.8) (ut)t - LiUi = 0, BM = 0 (/ = 1, 2) 

satisfies the relation 0 ^ u{(t, x) ^ p{ exp( — À^t), where Xt- is the least 
eigenvalue of the eigenvalue problem 

(2.9) Lfa + \%4i = 0, Bt{fr] = 0 (i = 1, 2) 

(e.g., see [11]). The value of Ài is real, positive and its corresponding eigen-
function (j)i is also positive in Q (cf. [13]). Now if (u, v) is a nonnegative 
solution of (1.1)—(1.3), then 

(2.10) ut - Lxu ^ 0, B^u] = 0 and vt - L2v ^ 0, B2[v] = 0. 

By the maximum principle the above relations imply that u ^ w1? v ^ u2. 
For comparison purposes we state this as the following theorem. 

THEOREM 2.2. Let kx > 0, k2 > 0, w0 ^ 0, v0 ^ 0 and let (u, v) be the 

non-negative solution Ö/ (1 .0) (1 .2) (1 .3) . Then there exist positive constants 
pi, p2 such that 

(2.11) 0 ^ u(t, x) g pxe-^, 0 ^ v(f, x) ^ p2e~x* (t > 0, x G Q) 

where X\, X2 are the respective least eigenvalues of (2.9). 

REMARK 2.1. It is easily seen from the above argument that the result 
of Theorem 2.2 also holds for the general system (1.1)—(1.3) when^-(/, x, 
u, v) ^ 0 for u ^ 0, v ̂  0 0" = 1, 2). In particular, this is the case for the 
(m, «)-th order reaction model where/! = k1u

mvm',f2 = k2u
mvn'. 

It is seen from Theorems 2.1 and 2.2 that a change of boundary condi
tion from Neumann type to Dirichlet or mixed type leads to rather dif
ferent asymptotic behavior of the solution. In the latter situation, whether 
Dirichlet or mixed type, the zero steady-state solution is always globally 
asymptotically stable; while in the former case it may not even be locally 
asymptotically stable. It is interesting to note that in the special case of 
constant initial condition u0 = A0, v0 = B0

 t n e solution (u, v) does con
verge to zero when kiB0 = k2A0 but its rate of convergence is of order 
o(\jt). This fact together with the existence of a non-negative solution to 
the system (1.0)(1.2)(1.3) (and (1.0)(1.3)(1.4)) will be justified in the next 
section. 

3. An existence-comparison theorem. In order to study the qualitative 
property of the solution of the gas-liquid problem with nonhomogeneous 
input data we first establish an existence-comparison theorem for the 
general system (1.1)—(1.3) using monotone arguments and the notion of 
upper and lower solutions. This approach is constructive and can be 
used to obtain similar existence-comparison theorems for the correspond
ing steady-state problem without any complication. In developing these 
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theorems we make the usual Holder continuity assumption on the 
coefficients of Li9 the boundary and initial data ßi9 hi9 u0, v0, and the 
functions f{ in their respective domains. It is also assumed that ßi9 hi9 

UQ, VQ are non-negative and the boundary of Q is smooth. 
Motivated by the gas-liquid reaction model we make the following 

quasi-monotone assumption on fl9f2: 

(H) For each u ^ 0, / i(- , w, v) is monotone nondecreasing in v = 0; 
and for each v ^ 0,/2(-, w, v) is monotone nondecreasing in u ^ 0. 

The above hypothesis implies that the functions ( - / Ì ) and (-f2) on 
the right-side of (1.1) are monotone nonincreasing in v and u, respectively. 
In order to use the monotone method to establish an existence theorem 
for the system (1.1)—(1.3), however, it is essential that (— fx) and (—f2) 
are quasi-monotone nondecreasing rather than nonincreasing. To over
come this difficulty, we make a transformation for u by letting w = M0 — 
u. Then the system (1.1)—(1.3) is transformed into the form 

wt — LiW = Fi(t, x9 w9 v) 
(3.1) (* > 0, xeO) 

vt - L2v = -F2(t, x, w, v) 

(3.2) Bx[w] = M0 - hl9 B2[v] = h2 (t > 0, JC e 30) 

(3.3) w(09 x) = M0 - u0(x), V(0, X) = v0(x) (X e Q) 

where 

(3.4) Ft{t9 x9 w9 v) = y;.(r, x, M0 - w, v) i = l , 2. 

The expression ^2tvJ = ^2 represents the boundary condition in (1.2) for 
v while Bi[w] = MQ — hi is in the sense that 

(3.5) ßi(x)dw/dv + w = MQ — hx for x er1 and dw/dv 

= 0 for x e 3Û - A 

For the Neumann boundary condition (1.4), (3.2) should be replaced by 

(3.6) dw/fo = dvldv = 0 (t > 0, x e dû). 

With this transformation the functions Fl9 ( — F2) are quasi-monotone 
nondecreasing for 0 ^ w ^ M0, v = 0. 

Following the same idea as in [1, 10, 11, 14] for scalar systems we can 
obtain an existence-comparison theorem for the transformed problem 
(3.1)—(3.3) in terms of upper and lower solutions. Here by an upper 
solution of (3.1)—(3.3) we mean a pair of smooth functions (w, v) satisfying 
the inequalities 
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(3.7) 

wt - Lxw ^ Fi(t, x, w,v) 
(t > 0, x G Q) 

vt - L2v ^ - F2(t, x, w, v) 

B[xw] ^ M0 - Ai, B2[v] ^ h2 (t > 0, x e 30) 

w(0, x) ^ M0 - w0, v(0> x) ;> v0 (xefl) . 

Similarly, the pair (w, v) is a lower solution if it satisfies the reversed 
inequalities in (3.7). Suppose that 0 = (w, v), U = (w, v) are upper and 
lower solutions of (3.1)—(3.3) such that 0 S w ^ w ^ M0, 0 ^ y ^ v ^ 
p0, where M0, p0 are some given positive constants. Assume that there 
exist constants M{ > 0 such that 

(3.8) \f(t, x, u2, v2) - fit, x, ul9 vi) | ^ M{(\u2 - wil + |v2 - Vii) 

for 0 ^ u{ ^ M0, 0 ^ vf- ^ po ^ = U 2. Then starting from the initial 
iteration Ui0) = Ü we can construct a sequence {Ï7a)} = {w(k\ v(Ä)}from 
the uncoupled linear system for k = 1, 2, . . . 

w j a - L i W ^ + Mxw^ = M1w
(*~1) +Fi(/,^,w(*-1),v<*-1)), 

VU) _ ^2V(*) + M 2 V ( ^ = M2v<*~1) - F2(f,*, w(*-!>, v^-u), 

J?[w<*>] = M0 - /ii, B[v^] = h29 

w<»(0, x) = M0 - w0, v<»(0, x) = v0. 

(3.9) 

The existence of such a sequence follows from the existence theorem for 
linear scalar parabolic system (cf. [5]). Similarly, we can obtain a sequence 
from (3.9) with U(0) = U, and denote this sequence by {U(k)} = {w{k\ 
v{k)}. It is easily seen by a standard argument that these two sequences 
possess the following monotone properties: (i) {U(k)} is monotone non-
increasing, (ii) {U(k)} is monotone nondecreasing, and (iii) U{k) ^ U{k) 

for every k = 1, 2, . . . . These monotone properties lead immediately 
to the following theorem which is our basis for the investigation of the 
asymptotic behavior of the solution. 

THEOREM 3.1. Let (w9 v), (w9 V) be upper and lower solutions of (3.1)-
(3.3) such that 0 ^ w S w S M0. 0 ^ v ^ v ^ pQ, and let (HJand (3.8) 
hold. Then the sequence {Uik)} obtained from (3.9) with Um = 0 converges 
from above to a unique solution U = (w, v) of (3.1)—(3.3), while the sequence 
{U{k)} with Um = U converges from below to U. Moreover, the solution 
(w, v) satisfies the relation 

(3.10) O ^ W ^ W ^ W ^ M Q , O^v^v^v^po (t > 0, xeQ) 

PROOF. The proof for the existence of a solution follows from the 
same argument as for scalar system using the quasi-monotone property 
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of Fi (cf [10, 11]). The uniqueness of the solution is a direct consequence 
of the Lipschitz condition (3.8). Details are omitted. 

REMARK 3.1. A number of existence-comparison theorems for weakly 
coupled parabolic systems have been known and can be established by 
various methods. Some examples are the work by Kuiper [8] using a 
functional analytic approach, and by Bebernes, Chueh and Fulks [3] in 
connection with invariance sets. However, the present monotone argument 
is more constructive and provides a simpler and straightforward proof. 
Furthermore, the same approach can be used to obtain a similar existence-
comparison theorem for the corresponding elliptic boundary-value 
problems simply by dropping the terms (wt, vt) and the initial conditions. 
This kind of boundary-value problem will be discussed in a later section 
when dealing with the existence and stability of a steady-state solution. 

It is seen from Theorem 3.1 that if there exist upper and lower solutions 
(#, v), (H% V) of the transformed system (3.1)—(3.3) such that 

(3.11) 0 â i f â ^ I 0 , 0 ^ v ^ v ^ Po, 

then by the transformation u = M0 — w the original system (1.1)—(1.3) 
has a unique solution (w, v) whcih satisfies the relation 

(3.12) 0 S M0 - w ^ u ^ M0 - w ^ M0, 0^v^v^v^p0. 

Hence the existence and the asymptotic behavior of a solution for the 
system (1.1)—(1.3) can be determined through the construction of suitable 
upper and lower solutions for the transformed system (3.1)—(3.3). Since 
the only requirements on upper and lower solutions are the inequalities 
(and the reversed inequalities) in (3.7), it gives considerable flexibility in 
the construction of these functions. Consider, for example, the case 
fi = k-uv and h{ = 0, / = 1,2. Then for any constants pi ^ u0, p0 ^ v0 

and M0 ^ px the constant functions (w, V) = (M0, po) a n d (w, v) = (M0 — 
ph 0) are upper and lower solutions and satisfy the relation (3.11). This 
can be verified by direct substitution into the respective inequalities in 
(3.7). Since/! and/2 satisfy the conditions in (H) and (3.8), Theorem 3.1 
ensures the existence of a unique solution (w, v) to the original system 
(1.0) (1.2) (1.3) such that 

(3.13) 0 g u(U x) Û pi, 0 ^ v(t, x) g p0 (t > 0, x e Q). 

The same conclusion holds for the system (1.0) (1.3) (1.4). This existence 
result has been used in Theorems 2.1 and 2.2. It is to be noted that the 
relation (3.13) implies that the zero steady-state solution of the Neumann 
problem (1.0) (1.3) (1.4) is stable (but it is not asymptotically stable). 

As another application of Theorem 3.1 we consider the general equation 
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(1.1) under the Neumann condition (1.4). In this situation, upper and 
lower solutions of (1.1) (1.3) (1.4) can be obtained from the solution of 
the corresponding ordinary differential system 

(3.14) P[ = -Mt, Pl9 P2\ P'2 = -f2(t, Ph P2) 

(3.15) P[ = -Mt, Pl9 P2), P2 = -f2(t, Pi, P2) 

where f, f{ denote, respectively, the supremum and infimum of f over Q. 
It turns out that the behavior of the solution of (1.1) (1.3) (1.4) is directly 
related to the property of the solutions of (3.14), (3.15). Specifically, we 
have the following theorem. 

THEOREM 3.2. Letfl9 f2 satisfy (HJ and (3.7) and let (Pl9 P2), (Pl9 P2) 
by any solutions o/(3.14), (3.15), respectively, such that Px(t) ^ Pi(t) ^ 
M0, P2{f) g P2(t), where Px(0) S u0(x) ^ A(0), P2(0) ^ v0(x) g P2(0) 
for xeQ. Then the system (1.1) (1.3) (1.4) has a unique solution (u, v) such 
that 

(3.16) Px(t) S u(t, x) ^ P^t), P2(t) S v(t, x) ^ P2(t) (t > 0, x e Q) 

PROOF. TO prove the theorem, it suffices to show that the transformed 
system (3.1) (3.3) (3.6) has a unique solution (w, v) such that 

M0 - Px(t) ^ w(t, x)^M0- Px(t), P2(t) g v(t, x) ^ P2(t) 

where MQ ^ Pi(t). This will be done if we can show that the pairs 
(w9 y) = (M0 - Pl9 P2) and (w, v) = (M0 — Pl9 P2) are upper and lower 
solutions of the transformed system, respectively. Since dw/dv = dv/dv = 
0, we see from the hypothesis on u0, v0 that the boundary and initial 
requirements are fulfilled. Hence (vv, v) is an upper solution if Pl9 P2 

satisfy the relation 

(3.17) -P{ ^ F1(t, x, M0 - Pl9 P2\ P2 ^ -F2(t, x, M0 - Pl9 P2). 

In view of (3.4) the above relation is equivalent to 

P[ ^ -Mt, x, Pl9 P2), P2 ^ -f2(t, x, Pl9 P2) 

which is clearly satisfied by the solution of (3.14). The proof of the lower 
solution (w9 v) is similar. 

The result of Theorem 3.2 can be used to establish the rate of conver
gence of the solution of the system (1.0) (1.3) (1.4). For convenience, we 
denote by w0, v0 and u0, v0 the respective least upper bound and greatest 
lower bound of w0, v0. 

THEOREM 3.3. Let (u9 v) be the solution o/(1.0) (1.3) (1.4). Then (i) (u, v) 
coneverges exponentially to (0, Voo) with vœ = v0 — (k^k^UQ when kiVQ > 
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k2ü0, and in the order no less than o(l/t)when k^Q = k2ü0; (ii) (w, v) con
verges exponentially to {u^ o) with u^ = u0 — (ki/k2)vo when k2u0 > kiv0 

and in the order no less than o(\/t) when k2u0 = kiv0; and (iii) (w, v) con
verges to(o9 o) in the order o(l/t) when w0, v0 are constants andk2u0 — kxv0. 

PROOF, (i) When fx = k\uv, f2 = k2uv, the ordinary differential system 
(3.14) and (3.15) are both reduced to the form 

(3.18) P[ = -kxPxP2 P2 = -k2PxP2. 

The solution of this system is given by (/ > 0) 

Pi(t) = CP1(0)[A:1/>2(0)e« _ ^ ( O ) ] - ! 

P2(t) = CP2(0)[k1P2(0) - k2P1(0)e-cq^ 

when C = k^iO) - k^^O) ¥= 0. In the case of C = 0 this solution 
becomes 

Pi(t) = Pi(0)[i + ^iCO)/]"1 , 

/WO = P2(0)[i + hPMtrK 

Let (Pl9 P2) and (A, A?) be the solution of (3.18) withP^O) = 0, P2(0) = 
VQ and Px(0) = w0, ^2(0) = Vo- Then Theorem 3.2 ensures that 

(3.21) 0 g u(U x) ^ Px(tl P2(t) ^ v(t, x) ^ v0. 

In view of (3.19) and (3.20), u converges to zero exponentially as t -» 00 
when k^Q — k2ü0 > 0, and in the order no less than o(l/r)when k^ — 
k2ü0 = 0. The same is true for the function q = uv — uv since v is uni
formly bounded. From the proof of Theorem 2.1 it follows that the 
solution V of the linear problem (2.5) converges to zero in the same 
fashion as u and so does v -> Voo as t -» 00. This proves (i). The proof of 
(ii) is similar. When w0, v0 are constants and k2u0 = /qvo, then (w, v) 
coincides with the functions in (3.20). This leads to the conclusion in (iii). 

4. A non-homogeneous system. The equations considered in (1.0) and 
the boundary condition (1.2) are homogeneous so that the zero function 
is a steady-state solution. In many concrete physical systems, however, 
there is either an internal source or a boundary input, (e.g., see [2-4]). 
In such a system nontrivial steady-state solutions exist and the asymp
totic behavior of the time-dependent solution depends not only on the 
strength of the reaction function and the initial function but also on the 
steady-state solution itself. The aim of this section is to study the existence 
and the stability or instability property of a non-zero steady-state solu
tion. To avoid a list of general hypotheses for the system (1.1)—(1.3) we 
limit our discussion to the following simple gas-liquid absorption problem : 
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ut - Lxu = -kxuv + qx(x) 
(4.1) (t > 0, xeQ) 

vt - L2v = -k2uv + #2(*) 

(4.2) ÄiM = A^x), £2[v] = h2(x) (t > 0,xe9Ö) 

(4.3) i/(0, x) = i/0(x), v(0, x) = v0(x) (x e 0) 

where for each 7 = 1 , 2 , /:,- is a positive constant and #,-, A,- are external 
sources which are assumed non-negative continuous in Q and dû respec
tively. In (4.2) the boundary condition B;[w] = Af- means that ßßwjdv + 
w = hi on T7,- and ôwjdv = 0 on 3fl — TV The consideration of this 
type of boundary conditions is to make our results directly applicable 
to the systems discussed in [2-4, 6, 12]. Our first objective is to establish 
the existence (and uniqueness) of a nonnegative steady-state solution 
for (4.1) (4.2). This question of existence-uniqueness has been discussed 
in [6] for a Dirichlet type boundary condition without the source term 
q{. In this paper, however, we shall use the notion of upper and lower 
solutions for elliptic systems in proving the existence theorem (e.g., see 
[7, 14, 15]). As is to be expected, this approach also leads to an upper 
and a lower bound of the steady-state solution which is useful in the 
study of its stability property. To achieve this goal for the steady-state 
problem (4.1) (4.2), we again make the transformation w = M0 — u 
as in §3. Then by dropping the terms ut, vt in (4.1) the transformed 
steady-state problem becomes 

-Lxw = k^Mo - w)v - q1 
(4.4.) (x e Q) 

-L2v = -k2(M0 - w)v + q2 

(4.5) Bx[w] = M0 - hl9 B2[v] = h2 (xe dû). 

Our existence proof is based on the quasi-monotone property of the 
reaction functions and the explicit construction of upper and lower solu
tions. Here by an upper solution, we mean a pair of functions (w, v) 
satisfying the inequality " ^ " in (4.4)(4.5) when (w, v) is replaced by (w, v). 
Lower solution is defined analogously and is denoted by (w, v). Since 
the functions on the right-side of (4.4) are quasi-monotone whenever 
0 ^ w ^ M0, v ^ 0, the same argument as for Theorem 3.1 shows that 
the system (4.4), (4.5) has at least one solution if there exists an upper 
solution (w, v) and a lower solution (w, v) such that 0 ^ w ^ w ^ M0, 
0 ^ v ^ v. In fact, by using upper and lower solutions as initial iterations 
one can construct two monotone sequences which converge from above 
and below, respectively, to a solution (w, v), (w, v) of (4.4), (4.5) (cf, 
[1, 7, 14, 15]). This can also be seen from (3.9) by dropping the terms 
w[k\ v\k) and the initial conditions. The above construction implies that 
the solutions (H>, V), (W, V) satisfy the relation 



ASYMPTOTIC STABILITY 67 

(4.6) w(x) g w(x) ^ w(x) ^ w(x), v(x) ^ v(x) ^ v(x) è Kx). 

Hence the existence problem will be resolved if we can find such a pair of 
upper and lower solutions. In the following theorem we construct some 
explicit upper and lower solutions in terms of the eigenfunctions fa of 
(2.9). For convenience, we denote by h{ the least upper bound of h{ on dû 
and set 

(4.7) q( = max{qt(x)/fa{x); xeQ}, qm = max{ft, q2). 

THEOREM 4.1. The steady-state problem (4.1) (4.2) has at least one non-
negative solution (w*, v*) such that 

(4.8) 0 ^ u*(x) g (qJh)fa(x) + Ä!,0 S v*(x) S (qJh) + h, 

If, in addition, there exist positive constants cl5 c2 such that L2 = Ci^i, 
B2 — c2Bi, then there exists exactly one non-negative solution satisfying 
(4.8). 

PROOF. TO prove the existence and the relation (4.8) it suffices to show 
that for some M0 ^ {qjli) + h\ the transformed system (4.4) (4.5) has a 
solution (u>*, v*) satisfying 

(4.9) M0 - (qjh) fa-h^w*^ M0, 0 g v* ^ (qjl2)fa + h 

This will be done if we can show that w = M0, v = (qjl2) fa 4- h2 and 
w = M0 — (qJXi) fa — hi, v = 0 are upper and lower solutions respec
tively. However, this follows immediately from 

/ i l 1 A , - ^ = 0 à -ql9 - L2v = qmfa ^ q2 (x e Q) 
(4.10) 

B,[w] = M0, B2[v] = A2 ä A2W (* G 3Û) 
and a similar expression for (w, v). To show the uniqueness of the solution 
when L2 = CiLx, B2 = c2Bx we let U = u* — ü, V = v* — v, where 
(ü, v) is any non-negative steady-state solution of (4.1)(4.2). Then (U, V) 
satisfies the equations 

LXU = kx(u*v* - üv) = k±(v*U + üV) 
(4.11) (xeQ) 

L2V = &2(w*v* - üv) = k2(v*U + ÜV) 

and the boundary condition B^U] = B2[V] = 0. Since 

(4.12) k^L,U = k^L2V = cxk^LxV, BX[V] = c^B2[V] = 0, 

we see that the function W = k^U — cxk2
lV satisfies L^W] = 0 in Q, 

BX[W] = 0 on dQ and therefore W = 0, that is, K = k2{clkl)~
lU. Substi

tuting Kinto (4.11) leads to 

(4.13) LXU = (kxv* 4- k2cïlu)U. 
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In view of the non-negative property of (/^v* + k2cï1iï) the maximum 
principle implies that U = 0, and therefore V = 0. This proves the uni
queness of the solution and thus the theorem. 

REMARK 4.1. When fa or fa vanishes on dû and qjfa is unbounded, we 
may replace fa by the positive function fa satisfying L{fa -h A$, ^ 0 for 
some X ^ Xt- (cf. [11]). In this case the corresponding functions (w, v), 
(w, v) with respect to fa are upper and lower solutions of (4.4) (4.5), and 
thus the upper bounds for (w*, v*) in (4.8) should be with respect to fa, fa-
Notice that if qx = q2 = 0, then the bound for (w*, v*) becomes 0 g 
u*(x) ^ hl9 0 ^ v*(x) ^ h2. 

We next investigate the stability and the instability of a steady-state 
solution for the system (4.1)-(4.3). This is done through suitable construc
tion of upper and lower solutions for the transformed time-dependent 
system : 

wt - Lxw = k^Mo - w)v - qx 
(4.14) (t > 0,xeQ) 

vt - L2v = -k2(MQ - w)v + q2 

(4.15) Bx[w] = M0 - hl9 B2[v] = h2 (t > 0, x e 3Q) 

(4.16) w(0, x) = M0 — uQ(x)9 v(0, x) = v0(x) (xeQ) 

where w = M0 — u. The definition of upper and lower solutions for the 
above system follows from (4.14)-(4.16) by replacing the equality by the 
corresponding inequality relation. Notice that the present transformation 
is again to obtain the quasi-monotone property for the nonlinear functions 
on the right-side of (4.14). Our main result on the asymptotic stability and 
instability problem is contained in the following theorem. 

THEOREM 4.2. Let (w*, v*) be a non-negative steady-state solution of (4.1) 
(4.2). If there exist constants ô > 0, e > 0 such that 

X1 + fciv*(x) - dkx{^x)lfa{x))u*{x) è e 
(4.17) W Y (xeQ) 

X2 + k2u*(x) - ô-lk2(fa(x)lfa(x))v*{x) ^ e, 

then the system (4.1)—(4.3) has a unique solution (u, v) such that 

<A 1 <n W*W - Pl(t)fa(x) < U{U X) ̂  U*(X) + P2(t)fa(x) 
(4.18) (t>09 xeQ) 

v*(x) - ÖP2(t)fa(x) ^ v(/, x) £ v*(x) + ÔP^faix) 

whenever u0, v0 satisfy the relations 

w* — pifa < UQ fg a* + p2fa, 
(4.19) ^ - HY (xeQ) 

v* - öp2fa ^ v0 ^ v* + dpifa 

with px < 7ji, p2 < rj2, where rji = e/k2, 7]2 = $/(5fci) and 
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(4.20) />,<>) - [ t f 1 + (PÏ1 - VT1)*']-1, i = 1, 2, (t > 0). 

PROOF. We first seek an upper solution for (4.14)-(4.16) in the form of 
w = w* + P(*)^i(*), v = v* + öP(t)<j)2(x\ where w* = M0 — w* and 
P(r) is a positive function to be determined. Since Bx[w] = B^w*] = 
M0 - Ai, P2[v] = £[v*] = A2, and since w(0, x) = MQ - w* + P(0)^x 

and v(0, x) = v* + <5P(0) ç42,
 w e s e e t n a t (#> ^) *s a n upper solution if 

P(0) = p i and 

- LiW* + (P'fo - P L ^ i ) ^ ^ ( M Q - w* - P^i)(v* + <?P^2) - ft 

(4.21) - L2v* + 5(P'fc - PLzfc)^: - k2(M0 - w* - Pftfy* + <5P 2̂) 

But since (w*, v*) is a solution of (4.4) and M0 — w* = w*, the above in
equalities are equivalent to 

(P' + XlP) fa ä *10H*P02 - V*P^ - <?P 2 ^ 2 ) 

<?(P' + X2P) <t>2 ^ -k2(ôu*Pfc - v*P& - <?P 2 ^ 2 ) . 

In view of the hypothesis (4.17) it suffices to find P such that 

P' + eP> -dkiPZfc 
(4.23) " Y 

P' 4- eP^ k2P^v 

However, this follows immediately by the choice of P = Pi(t), where Px 

is given by (4.20). We next construct a lower solution of (4.14)-(4.16) in 
the form of w = w* — P(f)0iC*)> Y = v* — dP(t)<j)2(x) by a suitable 
choice of P. It is easily seen by the same argument that (w, y) is a lower 
solution if P satisfies P(0) = p2 and the relations 

(4.24) P' + eP à ^!P2ç52, P ' + £P ^ -k2P2<f>l9 

where we have used the hypothesis (4.17). The above inequalities are clear
ly satisfied by the function P = P2 given by (4.20). Hence by Theorem 3.1 
the transformed system (4.14)-(4.16) has a unique solution (w, v) such that 

(4.25) w* - P20! ^ w g w* + Pi0i, v* - (5P2^2 ^ v ^ v* + dPifc. 

The above relation is equivalent to (4.18). 

The result of Theorem 4.2 implies that under the condition (4.17) the 
steady-state solution («*, v*) is asymptoticly stable. If this condition is 
replaced by 

(4.26) (x e Q) 
X2 + k2u*(x)-ô-i/e2(Mx)IMx)>*(x)S -e, 

then we have the following instability conclusion. 
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THEOREM 4.3. If the steady-state solution (w*, v*) satisfies the condition 
(4.26) for some positive constants d, e, then there exists a unique solution 
(w, v) to (4.1)-(4.3) such that 

(4.27) ( / > 0 , I G U ) 
v(t, x) £ V*(JC) - dP3(tW£x) 

whenever (w0> v0) satisfies the relation 

(4.28) u0 ^ w* + P301, vo ^ v* -3p302, (* e ö>> 

where p$ > 0 w #/zj constant satisfying v* — <?p302 = 0 #w^ 

(4.29) P3(0 = fyr1 - (ft1 - yï^e-'T1 mth Vl = elk2 (t > 0). 

PROOF. Let w = w* - P(O0i(*), v = v* - dP(t)(j)2(x\ w h e r e P i s a 

positive function to be choosen. It is easily seen that (w9 v) is an upper 
solution if P(t) satisfies P(0) ^ p3 and the relation 

(4.30) 

5{P' + A2P)^2 ^ -k2(ôu*Pfc - v*/Vi + ÔP2M2). 

By the condition (4.26), the above inequalities hold if 

(4.31) P' - eP è ôk^fc and P' - eP ^ -k2P
2<f>h 

This follows by choosing P = P3 given by (4.29). To complete the proof 
we need to find a lower solution (w, v) such that w ^ w, v ^ v. A suitable 
choice is given by w = M0 — p^e?1, v = 0, where 7- > 0 and p4 is a positive 
constant satisfying p4 ^ max^ / f , hh u0}. Verification of this pair being a 
lower solution follows directly from definition. This proves the existence 
of a unique solution (w, v) to (4.14)—(4,16) and 

(4.32) MQ - pier' ^ w ^ w* - P3fa, 0 ^ v ^ v* - <5P3^2. 

The above conclusion implies the existence of a unique solution (u, v) to 
(4.1)-(4.3) satisfying the relation (4.27). 

REMARK 4.2. (a) In the case of ^(x) = 0, cj)2(x) # 0 (or <f)2(x) = 0 
(f>i(x) # 0) at some point x e dû, we may replace <f>i by ^ (resp., 02 by ^2) 
in the relation (4.17). However, this replacement should not be used for the 
instability condition (4.26). (b) When w* = v* = 0 is a steady-state solu
tion the condition (4.17) is trivially satisfied for any e ^ min{^i, X2}. 
Thus Theorem 4.2 includes the result of Theorem 2.2. 

The implication of Theorem 4.2 is that if a steady-state solution(w*, v*) 
of (4.1) (4.2) satisfies the condition (4.17) then it is asymptotically stable 
since both P\(t) and P2(t) converge to zero as t -» 00. A stability region is 
given by 
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Ai = {(w0, V0); - ek^i < u0 - w* < fi(£*i)-tyi, 

- ekïl(j)2 < v0 - v* < eök2
l<j>2) 

However, if (a*, v*) satisfies (4.26), then by (4.27), (4.29), 

lim inf u(t9 x) ^ u*(x) + rji<ßi(x)9 
t-*oo 

(4.34) 
lim sup v(t9 x) ^ v*(x) — òr)i<j)2(x) 

* - o o 

Since 771 = ek2
l is independent of initial perturbations, the relation (4.34) 

implies that (w*, v*) is unstable. In fact, an instability region is given by 
(4.28). Therefore the conditions in (4.17) and (4.26) characterize the 
asymptotic stability and the instability behavior of a steady-state solution. 
Since this characterization depends only on the magnitude (but not the 
derivatives) of (w*, v*), it has rather interesting practical implications in 
certain specific situations. Consider, for example, the one-dimensional 
system (4.1) with qx = q2 = 0 and with the boundary condition 

(4.35) u(t, 0) = u(t, / ) = 0, vx(t9 0) = 0, v(t, /) = b0, 

where b0 is a positive constant. This system has been treated in [4] for the 
simple case Lx — L2 = d2/dx2. Since (0, b0) is a steady-state solution, con
dition (4.17) is clearly satisfied by choosing a sufficiently large d and a 
suitable e > 0. This means that (0, b0) is a stable steady-state solution. In 
fact, we have the following conclusion for a more general system. 

THEOREM 4.4. Let q± = hi = 0 and let v*(x) be the solution of the linear 
system 

(4.36) - L2v = q2{x) (x e Q)9 B2[v] = h2(x) (x e dû). 

Then (0, v*) is a steady-state solution Ö / (4 .1 ) (4 .2 ) and is asymptotically 
stable. Similarly, if q2 — h2 = 0 andu* is the solution of 

(4.37) -Liu = qi(x) (x e Q)9 Bi[u] = hx(x) (x e dû), 

then (w*, 0) is a steady-state solution which is asymptotically stable. A 
stability region for (0, v*) (or (w*, 0)) is given by (4.33). 

PROOF. For the steady-state solution (0, v*) condition (4.17) is reduced to 

(4.38) h + kxv*(x) è e, l2 -ö-ik2(<f>i(x)/<f>2(x))v* ^ e. 

Since v*(x) is non-negative, the above conditions are fulfilled by choosing 
e < min{Ai, A2} and a sufficiently large d. The asymptotic stability of 
(0, v*) follows from Theorem 4.2. Notice that if ((f>i/<f>2) is unbounded on 
dû, we should replace <j>2 by $2. The proof for (w*, 0) is similar. 
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The result in Theorems 4.2 and 4.3 also holds for the Neumann bound
ary condition (1.4). Specifically, we have the following theorem. 

THEOREM 4.5. Let (w*, v*) be a non-genative steady-state solution of 
(4.1)(1.4). If there exist positive constants 5, e such that 

(4.39) &!(v* - <5w*) ^ e, k2(u* - tf-iv*) ^ e (xeQ), 

then (w*, v*) is asymptotically stable. In case (4.39) is replaced by 

(4.40) k^v* - öu*) ^ - £ , k2(u* - 3-1 v*) g -e (xeQ), 

then (w*, v*) is unstable. 

PROOF. The proof follows from the same argument as for Theorems 
4.2 and 4.3 with X\ = l2 = 0 and fa = fa = 1. Details are omitted. 
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