AN INEQUALITY FOR NON-DECREASING SEQUENCES

A. MEIR

1. The following two inequalities are well known [1]. If $\left\{a_{i}\right\}$ is a sequence of non-negative numbers and $0<r<s$, then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i}^{r}\right)^{1 / r} \geqq\left(\sum_{i=1}^{n} a_{i}^{s}\right)^{1 / s} . \tag{1.1}
\end{equation*}
$$

If $\left\{p_{i}\right\}$ is a sequence of non-negative weights and $\sum_{i=1}^{n} p_{i} \leqq 1$, then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} p_{i} a_{i}^{r}\right)^{1 / r} \leqq\left(\sum_{i=1}^{n} p_{i} a_{i}^{s}\right)^{1 / s} . \tag{1.2}
\end{equation*}
$$

In a recent paper, Klamkin and Newman [2] established an inequality, which may be regarded as a modified version of (1.1) pertaining to nondcreasing sequences. If $0=a_{0} \leqq a_{1} \leqq \cdots \leqq a_{n}$ satisfies $a_{i}-a_{i-1} \leqq 1$ and if $r \geqq 1, s+1=2(r+1)$, then

$$
\begin{equation*}
\left((r+1) \sum_{i=1}^{n} a_{i}^{r}\right)^{1 /(r+1)} \geqq\left((s+1) \sum_{i=1}^{n} a_{i}^{s}\right)^{1 /(s+1)} . \tag{1.3}
\end{equation*}
$$

Our aim here is to prove a "weighted" version of (1.3). The result is, in a certain sense, a converse of (1.2) for non-dcreasing sequences.

Theorem 1. Let $0 \leqq p_{0} \leqq p_{1} \leqq \cdots \leqq p_{n}$ and $0=a_{0} \leqq a_{1} \leqq \cdots \leqq a_{n}$ satisfying

$$
\begin{equation*}
a_{i}-a_{i-1} \leqq\left(p_{i}+p_{i-1}\right) / 2,(i=1,2, \ldots, n) \tag{1.4}
\end{equation*}
$$

If $r \geqq 1$ and $s+1 \geqq 2(r+1)$, then

$$
\begin{equation*}
\left((r+1) \sum_{i=1}^{n} p_{i} a_{i}^{r}\right)^{1 /(r+1)} \geqq\left((s+1) \sum_{i=1}^{n} p_{i} a_{i}^{s}\right)^{1 /(s+1)} . \tag{1.5}
\end{equation*}
$$

Remarks. (i) The condition that $\left\{p_{i}\right\}$ is a non-decreasing sequence cannot be dispensed with, in general. If $r=1, s=3, p_{1}=3, p_{2}=1, a_{1}=3$, $a_{2}=5$, then (1.5) does not hold.
(ii) The condition $s+1 \geqq 2(r+1)$ is, in general, not dispensable If $r=1, s=2, p_{i}=1, a_{i}=i(i=1,2, \ldots, n)$, then (1.5) does not hold.
(iii) In order to compare (1.5) with (1.2) observe that setting $\sum_{i=1}^{n} p_{i}=\lambda$, $p_{i} / \lambda=q_{i}, a_{i} / \lambda=b_{i}$, we have $\sum q_{i}=1$ and (1.5) is equivalent to

$$
\left((r+1) \sum_{i=1}^{n} q_{i} b_{i}^{r}\right)^{1 /(r+1)} \geqq\left((s+1) \sum_{i=1}^{n} q_{i} b_{i}^{s}\right)^{1 /(s+1)},
$$

whenever $b_{i}-b_{i-1} \leqq\left(q_{i}+q_{i-1}\right) / 2$.
2. Proof. The convexity of $x^{r}(r \geqq 1)$ implies that

$$
\int_{a}^{b} x^{r} d x \leqq(b-a) \frac{a^{r}+b^{r}}{2}
$$

for $0 \leqq a<b$. Hence

$$
a_{i}^{r+1}-a_{i-1}^{r+1} \leqq \frac{r+1}{2}\left(a_{i}^{r}+a_{i-1}^{r}\right)\left(a_{i}-a_{i-1}\right) .
$$

Since $\left\{a_{i}\right\}$ and $\left\{p_{i}\right\}$ are non-decreasing,

$$
\left(a_{i}^{r}+a_{i-1}^{r}\right) \frac{p_{i}+p_{i-1}}{2} \leqq a_{i}^{r} p_{i}+a_{i-1}^{r} p_{i-1} .
$$

Combining this, (1.4) and the previous inequality we have

$$
\begin{equation*}
a_{i}^{r+1}-a_{i-1}^{r+1} \leqq \frac{r+1}{2}\left(a_{i}^{r} p_{i}+a_{i-1}^{r} p_{i-1}\right) . \tag{2.1}
\end{equation*}
$$

If we set $\sigma_{j}=\sum_{i=1}^{j} a_{i}^{r} p_{i}$ and sum both sides of (2.1) for $1 \leqq i \leqq j$, we get

$$
a_{j}^{r+1} \leqq \frac{r+1}{2}\left(\sigma_{j}+\sigma_{j-1}\right)
$$

Using the notation $k=(s+1) /(r+1)$, the last inequality yields

$$
\begin{equation*}
a_{j}^{s-r} \leqq(r+1)^{k-1}\left(\left(\sigma_{j}+\sigma_{j-1}\right) / 2\right)^{k-1} \tag{2.2}
\end{equation*}
$$

Now, since $k-1 \geqq 1$, the convexity of x^{k-1} implies that

$$
\int_{a}^{b} x^{k-1} d x \geqq(b-a)\left(\frac{a+b}{2}\right)^{k-1}
$$

for $0 \leqq a<b$. Hence

$$
\begin{equation*}
k\left(\sigma_{j}-\sigma_{j-1}\right)\left(\frac{\sigma_{j}+\sigma_{j-1}}{2}\right)^{k-1} \leqq \sigma_{j}^{k}-\sigma_{j-1}^{k} . \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3) we conclude that

$$
k p_{j} a_{j}^{s}=k a_{j}^{s-r}\left(\sigma_{j}-\sigma_{j-1}\right) \leqq(r+1)^{k-1}\left(\sigma_{j}^{k}-\sigma_{j-1}^{k}\right)
$$

Whence, after summing for $1 \leqq j \leqq n$, we obtain

$$
k \sum_{j=1}^{n} p_{j} a_{j}^{s} \leqq(r+1)^{k-1}\left(\sum_{k=1}^{n} p_{i} a_{i}^{r}\right)^{k} .
$$

Replacing k by $(s+1) /(r+1)$, (1.5) follows.
3. If we replace assumption (1.4) by $a_{i}-a_{i-1} \leqq p_{i}$, we obtain a slightly different inequality. The proof is analogous to that of Theorem 1 , hence will be omitted here.

Theorem 2. Let $0 \leqq p_{1} \leqq p_{2} \leqq \cdots \leqq p_{n}$ and $0=a_{0} \leqq a_{1} \leqq \cdots \leqq a_{n}$ satisfying $a_{i}-a_{i-1} \leqq p_{i}(i=1,2, \ldots, n)$. If $r \geqq 1$ and $s+1 \geqq 2(r+1)$, then

$$
\begin{equation*}
\left((r+1) \sum_{i=1}^{n} a_{i}^{r} \frac{p_{i}+p_{i+1}}{2}\right)^{1 /(r+1)} \geqq\left((s+1) \sum_{i=1}^{n} a_{i}^{s} \frac{P_{i}+P_{i+1}}{2}\right)^{1 /(s+1)} \tag{3.1}
\end{equation*}
$$

If the sequence $\left\{a_{i}\right\}$ is non-decreasing and convex (i.e., $a_{i}-a_{i-1} \geqq 0$ and $a_{i+1}+a_{i-1}-2 a_{i} \geqq 0$), then we may set $p_{i}=a_{i}-a_{i-1}$ in Theorem 2. Inequality (3.1) now becomes

$$
\left(\frac{r+1}{2} \sum_{i=1}^{n-1} a_{i}^{r}\left(a_{i+1}-a_{i-1}\right)\right)^{1 /(r+1)} \geqq\left(\frac{s+1}{2} \sum_{i=1}^{n-1} a_{i}^{s}\left(a_{i+1}-a_{i-1}\right)\right)^{1 /(s+1)}
$$

Finally, if we set $p_{i}=1(i=0,1, \ldots, n)$ in Theorem 1 (or Theorem 2), we obtain the generalization of the Klamkin-Newman inequality (1.3) for the cases $s+1 \geqq 2(r+1)$.

References

1. G.H. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, 1959, 26-28.
2. M. S. Klamkin and D. J. Newman, Inequalities and identities for sums and integrals, Amer. Math. Monthly 83 (1976), 26-30.

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

