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STRENGTHENED MAXIMAL FUNCTIONS AND
POINTWISE CONVERGENCE IN R”

RICHARD J. BAGBY

1. Introduction. Questions relating to the pointwise a.e. convergence of
a sequence of operators applied to a function in L? are usually handled in
terms of some maximal function which serves as a pointwise majorant for
all terms in the sequence. A simple example of this is Lebesgue’s differen-
tiation theorem in R”, where we are concerned with a sequence of averages
of a function f over balls centered at x. The Hardy-Littlewood maximal
function arises naturally in this problem and provides the key to this
theorem as well as many other problems of pointwise convergence; see
Stein [3].

If instead of taking averages of f over balls at x we take averages over
more general sets, then a number of very interesting problems arise. See
Guzman [1] for a survey. Of course, for the averages to approach f(x)
we must require that the sets shrink to {x} in some sense. For bounded
continuous f little else in needed, but for f merely integrable the sets must
shrink to {x} regularly: the measure of each set in the sequence must be
comparable to that of a ball centered at x and containing the set. For func-
tions in L? for 1 < p < oo one expects some intermediate regularity
condition to suffice; we develop such conditions here. We introduce set
functions which measure the extent to which a set is concentrated near x;
the appropriate regularity condition is to require that this set function be
bounded by a multiple of Lebesgue measure on the sequence of sets con-
sidered. Our regularity condition is sufficiently general to allow us to deal
with averages over unbounded sets.

In the process we introduce some new maximal functions which are
useful for estimating convolution operators. We obtain estimates of the
form

[k 19| 5 K] F

where F depends only on f. Such estimates are particularly useful when
K depends on a parameter. In particular, when K;(x) = A"K(Ax), the
norms we introduce for K have the important property that | K;|| = || K]||.
Consequently, we obtain some new sufficient conditions for pointwise
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convergence of K;  f which may be applicable even when K has an un-
bounded set of singularities.

2. Preliminaries. We shall denote points in R” as x and Lebesgue measure
as dx. The Euclidean length of x is |x|, and B, denotes the ball {x: |x]|
<r}

For E a Lebesgue measurable subset of R*, mE is its measure and yj is
its characteristic function.

For f'a measurable function on R, || f||, denotes the usual L? norm.

For x a Borel measure on R”, L#9(dy) denotes a Lorentz space as defined
in Hunt [2] or Stein and Weiss [4]. When g is Lebesgue measure, we shall
simply write L#2. We shall always assume 1 < p < w and 1 = g < oo,
so that L#(dy) is a Banach space. A norm for L#¢(dy) may be computed
in terms of

2.1 **() = t‘lj d
2.1) f()ig EMﬂ
from the formula

@) sl = o wermopal”, g <

sup tVaf*¥(t), q = co.

When g < oo and f'e L#9(dy), the quantity ¢1/2 f**(¢)is not only bounded
but vanishes at 0 and 0.

An alternate characterization of L#4(dy) is commonly used. Let f*
denote the non-negative non-increasing rearrangement of | | on (0, o),
i.e., for each s > 0 the set {z: f*(¢) > 0} is an interval extending from 0
to u{x:|fI(x) > s}. Replacing f**(¢) by f*(¢) in the definition of | f||,,
gives the functional denoted | f|},; it can be bounded from above and
below in terms of || f1] 5,

Below we give another formula for computing | f]/3,. We suspect it is
part of the folklore, although we have not found it in the literature except
when g = p or .

PROPOSITION 2.3. Let M((s) = p{x: |f(x)| > s}.
Then

{q ij,(s)q/Psq‘l ds}l/q, g < ©
* 0
”f“pq

sup sM(s)’?, g = 0.

ProoF. When g = oo, this is well-known. When ¢ < oo, let 4 =
{(s,1): f*(t) > s > 0}. Then by Tonelli’s theorem
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q g2
q j 19/0f%(0)at= di = —_f jsq—l 1901 dsdy
p Jo y4 A

= qjoosq"lM #(s)9’? ds.
0
The (centered) Hardy-Littlewood maximal function is defined by

1
mB,

Mf(x) = sup IB' | f(x + »)|dy.

There is a constant C, depending only on &, such that
m{x: Mf(x) > s} £ Clflys!, 0<s < oo.

For 1 < p < oo we also define

1/
My = splag f, e+ o @

We shall follow the usual practice of writing ¢ for any constant whose
value we do not wish to note explicitly.
Finally, we give a well-known result which we shall refer to occasionally.

PROPOSITION 2.4. Let f be a non-negative non-increasing function on
(0, 00), such that [ t==1 f(t) dt < o0, where @ > 0. Then lim,_t=f(¢) = 0.

PROOF. s%f(s) < C[3, 12 If(t)dt — 0 as d > oo.

3. Set functions my(E) and m3(E). First we define a pair of set func-
tions which measure the degree to which a set is concentrated near the
origin.

DEerINITION 3.1. For 1 < p < coand E = R*with0 < mE < oo,
set

my(E) = sup (mB)\'? m(E ~ B,)\-1/?
>
and
m;;(E) = '—Z_I:o (mBr)l/p m(E ~ .Br)l_l/ﬁ r—1dr.

Our first result shows the relation between mE, m,(E), and m}(E).
PROPOSITION 3.2. (1/2) mE < my(E) < mj(E).

ProoF. The first inequality follows from the observation that if mB,
= (1/2)mE, then m(E ~ B,) = (1/2)mE. For the second inequality, note
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R
m(E) 2 - [ (B m(E ~ By-vert dr

R
2 [_Z« _f | (mBy2rt dr] m(E ~ Bp)i-1/
= (mBR)V'» m(E ~ Bg)i-V's.

Next we note the dependence of m,(E) and m3(E) on E.

PROPOSITION 3.3. The set functions m,, and m} are non-negative, mono-
tone, and countably subadditive. The ratios m,(E)/mE and my(E)/mE are
invariant under dilations. If E = Bpg, then we have

my(E) < (mBg)/? (mE)'"V» < mBg.

ProoF. Non-negativity, monotonicity, and countable subadditivity
follow from the corresponding properties for m(E ~ B,)!71#. For the
dilation invariance, note

A(mB)Vtm(E ~ B)'"V? = (mB;,)V? m(AE ~ B~V
A change of variables then give m,(AE) = A*my(E) and m}(AE) = A*m}(E).
When E < Bg, we have

m¥(E) = —Z« jf (mB,)tm(E ~ BV r-1dr

IIA

R
. j (mB,)VHmE)-V' r-\dr= (mBp)%(mE) -1/,
0
Our next result shows that m,(E)and m}(E)are continuous with respect
to translations of F.

PROPOSITION 3.4. For 0 < mE < o and K > 1, there is a § > O such
that [x| < ¢ implies my(x + E) = Kmy(E)and mj(x + E) £ Km,(E).

Proor. For the first inequality, choose R > 0 such that
(mBRVAmE)"V? = Km,(E)

and then choose § with 0 < § < Rand mBg = K?mBg_;. ForO < r < R
we have clearly

(mB)Vem[(x + E) ~ BJ'7V? < (mBR)VH(mE)\"V? < Kmy(E).
Forr > Rand |x| < g, x + B,—; = B, implies
(mB)Y!m[(x + E) ~ BJ\"V» = (mB)Pm(E ~ B, )'71/?
=< [mBr/mBr—ﬁll/pmp(E)~

Since mB,/mB,_; is a decreasing function of r, the desired estimate follows
from our choice of g.
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The second estimate is proved similarly, except we must compare inte-
grals instead of suprema. We choose 0 < ¢ < K — 1 and then pick R so
that

(mBRVAmE)1? < emi(E)
and then pick < R so that
mBp = (K — ¢)PmBp_;.

For |x| < d we then have

D [ By ami(x + E) ~ BJmver-ldr

< 2 | mB )V omEy-Vor-tar
= (mBR)V¥(mE)1~V? < em;(E)
as well as

% s: (mB)V®m[(x + E) ~ BJ1-Ver-1dr
< [ (B om(E ~ B,_ ot
R

< (K —¢) (%) f: (mB,_)\Pm(E ~ B,_;)\"Vor—dr

< (K —e) (L> r (mB,)Vtm(E ~ B,)\Ver-ldr
P R—5
< (K — o) my(E).
Note that § may be estimated in terms of n, p, mFE, and K.

Our last result in this section shows the dependence of m, and mj on p.

PrOPOSITION 3.5. For 1 < p < q < o0 there is a constant ¢ such that
mF(E) £ cmy(E).

PROOF. Since it clearly suffices to consider the case 0 < m,(E) < o0, we
may choose R such that mBg = m,(E). Clearly we have

R
% j' [ (mB)/em(E ~ BY=Vor-dr

IIA

R
% jo (mB,)Y(mE)\~Yar—ldr

(mBp)Vs(mE) 14 < cm(E)

Since we also have
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(mB)m(E ~ Bt = [(mB)m(E ~ B)r-1]a=D/0-D(mB,) >/ 5D

< my(E) @D/ @=DpB =0/ (p=D,

we see that

- j : (mB)Vam(E ~ B,)-Var-dr

IIA

m(E) p(q—l)/q(p—v(L) soo(mBr)(p—q)/q(p—l)r—ldr
q R

= cm(EYa0/20-D(mB) #=0/a0-D = cm,(E).
4. Strengthened maximal functions.

DEerINITION 4.1. For 1 < p < o and f integrable over sets of finite
measure, we define

_ 1
Apf(x) = SuP‘m)(—E)j‘lf(X + J’)ldy
and
% f03) = 1 5
AF () = sup = ) S + )] dy
where the suprema are taken over all measurable sets £ with 0 < mE <
0.

PROPOSITION 4.2. 4, f and A}f are upper semi-continuous functions.

PROOF. Let us consider only 4,f; the arguments for A3/ are similar.
When f vanishes a.e. the function A, vanishes identically; otherwise
A, f(x) > 0 for all x. Thus, it suffices to show that for each s > 0, the set
where 4,f(x) > sis open.

If 4,f(x) > s, then thereisa K > 1 and a set £ with 0 < m,(E) <
oo such that

Llf(x +y)| dy > Ksmy(E).

By (3.4), there is a ¢ > 0 such that M ,(z + E) = Km,(E) for all z with
|z] < 0. Thus we have

[ =z nfay = _1fx+ 0| a
z+E E

> Ksmy(E) 2 smy(z + E).
Hence 4,f(x — z) > sforall zwith |z| < 0, and we are done.

In view of (3.2) and (3.3) we can easily establish
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Mf(x) S A £ Af).
Now we estimate 4, fand A}f from above.
LEMMA 4.3 For fe€ L™ we have
A,/() < 2| f[[5V2 Mfxys.
Proor. Fix E with 0 < m,(E) < co. For each r > 0, we have

[+ ntays [ i+ ntay+ [ 15+ 01

Setting t#~1 = mB,/m,(E), the definition of m,(E) shows that
m(E ~ B,)/ m,(E) < t~1. Hence
_1 < g1 -1
By 5T+ D1y S M) + U e

Choose r to make t = || f||¥? Mf(x)~1».

LeMMA 4.4. There is a constant c, depending only on n and p, such that
AFf(x) < cM,f(x).

PrROOF. Given E, set E, = {y € E: 2% < |y| < 2k},

j If x+pldy = <5 1 f(x + y){de)l/p(mEk)l—llp
Ei Iyl 2k+1
S M, f(x) (mBy+)VPm(E ~ By)!~1/0.

Using the monotonicity of m(E ~ B,), it is routine to show

Z (mB2k+1)l/Pm(E ~ sz)l—l/p < cm;:(E)-

k=—oc0

REMARK 4.5. The inequality in (4.4) can be sharpened somewhat; M, f(x)
can be replaced by the quantity

W f(x) = sup(mB) 2 || {45, |l po-

Thus 43 f(x)is finite a.e. for f{x) = |x|='?, although in this case M, f(x) is
infinite everywhere.
Since for E = B, we have

[ 16+ ) 1y < m) 4,500
< (mB)VAmE) /24, f(),

we can also establish the inequality W,f(x) < 4,f(x).
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THEOREM 4.6. Both A, and A} are bounded in L™ for p < r < oo as well
as in L=, Moreover, there are constants depending only on n and p such that

[45f 10 = €l f |1 and [ 431 < €] £1

PROOF. In view of (4.4), the estimates for 4}f follow immediately from
the corresponding estimates for M, f.

For A, f, we use the methods of Stein and Weiss [4, chap. V, §3]. Since
Mf(x) £ [ fllw» (4.3) tells us that [|[4,f [l < 2| fllo. When f = yg, the

characteristic function of a measurable set F of finite measure, (4.3) tells us
Apye(x) £ 2Myg(x)V'?
and hence
m{x: Ayyp(x) > s} < c(mE)s2.

Thus, 4,f is of restricted weak type (p, p). Since 4,f is subadditive and
positive homogenous, the desired conclusions follow at once from the
Marcinkiewicz interpolation theorem and Theorem 3.13 of Stein and
Weiss.

5. Applications to differentiation.

DEFINITION 5.1. A differentiating sequence is a sequence {E,}, of
measurable sets in R”, each having positive finite measure, with the prop-
erty that for every r > 0,

Note that we do not assume that the diameters of the sets approach 0 or
even that the sets are bounded. Nevertheless, the result below is trivial.

PROPOSITION 5.2. If f is a continuous bounded function on R*, then for
each x and each differentiating sequence {E,} we have

lim — L j S+ ) dy = 1.

k—oo mEk

ProOF. Suppose |f(x + y) — f(x)| < ¢ on B,. We then have
1

| J . 7 + 9y = 109
< i [ G+ = o |y

IIA

L 1
%Ejghns,lf(x+ = @)y + mE, Ek~B,lf(x+ ») = f(x)|dy

<o+ MEEE (7] + |70
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Since f'is continuous, we may take ¢ as small as we please by choosing r
appropriately; the second term then approaches 0 for each differentiating
sequence.

Let us note that in addition to the continuity of f at x, all we really
need for the proof is some way to show

] B
63 lim- | oop G+ ) dy = 0 for cach £ > 0.

By restricting {E,} appropriately, we can establish (5.3) for fin a larger
class than L*.

DEFINITION 5.4. A differentiating sequence {E,} is said to be p-regular if
my(E,)/mE, is bounded independently of k. Similarly, if m}(E,)/mE, is
bounded, we call the sequence p*-regular.

THEOREM 5.5. Suppose f€ L* + L#1, where 1 < q < oo. If fis continuous
at x, then

tim = [ fos + )y = 19

k—0co
for every p-regular differentiating sequence {E,}.

Proor. All we need to do is establish (5.3); since we have previously
done this when fe€ L™, we need only consider the case f'€ L#2. For f'e L?9,
the relevant property of f is

linoltl/ﬁf**(t) = 0.
t—
If we set ¢, = m(E, ~ B,), then ¢, — 0 and the definition of /** shows

o I CEP NP A OO
Since t, < (mB,)"V/tm,(E,)t}’?, we see (5.3) must hold for each p-regular
sequence.

We may note that (5.5) gives us a principle of localization for p-regular
differentiating sequences: if f € L* + L#4, then the limiting behavior of the
averages of f over x + E, depends only on the behavior of f near x, even
though each E, may be unbounded.

ExAMPLE 5.6. We show that for f'e L** the conclusion of (5.5) may fail
even for p*-regular differentiating sequences. First we choose

x Vs 0<x<1
0, otherwise.

) = {
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For x>1and 0 <t< 1 set E, =(—x, —x + t9) U (0, t) where ¢
satisfies 1/p + 1/q = 1. Since mE, < 2t, we have

1 , 1_ # —1/ ) =
| JO 0z e [Ty = g2

It is simple to check that m}(E,)/mE, is bounded independently of #,s0 any
sequence ¢, — 0 gives a p*-regular differentiating sequence such that(5.5)
failsatx, 1 < x < o0.

It turns out that differentiating sequences obtained by shrinking a fixed
set can produce less pathology. For example, if E, = A,E where 1, —» 0
and m}(E) < oo, then {E,} is a p*-regular differentiating sequence such
that the conclusion of (5.5) holds for all fin L7, This is a special case of
one of our results in §6 below. However, merely assuming m,(E) < oo is
not sufficient. For a counterexample, use the same function fabove,

E =) @2 + 27h/2)
k=0

and A, = 27% |x| where —2¢ < x < 0.
One can then compute

1 ; —1/p
g | JG o+ Dy > el

even though f vanishes on a neighborhood of x.

THEOREM 5.7. Suppose f € Ll + L=. Then for all x outside an exceptional
set of measure 0, we have

lim L
k—oo mEk

[, 16+ »ay = 1)

for all p-regular differentiating sequences {E,}. If we consider only p*-
regular sequences, we need only require fe Lt + L*,

ProoF. The argument is fairly standard. In view of the principle of
localization given by (5.5), we may as well assume f'e L?1,

Let E, xbe the set of all x such that for some differentiating sequence
{E,} with m,(E,) < KmE,, we have

1
mkE,

lim sup
koo

[IECEE R I

Then it suffices to prove mE, , = 0.
For any bounded continuous function g we have
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mE lf(x + ) — f(x)| dy

S KAYS = ) + | /) = 8@ + o | |80x+ ) — 20 | .

By (5.5), the last term approaches 0 as k£ — oo ; hence for each x € E, , we
must have

KANf — 9)x) + |f(x) — g()| 2 e

Hence by (4.6), mE, , < c[(K + 1) | f — gl 1 ¢7!]#, and since bounded
continuous functions are dense in L?! we must have mE, , = 0.

In the case of p*-regular differentiating sequences, we estimate analo-
gously using 4} instead of 4,, so that we may obtain

mE,; < CI(K + 1) | f - g], e

ExampLE 5.8. Here we construct a function fe LA(R!), 2 < p < o0,
such that for each x in a set of positive measure there is a p-regular differ-
entiating sequence {E;} for which

lim
k—co mEk

[, 1o+ 3y = o.

First we construct a Cantor-like set P < [0, 1] having positive measure.
Let P, = [0, 1]. Assuming P, consists of 2¢~1 closed subintervals of [0, 1]
with midpoints a;,, we define

2k—1

Py = Py~ Ul(ajk — & A + &)
p=2

where ¢, = 27#*sand q satisfies 1/p + 1/g = 1. We thenset P = ()32, P,.
Clearly

m([0, 1] ~ P) = 3 21 . 2¢,
k=1

e |
BP 2Rl T B

so that mP > 0. Moreover if x € Pand k is given, then for some j we have
laj — x| = 27+,

Next we construct a function f which vanishes on P and whose restric-
tion to any component of [0, 1] ~ P is not in L?!, although fe L?. Fix 0
with 1/p < 0 < 1/2 and choose ¢ large enough so that

c |t
F(t) = 1-V» [log T]
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defines a concave function on [0, 1]. Then for each k there is a non-
negative, non-increasing function f}, supported on (0, ¢,) such that

[ 5 = e Fae), 0 <12,
By monotonicity, f4(¢) < 1/tf; f(s)ds and hence

0 = [ rilogteaey-orde = c.

Now set

2k—1

J&x) = ng/Pk_ﬁ 21 Sllx — apl).
= =
Since the intervals (aj;, — &, aj; + ¢,) are pairwise disjoint, we have
[} 2k—1
|75 = X2 3 2| £l
k=1 7=1
= ), ck? < o0.
k=1
Now we carefully select some sets over which we will average f. If we set
ty =24 K/ (p-Dg,
for k = 1, ..., K, we may then compute
14
jkf,,(t)dt = 26K/ VP [log ¢ + log 2K—k @]—6
0

= 2% KD V] + (K — k)]0,

Consequently, for each x € P there is a set Ex consisting of pairwise disjoint
intervals of lengths #4, . ..., fx such that

[ s+ = S2wo e [ oy
Ey =l 0

K
2KV 3T K[l + o(K — K)]?
k=1

v

—K/pa1-1/, —
2K/ pe i Vp K120,

Moreover, due to the location of the points a;;,, Ex can be selected so that
the interval of length ¢, lies inside (—27*, 27%).

Since the lengths ¢4, . . ., tx form an increasing geometric series, we see
mE g is on the order of tx = ex. Also, when r = 27%-1 m(Ex ~ B,) is
bounded by a fixed multiple of z,, so that
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(mB,)V?m(Ex ~ B)17V? < c2—#p 1}V = 2-K/b VD,

Since we may clearly estimate my(Ex) by considering only r = 27#71,
k=1, ..., K, we thus have

myEg) S c27K/peig1/0,
While m,(E ) — 0 as K— oo, the best estimate we have for m y(Ex)/mE g
is
my(Eg)/mEyg < c27K/p g/t = 2Ka/p
so that the sequence {Ex} is not p-regular. If we set
E¥ = Ex U (_mp(EK): mp(EK))s

then clearly {E¥} is a p-regular differentiating sequence. Moreover, we
have

1
MEE jE;f(x + y)dy = ¢K'=% - oo

since § < 1/2.

The example above also shows that 4, is not of weak-type (p, p) and
hence is not dominated by M.

6. Applications to convolution operators. First we obtain bounds for
convolution operators in terms of the maximal functions 4, and 4}.

THEOREM 6.1. Let K be a non-negative measurable function on R*, and
let E, = {x:K(x) > t}. If fis non-negative and integrable over sets of finite
measure, then

K1) < ([ myEydr) 4,000

and
Kxf(x) < (j:’ m;‘,‘(E,)dt) A2 ().
PrOOF. Let G = {(, t): K(y) > ¢t > 0}. Then since
KO) = | 500t

Ko/ = [ [ = navar = ([ G = )y

We may then estimate the inner integral by either my(E)A4,f(x) or
m3(E)A} f(x).
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COROLLARY 6.2. If K3(x) = A»K(Ax), then sup;K; * f(x) satisfies the
estimates for K * f(x) given above.

Proor. For a fixed 2 > 0, note that
{y: Ki(y) >t} = A E;p,
so that by (3.3),

j:ml,{ y:Ky(y) > t}dt = j: m (A1 E;—)dt

- j :’ A y(Eym) dt = jjmp(E,)dt.

Exactly the same arguments apply to m}. Thus, when K is replaced by Kj,
the estimates in (6.1) hold uniformly in A.

REMARK 6.3. The estimate for convolutions given in Stein [3] is

sup Ky + () = ([900dy) Mfo
where ¢ is a decreasing radial function with 0 £ K £ ¢. When K = ¢,
then E, = B, for some r and hence
(1/2)mE, = my(E,) = m(E,) = mE,
by (3.2) and (3.3). Since [¢= [;° mE,dt, in this case we have

%w < S:mP(E,)dt < 5:m;‘(E,)dt < 5¢.

While Stein’s estimate is applicable when fis merely integrable, it is not
applicable if K has a singularity away from the origin. Indeed, Zo [5]
showed that for such a kernel, there is always an integrable f such that
sup;K; * f(x) is completely unmanageable, although there is some hope
when fe L?, p > 1. He gives an example of such an estimate when K has
compact support. Below we give a slight extension of his estimate.

THEOREM 6.4. Let f and K be non-negative measurable functions on R*,
and let K@ be K truncated to vanish on B,. Then

sup Ky +£0) < ([ onB Ve |K |, r1dr) M, 100,

where 1/p + 1/q = 1.

PrOOF. Since (K;) 7 (x) = A K4 (1x), we see that
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&, = arl ]
and
(mB)VE|(K) ||, = (mBy,) 2| K|,
so that (;°(mB,)V/?| K|, r~1 dris unchanged when Kis replaced by K;.
Thus it suffices to estimate K * f(x). But we have

Six = »Kydy < <5|y|§2k+1f(x - y)pdy>1/p”K<zk) s

52”§Iyl§2"+1
< (mBy)VPM,f(x) |[ K@,
When we sum over k, the right-hand side is bounded by the desired inte-
gral.

We may note that the integrals appearing in (6.1) and (6.4) may be used
to estimate || K||;; we simply take f = 1.

Our next result compares the integrals in (6.1) to some more familiar-
looking functionals. This allows us to gauge the relative strengths of the
estimates in (6.1) and (6.4).

THEOREM 6.5. For K a non-negative measurable function on R* and
1/p + 1/q = 1 we have

my(E)dt < (mBy)V'? “Kuqul(lxl"q/ﬁdx) < qva |7 m(E,)dt
0 NG
and
-"oo m;(Et)dt = j‘m (mBr)l/P ”K(r) ”2‘1 1 dr.
0 0
Proor. The last equation is the simplest; we have
Soo my(E)dt = "'00 <j-°° (mB)V? m(E, ~ B4 r"ldr> dt
0 0o \Jo
= j°° (mB,)V'» (jwm(Et - Br)l/th>r‘1dr
0 0

and since m(E;, ~ B,) is the distribution function for K with respect to
Lebesgue measure;

j " m(E, ~ B)Vadt = K3

by (2.3).
For the inequalities we need to estimate the distribution function of K
with respect to dy = |x|"/#? dx. By definition,
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Mg (t) = .‘E |x|me2 dx.

Since |x|#’# = r*/p on E, ~ B,, we have M g(t) = r*’? m(E, ~ B,), which
gives

(mBY)VIM (1)V's 2 (mB)*m(E, ~ B,)s
and hence m,(E;) < (mB;)'/?M k(¢)V/9. Again using(2.3),integration gives

the first inequality.
For the second inequality, let us note that

e, = - (B [ (mB, )0 %y, )
0

Hence
Mg(t) = jlxlnq/ﬁXE,(x)dx
= ﬁpq—(mBl)—1 j : (mB,)"'pm(E, ~ B,)r-\dr
= ';Tq(mBl)—l j : [(mB,)Vom(E, ~ B,)\-V#lar-dr

< "0 (mBy) (£t [ (mB)V m(E,~ B=Vo ridy
= q(mBy)'my(E )" 'm}(E,)
< q(mBy)! my(E)e.

Taking a g-th root and integrating gives the last inequality.

REMARK 6.6. A comparison of

1K [ ¥ 11020 jj(mBr)l/p k@], rdr,

and
jw(mBr)l/p “K(r) ”;i r—1dr
0

shows that the last dominates the second, while the first two do not seem
to be directly comparable. This is what one would expect from the relative
strengths of A, f, M, f, A%f.

Now we turn our attention to some problems of pointwise convergence.

THEOREM 6.7. Let K be an integrable function on R”, and let I = | K(x)dx.
Assume one of the following holds:
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(o]
@ [ sy |k, rtar < oo,

(b) j “my(E)ds < e,

or
© 5 :m;‘(E,)dt < o,

where 1/p + 1/g = 1,1 < p < o0, E, = {x: |K(x)| > t}, and K is the
restriction of K to the complement of B,. Then we have

(1) lim,.,, K;*f(x) = If(x) at each point where fis continuous provided
feLt + L* and (a) holds, fe Lts + L™ withs < o and (b) holds, or
fe Lt* + L* and (c) holds, and

(i) lim;_. K; * f(x) = If(x) almost everywhere provided fe L? + L*
and (a) holds or f€ L + L* and (b) holds.

PROOF. As in (5.5), (i) follows whenever we can prove

lim | fex = »)| [Ka)]dy = 0,

A=co Iyl=r

and since K is integrable this is true when f € L™.
If case (a) we have

X =Y A)\ay = ? W y)|edy Ve
L = DK = 17 1,(] Kled
= 1], 2 |0~ 0

by (2.4) and (a). The argument for case (c)is similar; we use the Lorentz
space version of Holder’s inequality.
The argument in case (b) is more complicated. Since

(K] = #KG) = 2 [ e (e

= znj' s, (),

we have

f,ylgr|f(x — M KODdy = l”jj(jl_lEpBJf(x —y)!dy>dt

A fo 0,2 **(os, D) dt

where we have set p, ; = m(A-1E, ~ B,). Since

i/t < my(A71E) (mB,)71?,
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we have
/1"9},_11/‘1’ = ml,(E,)(mB,)‘l/P.

Since p}? f**(p,,2) is uniformly bounded and tends to 0 as A—oco for
fe€ Lps we then have

tim 2+ [ 0,/ **(p, Dt = 0

by dominated convergence.
The proof of (ii) is fairly routine. If g is a bounded continuous function,
then we have

lir;l sup [Kz * f(x) = If(X)] = ]| f(x) — g(0)| + cM(f — g)(x)
in case (a) and

lim sup [K; +f(x) = )| = 1/x) — ()] + edy(f — &)x)

in case (b); as in (5.7) the limit must be O almost everywhere. Note
that (i) allows us to localize so that once again it suffices to consider
f€ Ltin case (a) and fe L?! in case (b).
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