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EQUICONVERGENCE OF INTERPOLATING PROCESSES 

BOGDAN M. BAISHANSKI 

1. Introduction. The following theorem is due to J. L. Walsh [3, p. 153]. 

THEOREM. Let f be analytic for \z\ < R, R > 1. Let pn(z) be the polynomial 
of degree n which coincides with fat the roots of the unity e2kninn+l), h = 0, 
1, ..., n, and let qn(z) be the n-th Taylor polynomial of f around the origin. 
Thenpn(z) — qn(z) -+ 0, n -> oo, for \z\ < R2. 

It was a lecture of A. Sharma, in which he presented several extensions 
of this theorem, extensions obtained jointly by A. S. Cavaretta Jr., A. 
Sharma and R. S. Varga [1], that has directed our attention to this topic. 
In this paper we present a generalization of Walsh's theorem that goes in a 
different direction than the results in [1]. 

2. Notation. The infinite triangular matrix [zkn], k = 1,2, .. .,n;n = 1, 
2, . . . , where the entries zkn are complex numbers, defines a Hermite 
interpolation process. We assume that we are given two such matrices, 
[zkn] and [zkn], and that \zkn\ g d, \zkn\ ^ dïox all k, n. We write 

wn(z)= f\(z - zkn) = JZAn,rz»-r 
k=l r=0 

and similarly we define the polynomials wn(z) and the coefficients Ä„tr. 
If / is a function analytic in \z\ < R, and R> d, then the interpolating 
polynomials to/based on the systems [zkn] and [zkn] are denoted by pn(z,f) 
and pn(z,f), respectively. 

3. Let us formulate a heuristic principle. If two systems of interpolating 
nodes, [zkn] and [zkn], are "close", then the set of z's for which 

(1) pn(z,f)- pn(z,f)->0,n-+cc, 

is "large". In particular, it can be larger than the set on which/ is analytic. 
This principle looks quite natural, because if the two systems are identical, 
then certainly (1) holds for all z. 

We can look at Walsh's theorem in the light of this heuristic principle. 
Taylor's polynomials off at the origin are the interpolating polynomials 
corresponding to the system of the nodes [zkn], where zkn = 0 for every k 
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and n. That system of nodes and the system [zkn], zkn = expÇlkxi/n) 
k = 1, 2, . . . , n; n = 1, 2, . . . are "close" because their n-th rows have 
the first n — 1 moments identical, i.e., 

n n 

for /* = 1, 2, . . . , n — Ì; n = 1, 2, . . . , and only the n-th moments are 
different. So it should not be considered surprising that the set of z's for 
which (1) holds is "large", i.e., contains all z such that \z\ < R2. On the 
contrary, one has to wonder why this set is not even larger, in view of the 
fact that the systems of nodes are so close. 

The key step in transforming the heuristic principle into a precise 
mathematical statement is to decide what meaning to give to "closeness" 
of two systems of nodes. If one does that in the most straightforward 
manner, one obtains the not very interesting Theorem 3 ; if one approaches 
that task more delicately, one obtains Theorem 1, which is a generaliza­
tion of Walsh's theorem. (It should be noted, however, that Theorem 1 
contains as a special case only a weak form of Walsh's theorem: setting in 
Theorem 1 d = y = 1, we obtain overconvergence not for \z\ < R2, but 
only for \z\ < (R - 2)2/4, and that provided R > 4). 

Let us make one more remark. It is of no importance whether we formu­
late our results in terms of the moments 2 ]?=A o r m terms of the ele­
mentary symmetric functions of {zkn}, i.e., in terms of the coefficients AniT. 

4. With the previously introduced notation, we can state our main 
result. 

THEOREM 1. Let the two systems of nodes, [zkn] and [zkn], and the number 
j , 0 < j ^ 1, satisfy the conditions : 

(2) \zkn\ ^ d, \zkn\ ^ dfor all k, n and 

(3) ( 2 Mn., - Ks\)Vn - 0, n -> oo, for every X < r. 

Let R > 2d 4- (1 + d)2/r and let f be a function analytic for \z\ < R. Then 
pn(z9 f) - pn{z, / ) -* 0, n -> oo, for \z\ < C(R - 2d)1+r9 where C = 
(1 +d)-2. 

PROOF. We first choose p so that 2d + (1 + d)2/r < p < R, then we 
choose X between 0 and 7-, but sufficiently close to j so that 

(4) 2d + (1 + d)2/i < p. 

Since for fixed p and d 

(5) 
(p - 2d)™ 

(1 +"rf)2~ ^ p ' 
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except for at most one value of X, we can make sure that (5) holds by 
chososing À sufficiently close to y. 

To prove the theorem it is sufficient, because of the maximum modulus 
principle, to show that pn(zj) - pn(z,f) -> 0, n -> oo when z is restricted 
to the circumference \z\ = (1 + d)~2(p — 2 d ) m , for every fixed p and X 
which satisfy the conditions stated above. Let us also observe that these 
conditions imply 

(6) \z\ > l , p > 1 

and 

(7) p>d, \z\ # p, 

the last fact following from (5). 
Because of (2) and (7) we have, by Hermite's formula, 

We shall show that for \t\ = p, with our choice of p and \z\ we obtain 

(9) 
wn(z) _ wn(z) 
#»(')' wn(f) 

Aqn 

where 0 < q < 1, and A is a constant. 
From (8) and (9) it follows that 

>JL*.fi-PJlz.f)\é-1ëy4i', 
where Mp(f) = Maxl2l==/9 |/(z)|, and so pn(z,f) - pn(z,f) -> 0, n -> oo, 
which proves the theorem. So we have only to establish (9). 

For that purpose we observe first that 

KOI = iflO - zkn)\ ^ f[(\t\ - \zj) *(p- d)'\ 
k=l k=l 

and similarly for |vP„(OI» so that 

(10) \wn(t) wn(t)\ ^(p- d)2«. 

We write 

(11) w,(z)wA(0 - wn(z)wn(t) 

n 

r,s=0 

= 2X + 22, 

where 2\ is the sum of the terms for which both indices /• and s are ^ An, 
and 22 *

s t r i e sum of the remaining terms. 
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Because of (6) we get 

(12) |2il ^ \z\"p" Z \KrKs - KrKsY 
r,s^Xn 

Since 

An,r™n,s An>rAns = A„)ryAns AnfS) + Ans\Anr Anr), 

we obtain 

(13) S \ÄntrAHt8 - 4 . Â J è 2214,. ri 2 \An,s - ÂHJ. 
r,s^hi r=0 s<Xn 

From (3) it follows that 

(14) S M«,, - ÄHtS\ è el, 

where en -* 0, «. -> oo. On the other hand, since for any polynomial 

we have 

we get in particular 

U(z - zj) = 2 a,z* 
y=i *=o 

2 kl |z|* ̂  n (kl + |z;|), 

(15) S K . U IT(i + k J ) ^ d + «0". 
5=0 £=1 

and similarly 

(15') S K,s| g (1 + </)», 
s=0 

so that from (12), (13), (14) and (15') we obtain that 

(16) | ^ | g 2 |z |y ( l + d)*% = 20% 

where ön = (1 + d) p|z| eM -• 0, « -> oo. 
To estimate 22 the crucial observation is that, with our choice of p and 

jz|, the following estimate holds 

(l7, lzM,,,-.S(iö)-

if r ^ hi or s ̂  An. To prove (17) we observe first that because of (6), for 
r ^ 1 or s ^ A/7, 

|z|«-r|r|«-5 ^ Max{|z|n-^|/|n, |z|n|f |n-*»} 

file:///KrKs
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so that we need only to verify that both \z\n~Xnpn and \z\np»-*n are ^ the 
right hand side in (17), i.e., we need to verify that 

(17') | z |w * _ ^ 2 _ 

and 

- 2d ( 1 7"> ^ s (r+ d)2 
Since |z| = (p - 2d)1+;i/(l + d)2, we have 

H w - p - 2 d / ( l + d ) 2 y 
1 1 (1 + d ) 2 \ ( p - 2d)V 

from which (17') follows, because (1 + d)2 < (p — 2d)Adue to (4). On 
the other hand, (17") is obvious because p > 2d and so 

2d to - 2d y ^ p -2d 
•]p (I +d)2\ p ) < (1 +d)2\ p J = (1 +d)2-

We obtain now form (17), (15) and (15') that 

1̂ 1 ^ 2 K,r^, S - AnirA„,s\\z\"-r\t\"-S 

r~^Xn or s^Aw 

\ (1 + dy I r^Xnmsih, 

^ 2pn(p - 2d)n. 

From this estimate and from (16) and (11) we deduce that for n large we 
have 

\wn(z)wn(t) - wn(z)wn(t)\ S 3p»(p - IdY. 

This together with (10) shows that 

wn{z) wn(z) 
= J| (p- dy ) óq ' #„(0 wn(t) 

where q = p(p — 2d)j{p — d)2 < 1, which proves (9). 

5. What happens in case y — 0, in other words, if the condition (3) of 
the Theorem 1 is simply dropped? This means that we no longer assume 
that the two systems of interpolating nodes are "close". So we have no 
reason to expect overconvergence, i.e., that pn(z, f) — pn(z, f) -*0, 
n -> oo, in a strictly bigger disc than the disc in which both pn and pn 

converge t o / . (To confirm that, take/analytic in \z\ < R, with singulare 
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ties at R and -R, and take for pn and pn the Taylor polynomials of / 
around d and — d, respectively.) 

However, there is a very simple convergence theorem, that is worth 
mentioning. 

THEOREM 2. / / \zkn\ £ d, k = I, 2, ... ; n = 1, 2, ..., if R>2d, 
and iff is analytic in \z\ < R, thenpn(z,f) -• /(z), « -• OO/ÖA* |Z| < /? - 2</. 

This result is a special case of a very general theorem [2, page 55]. 
It can also be quite easily proved directly. Fix |z|, and let \z\ + 2d < p 

< R. By Hermite's formula 

p„(z,f)-f(z) _ L f /(0 wH(z) dt 
2%i J \t\=p z - t wn(t) 

and since 

and 

we have 

K(z)i = m* - zkn\ ̂  (izi + d)\ 

\wn(t)\ = U\t - zkn\ ^(p- d)»9 

w„(0 * ( • 

|z| + rf\» 
^qn,q< 1, 

p - r f 

from which the result follows immediately. 

6. What happens if the condition (3) in Theorem 1 is replaced by the 
very simple condition 

(18) (EM».s An,s\)^ 0, n -» oo, 

which is obviously stronger than ^ = 1 ? 
It is not difficult to see that (18) is equivalent to the following condition. 

There exists a sequence em en -> 0, and there exists for every n s. 1 — 1 
correspondence between {zkn} and {zkn} such that the distance of cor­
responding elements is ^ e„. Informally said, this means that one system 
of interpolating nodes has been obtained from the other by a perturbation, 
a perturbation that tends to zero faster than exponentially as n -• oo. 

THEOREM 3. If two systems of interpolating nodes [zkn] and [zkn] satisfy 
\zkn - Zkn\ è £nn,for k = 1, 2, . . . , n; n = 1, 2, . . . where en -» 0, n -* oo, 
then pn(z,f) — pn(z,f) -» 0, /7 -> oo/or every z. 

To prove this theorem, we have just to go through a part of the proof of 
Theorem 1, from formula (6) to formula (16), and to make only two 
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modifications—to treat the whole sum in (11) as 2l9 and to replace (14) 
by (18). 

7. Let us make a final remark. The assumptions of Theorem 1 imply 

t \An,s - i „ J ^ 2(1 + </)». 

If we make one additional assumption in that theorem, namely 

(19) £ \A„,S - ÂnJ ^ a", 
5=0 

then if a < 1 + d, this implies a stronger conclusion than in Theorem 1. 
More precisely, let (2), (3) and (19) hold, and let 

(20) R>2d + [a(l + d)]l'r > 1, 

and also 

(21) R>2d + [a{\ + d)]v«+r\ 

Then, for every function / analytic in \z\ < R, pn(z, f) — pn(z, f) -> 0, 
n -* oo for 

(22) |z| < ^ L ^ (R - 2dy+r. 

To obtain this refinement of Theorem 1, only minor modifications in the 
proof of that theorem are necessary. We replace (4) by the condition 
p > 2d + [a(l + d)]1/A, and restrict z to the circumference \z\ = l/a(l 4- d) 
(p - 2dy+*. The conditions (20) and (21) insure that (6) holds and that 
instead of (17) we have 

(23) |zMf |«-* è (Pa(\~+
2d))n i f r = ln o r s = Àn-

We use (19) to obtain 

r^kn or s^ln 

^ ?L\KXDAn,s - Än,s\ 
r s 

^ 2(1 + d)nan, 

and we use this last estimate and (23) to deduce that 
m ^ E \KrAn,s - An,rÂn,s\ \z\n-r\t\ns 

r^An or sSA« 

^ 2pn(p - 2dy. 

This refinement of Theorem 1, which gives as the domain of over-

file:///z/n-r/t/ns
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convergence the disc (22) is of interest because it generalizes not only 
Theorem 1, but also Theorem 3. Namely, if the conditions (2) and (18) 
hold, if R > 2d > 1 and iff is analytic in \z\ < R, then for every a > 0 
sufficiently small, (19) holds for all n sufficiently large, (20) and (21) are 
satisfied, and so pn(z, f) — pn(z, / ) -> 0, n ~> oo in every disc \z\ < 
l/a(l + d)(R -2d)1+r, with any a > 0 sufficiently small. But that means 
that/?„(z,/) — pn(z,f) -> 0, n -» oo for every z. 
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