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ON THEOREMS OF B. H. NEUMANN
CONCERNING FC-GROUPS

M. J. TOMKINSON

1. Introduction. The theorems we are concerned with here are the char-
acterizations of central-by-finite groups and finite-by-abelian groups given
by B. H. Neumann [6]. He proved that a group G is central-by-finite if and
only if each subgroup has only finitely many conjugates or, equivalently,
U/ Uy is finite for each subgroup U of G. Here U, denotes the core of U,
that is, the largest normal subgroup of G contained in U; we use UG to
denote the normal closure of U in G. The “dual” characterization given by
Neumann was that G is finite-by-abelian if and only if |US:U]| is finite for
each subgroup U of G.

It was indicated by Eremin [3] that it is only necessary to consider the
abelian subgroups of G in the first of these theorems. Although one of the
apparent simplifications in Eremin’s proof is incorrect, his strategy of
concentrating on direct products of cyclic groups does give a slightly
simpler proof of Neumann’s results and we use this in the generalizations
that we give here.

Our main concern is to consider FC-groups in which |G'| < m or
|G/Z| < m; here as throughout the paper m denotes an infinite cardianl.
We prove the following theorem.

THEOREM A. Let G be an FC-group. Then |G'| < wmif and only if |UG:
U| < m for each U £ G.

The results for G/Z cannot be proved for all FC-groups but hold in
large subclasses. We define 3, to be the class of FC-groups in which
|G: Cx(U)| < m whenever U is generated by fewer than m elements. [If G
is periodic or u is uncountable, U being generated by fewer than m ele-
ments simply means |U| < m)]. In [9], we defined 3 to be the class of
locally finite groups G satisfying the condition: if m is an infinite cardinal
and H < G such that |[H| < m, then |G: Cz(H)| < m. It is clear that
8 € B for each m and all the evidence we have suggests that 3 is a very
large subclass of the class of periodic FC-groups. It should also be noted
that if m = &, then 3, is the class of all FC-groups and so Neumann’s
result is a special case of the following theorem.

THEOREM B. Let G € B,,. Then the following are equivalent:

Received by the editors on June 9, 1978, and in revised form on April 20, 1979.
Copyright © 1980 Rocky Mountain Mathematics Consortium

47



48 M. J. TOMKINSON

() 1G/Z| < m.
() |U/Ug| < m, for each U £ G.
(iii) |CI(U)| < m, for each U £ G.
(iv) |4/ A¢l < m, for each abelian subgroup A of G.
(v) |CI(4)| < m, for each abelian subgroup A of G.

If we work within the class 3,,, then we are also able to restrict attention
to abelian subgroups when considering the derived subgroup.

THEOREM C. Let G € B,,. Then |G'| < m if and only if |AC: A| < m, for
each abelian subgroup A of G.

Suppose that m is a limit cardinal and U is generated by n elements
where n < m. If n is finite, then |G: C(U)| is finite and if n is infinite,
then |G: Cg(U)| < 2. With the assumption of GCH, 2" = n* < m and
so for any limit cardinal m, 8,, is the class of all FC-groups. Thus Theorem
C shows that if m is a limit cardinal, then assuming GCH we can strengthen
Theorem A and consider only abelian subgroups. Later (5.2) we shall give
an example (also assuming GCH) which shows that this cannot be done if
m is a non-limit.

After the elementary relationships between the different cardinalities
|UG: U|, |U/Ug| and |CI(U)| have been discussed in §2, the bulk of the
proof consists in obtaining inside G a group of a rather special type and
discussing this in detail. These groups were considered by Neumann [6]
and we therefore use the term N-group.

An N-group of cardinality m is a group generated by elements a,, b,,
a < p, where p is the least ordinal of cardinality m, subject to relations

[aa’ aﬁ] = [bw bﬂ] = [am bﬁ] =Lifa# 5,

o [z, bl = co # 1.

It is a consequence of these relations that
(1) a,az!is non-central, if ¢ # §.

Further conditions will be imposed on these groups when appropriate.

In proving Theorem A, the construction inside G of a Neumann group
of cardinality m depends largely on a combinatorial result proved in [8].
The special case of the result that we use here did not require the assump-
tion of GCH for its proof.

THEOREM 1.1. [8] Let X,, i € I, be finite sets with |I| = m, where m is an
uncountable cardinal. Then there is a subset J of I such that |J| = m and

|Uf¢ke](Xj N X)l < m.

[Note: It has been pointed out to me that this result can be readily deduced
from the Marczewski-Erd6s-Rado Theorem on 4-systems [2].]
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One of the applications of this result concerns sets of commutators in
an FC-group. If S and T are subsets of a group G, then [S, T] = ({s, t];
seS, teT). If {[s, t]; se S, te T} is infinite, then |[S, T1| = [{[s, 1;
se€ S, teT}; but we need to distinguish between these if the set of com-
mutators is finite. ~

COROLLARY 1.2. Let G be an FC-group. If S is a subset of G such that
I[S, G]| = m is uncountable, then there is a subset T of G such that |[T, G]| =
mbut [T, T]| < m.

ProoF. For each se S, X, = {[s, gl; g € G} is finite and so we have m
finite subsets X, of [S, G]. There is a subset S of S such that |S;] = m and
there are distinct elements x, € X,, s € S;. The commutator [s, ¢] is in
the intersection X, (] X,. By the theorem, there is a subset T of S;, such
that |T| = m and hence [T, G] = m but | J,..er(X; N X)| < m. Hence
[T, T] = {{Jsxserls, t]) has cardinality less than m.

The notation we use is basically that given in [7]. Scott’s book also con-
tains some of the elementary results on FC-groups which we use frequently.
For ease of reference we summarize some of these results.

Let G be an FC-group. Then
(1.3) G’ is periodic, [7, 15.1.7]
(1.4) G/Z(G) is periodic, [7, 15.1.16]
(1.5) If S is a set of elements in G such that |S| < m, where m is an infinite
cardinal, then {S®) is generated by fewer than m elements. In particular if
H <1 G such that |G/H| < wm, then there is a normal subgroup N generated
by fewer than m elements such that NH = G.

Although we have restricted our attention entirely to FC-groups in this
paper, the statements of the theorems are meaningful without that re-
striction. It is possible to obtain some general results although the methods
used here are not always applicable and some restriction on the cardinal
m which appears is often necessary. A discussion of these more general
questions will appear in a forthcoming paper with V. Faber.

2. Preliminary results.
LemMA 2.1 (cf. [9], Lemma 2.1). B,, is a Qs-closed class of groups.

PRrROOF. Let Ge 3, and H < G. If U/H is generated by fewer than m
elements, then by (1.5) there is a subgroup K of G such that KH = U and
K is generated by fewer than m elements. Since G € 3,,, |G: Cx(K)| < m.
But C;(K) = C¢(U/H) and hence |G: C(U/H)| < m. Thus 8™ is Q-closed.
The s-closure of 3, is straightforward.

Lemma 2.2 ([7], 15.1.13 and 15.1.24). If G is any group such that |G/Z| <
m, then |G'| < m. :
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Proor. Let |G/Z] = n < m; then each element of G has at most n
conjugates. Thus there is a normal subgroup N of G such that NZ = G
and N is generated by n? elements. Thus |[N| < m if m is uncountable and
N is a finitely generated FC-group if m = 8y. In both cases |[N'| < m
and since G’ = N’, this completes the proof.

LEMMA 2.3. Let U be a subgroup of the FC-group G.
() If \U/Ug| < m, then |UC: U| < m.
@) If |ICIU)| < m, then |UG: U| < m.
(iii) If G € By, then |U/Ug| < m if and only if |CI(U)| < m.

Proor. (i) If |U/U|; < oo, then U has only finitely many conjugates and
so |UG/Ug| < oo. If |U/Ug| is infinite, then U/U; = (F;/Ug; i € Iy, where
each F,/Uyg is finitely generated and |/| = |U/Ug|. For each i e I, F&/Uyg is
finitely generated and UG = {F¥; ie I)>. Hence |UC/Ug;| = |I| < m.

(ii) If |CI(U)| < o0, then U/U; < oo and the result follows from (i).
If |CI(U)| is infinite, let T be a transversal to No(U) in G and ¢t € T. There is
a finitely generated normal subgroup F, of G such that U* £ UF, and so
UG < U(F,;; te T). Hence |UG:U| = |T| < m.

(iii) Let |U/Ug| < m; then |G: Co(U/Ug)| < mand hence |G: Ng(U)| < m.

Conversely, suppose that |CI(U)| < m; then G has a normal subgroup
N such that G = NNy (U) and N is generated by fewer than m elements
(1.5). Since G € 8, |G: Co(N)| < mandso |U: Cy(N)| < m. But Cy(N) <
NNy (U) = G and so |U/Ug| < m.

It should be noted that both directions of (iii) are false for an arbitrary
FC-group. For, let G be the extraspecial p-group generated by the two
elementary abelian subgroups X = Dr2,{x;> and Y = [[2,{y;> such that
[x; y;] = 1if i # jand [x; y;] = z, where z is a generator of the centre of
order p. Then |X/X;| = 8y but |CI(X)| = 2%. Also |CI(Y)| = &, but
| Y[ Y| = 2%,

The converses of (i) and (ii) are false even for 3-groups. For, let G
be a countable extraspecial p-group and let X be an elementary abelian
subgroup maximal with respect to X (| Z = 1. Then |[X¢: X| = p but
| X/ Xe| = ICI(X)| = Ro.

LEMMA 2.4. Let U be a subgroup of the FC-group G such that |G: U| < m.
W (U'| < m, then |G'| < m.
(i) If G € B,, and |U/Z(U)| < m, then |G/Z(G)| < m.

PrOOF. (i) There is a normal subgroup N of G such that NU = G and
N is generated by fewer than m elements (1.5). Clearly G’ < U’P, where P
is the periodic subgroup of N(1.3) and hence |G'| = |U’| |P| < m.

(ii) There is a normal subgroup N of G such that NZ(U) = G and N is
generated by fewer than m elements (1.5). Since G € 3,,, |Z(U): Z(U) N
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C¢(N)| < mand so |G: Z(U) 1 Cx(N)| < m. But Z(U) () Ce(N) = Z(G)
and the result follows.

Part (ii) of Lemma 2.4 is false in general as the example following
Lemma 2.3 shows. For. Y is abelian.and |G: Y| = 8, but |G/Z]| = 2%

3. Proof of Theorems A4 and C. It is clear that if |G'| < m, then |U¢: U| <
m for each U £ G, since U¢ £ UG’. So in this section we consider an
FC-group G such that |G’| = m and have to construct a subgroup U such
that |UG: U| 2 m.

The N-group {a,, b,; a < p) of cardinality m is called an Nj-group
if it satisfies the additional condition

2 Cq # Cps whenever a # 3.

THEOREM 3.1. (i) If G is a B,-group with |G'| = m, then G contains a
subgroup which is an Ni-group of cardinality m.

(ii) If G is any FC-group with |\G'| Z m, then G has a normal subgroup
F with |F| < wm, such that G|F contains a subgroup which is an Ny-group of
cardinality m.

PROOF. (i) Suppose that we have defined the elements a;, bg € G, for all
8 < a (some o < p), such that

[aﬂ, ar] = [bﬁ, br] = [aﬁ’ br] =1, if ,6 # 7
[aﬁa bﬁ] = c/3¢ <ara bT’T < ‘B>'

Let S, = a3, bg; 8 < a) and let C, = C4(S,). Since G € 3, and S, is
generated by fewer than m elements, |G: C,| < m, By Lemma 2.4, |C,| =
m. Also, since G' 1 S, is periodic (1.3), |G’ | S,| < m. Therefore C,
contains elements a,, b, such that [a,, b,] = ¢, ¢ S,. Thus we can construct
the N;-group <a,, b,; a < p).

(ii) If m = Ny, then the result follows from (i) and so we may assume
that m is uncountable. By Corollary 1.2, there is a subset T of G such that
[T, G]| = m and |[T, T]| < m.

Factoring out [T, T]¢ = F|, we have an abelian subgroup A(=<(T)
Fi/F)) such that |[4, G]| = m (writing G in place of G/F)).

We can choose elements a;, i € I, of A and b; € G such that [I| = m and
[a;, b;] = c;, with ¢; # c; whenever i # j. By Corollary 1.2, there is a
subset B = {b;; i€ I} of {b;; i € I'} such that |B| = mand |[B, B]| < m.
Factoring out [B, B¢ = F,, we have two abelian subgroups 4; = {(a;;
iel;> and B; = (b;; i € ;) with the commutators ¢; = [a;, b,], i€,
being all distinct.

Now let X; = [a;, B;] U [b;, 4], then since Gis an FC-group X; is a
finite set containing c,. There is a subset J of /; such that |/| = m and
| jseey (X; N XI < m. Factoring out (| ) 4er(X; N Xp))¢ = F3, we have
elements a;, b;, j € J such that
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[aj, ak] = [b]bk] = [aj, blz] = l, ]f ] # k
la;, bj] =c; and c; # c,, whenever j # k.

Well-ordering the set J, we can relabel the elements a;, b;, jeJ, as
Qy, by, a2 < p.

Theorems A4 and C will now both follow from a result about N;-groups.

THEOREM 3.2 An Ni-group G of cardinality m which is also an FC-group
contains an abelian subgroup X such that |XC: X| = m.

PROOF. If 4 = (a,; & < p); then A® 2 {a,, ¢u; a < p). If c,c5' ¢ A
whenever @ # 3, then we have |46: 4| = m. We need to show that G has
a subgroup H which is an N;-group and satisfies the extra condition

3) c‘,,c/;1 ¢ A, whenever « # .

Let I} = {a < p; [a,, ¢,] # 1} and let a, Bel;. Then [a,, c,c5l] =
[a4 c,] # 1 and so c,c5t ¢ A. If |I}] = m, then it follows that [4¢: 4| = m.
Similarly, if I, = {& < p; [b,, ¢,] # 1} has cardinality m, then |BG: B| =
m. Therefore we may assume that |/;] < mand || < m. If I = {a < p;
[@y co] = [ba, c,] = 1}, then |I| = mand S = {a,, b,; a € I) is nilpotent
of class two.

S has a maximal torsion-free subgroup F contained in its centre. It is
sufficient to show that the group S/F contains an abelian subgroup
X = X/F such that |XS: X| = m. For X’ £ F and since X’ is periodic
(1.3), we have X’ = 1 so that X is an abelian subgroup of S such that
|XS: X| = m. We may therefore assume that S = {a,, b,; a € I is peri-
odic.

The group C = {c,; a€l) is abelian and |C| = m. It is clear that
[Soc(C)| = |C| unless Soc(C) is finite and m = 8y. In this case C contains
a subgroup Q of type C;. If Q < 4 =<a,, ael), then 4 = Q x 4,
and A7 = Q sothat |435: A] isinfinite. IfQ £ A,then 45 = Qand 4 ) QO
is finite so that |AS: 4| = |AQ: A| = |Q: 4 [ Q] is infinite. Thus we may
assume that |Soc(C)| = m.

We can now choose elements d, € 4, e, € B, for all ¢ < p, such that
[dos eg] = 1, if a # B, [d,, e.] = f, has prime order p(a), f, # fp if & # 8,
and d, and e, are p(a)-elements. For, suppose that we have defined d;, ¢;
for all 3 < @. There is a subset I, S 7 such that |I,| < m and {dj, ¢;
B <a)yc<a,b,; rel,). Let C* =<{c,; r¢1,»; then |C*| = m and,
as above, we may assume that [Soc(C*)| = m. Thus there is an element
c € Soc(C*) — <a,, b,; y € I,) of prime order p(a). We let f, = c. Since
S is nilpotent we can find p(a)-elements d, € {a,; r ¢ I,) and e, € {b,;
r ¢ I,) such that [d,, e,] = f..

Now let I, = {a < p; p(a) = p} and let [I,| = m,. Then 3] ,n, = m.
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Case (a): m, < oo for all p. In this case m = &y and we need to find an
abelian subgroup X such that |X¢: X| is infinite. Let N, = {d,, e,»; then
if p(e) # 2, N, contains elements x,, y, such that [x,, y,] = f, but f, ¢
{x4». For, otherwise f, would be contained in the subgroup generated by
each non-central element. If Z, = Z(N,) then Z, = C x D, where C is
a cyclic group containing f, In the group N,/D, {f,> D/D is the unique
subgroup of order p(a) and hence p(a) = 2 (and N,/D is generalized
quaternion [7, 9.7.3]).

For each prime p # 2, choose a(p) € I, and write x, for x,, etc. Let
X = (x,; p an odd prime); then X is abelian, c, e X5, for all p, and
cpc;t ¢ X. For if cye? € X, then taking the grh power we see that ¢, € X
and the Sylow p-subgroup of X is {x,> which does not contain c,.

Case (b): m, infinite for some p. Let P = {p; m, is infinite}; then
X scpmy = m. For each peP, let T,={d,, e,; a€l,) so that T, is a
p-groupand T = {d,, ¢,; a < py = Dr T,. If we can show that T, con-
tains an abelian subgroup 4, such that |[AT: 4,| = m,, then if 4 = Dr,4,,
we have [AT: 4| = ¥ m, = m.

It is therefore sufficient to consider the case in which T’ = {(d, e¢;; ie I)
is a p-group with |I| = m, f; = [d;, e;] has order p and f; # f,, if i # j.
We show that T has an abelian subgroup X such that |X7: X| = m.

We write D = {d;; i€ I). The conditions on T imply that D? < Z(T)
and that the elements d; belong to different cosets of Z(T). Thus D/D? =
Dr,.;{d,>, where d; = d;D*. Let X be abasicsubgroup of the abelian group
D. Then X is a direct product of cyclic groups X = Dr;.;{x,;> and
XD? = D([5], pp- 139, 144) so that |J| = |D/D?| = m. Also X (\ D? = X?
and so the elements x;, j € J, belong to different cosets of D? in D. Using
bars to denote the images of elements modulo D?, each of the distinct
elements %; is uniquely expressible in the form

)'(j.:t?gl...a:.:‘n (a‘.=]’...’p_.1)‘
We now show that we can find elements x, € X and y, € F = {e;;ie ],
k € K, such that |K| = m,

(xp; k€ K) = Drygedxp),
[xe, vy =L ifk # 4
e il = 2, # 1,
zy # 2,1k #£ 4

Case (i): m = 8. Suppose that we have defined the elements x;, ...,
Xx,_yand yq, ..., y,-1- Theelements x;, ..., x,_; are contained in a finite
direct factor X; of X, so that X = X; x X, and X; is infinite. Let I, =
{iel; d; occurs as a component of %, for some k < n}; then || < co.
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Now |Xz: C,,(y1, ..., ¥u-1)| < o0 and so there is an element x € C,,(y;,

.., Y1) such that x has a non-trivial component d; for some i ¢ I,. We
putx, = xandy, = e,.

Case (ii): m > 8. If

% =dip - diy,

let X; = {i1, .. .,i,}. Wehave mfinite subsets of 7 indexed by J. By Theorem
1.1, there is a subset K of J such that |K| = m and [(Jpz,<x(X; N X)) <
m. Thus || Jeex Xy — Urerex(Xz N X))| = mand K can be chosen so that
for each ke K, X, — |J,.4X, # @. Corresponding to each element
k € K, there is an element x, and we can choose an element y, = e; where
i€ X, — (J,uX,. Then, if , # k, we have [x,, ] = 1 and [x;, y;] = 2,
where z, is a non-trivial power of f;. Since the x,’s are a subset of the x,’s,
the group generated by the x,’s is the direct porduct of the groups <{x;),
k eK.

This completes the construction of the elements x,, y,, k € K for the two
cases.

Finally we obtain elements u,, v,, & < p such that

[tgs tig] = [Va» Vgl = [y ve]l = 1, if @ # ,
[uou vd] = wa ¢ ]’
wows' € Cugs o < p.

and
Observe first that XZ is a direct product of cyclic groups,

XZ = DrkEK<Xk> X Dr/EL<t/>,

where ¢, are elements of Z = {z,; k € K). [Dr,.,{t,) is just a complement
toX N ZinZ]

Suppose that we have obtained the elements u;, v; for all 3 < a. The
group {us, vg; B < a) has cardinality less than m and so if K, U L, is
the set of elements of K |J L corresponding to non-trivial components of
elements of XZ () <ug, vg; 8 < a), then |K, U L,| < m.

There are therefore m values of me K — K, such that z,, has a non-
trivial component outside K, J L,. Choose such an m with [{x,,)|
minimal. Now let K¥ |J L¥ be the set of elements of K |J L corresponding
to non-trivial components of lements of XZ (| <x,, z,,, ug, vg; § < ).
There is an n € K — K¥ such that z, has a non-trivial component outside
K* U L¥. By the choice of m, |{x,»| = |[{x,>| and so any non-trivial
power of x,,x, will have a non-trivial component in {x,).

Let u, = x,x, and v, = y,, so that w, = z,,. It is clear that if 8 < a,
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then [u,, vg] = [4g, v,] = 1. Since w, involves a component outside K, U
L, but does not have a component in {x,), we have

Wawp! € Dryeg (X0 X {XnXa)

and hence w,wz! ¢ (ug; 8 < a).
Also if 8 <y < a, then w,w;' has all its components in K, U L,.
If

wwgteus; 0 S a) = Uz 0 < a) X {XpXp),

then it would follow that w,wz' € {u3; 6 < a) contrary to the inductive
hypothesis in our construction.

Thus we can obtain the elements u,, v, for all @ < p and the conditions
wowit ¢ U = {u,; @ < p) ensures that [UT: U| = m.

4. Proof of Theorem B. If |G/Z| < m, then it is clear that [U/Ug| < m
for each U =< G. So we take a 3,-group G with |G/Z| > mand show that
there is an abelian subgroup 4 of G such that |4/4;| = m. Certainly if
|G’l Z m, then by Theorem C there is an abelian subgroup 4 such that
|AS: A| = m and so by Lemma 2.3, |4/4;| = m. It is therefore sufficient
to prove the following theorem.

THEOREM 4.1. Let G be a 3,-group such that |G'| < mand |G/Z| Z m.
Then there is an abelian subgroup A of G such that |A/Ag| = m.

Again the proof of this result will depend on obtaining a subgroup of G
which is an N-group of cardinality m. We require the following lemma.

LEMMA 4.2. Let S = {a,, by; a < p) be an N-group of cardinality m.
Ifthe set I = {a < p; ¢, ¢ A} has cardinality m, then |Cl(4)| = m.

PROOF. Suppose «, 8 € I: then b, ' Ab, # by'Abs. For if these subgroups
were equal, then b,b5" € Ng(4) and so bgh,'a,b,bz! = a,c, € A, contrary
toc, ¢ A.

PROOF OF THEOREM 4.1. We begin by showing that G has a subgroup
which is an N-group of cardinality m. Suppose we have defined a;, by
for all 3 < a and let S, = <{as, bg; B < a). If C, = Ci(S,), then |G:
C,| < m and so, by Lemma 2.4 (ii), |C,/Z(C,)| = m. In particular, there
are elements a,, b, € C, such that [a,, b,] = ¢, # 1.

Let I = {a < p; ¢, ¢ A} and I, = {& < p; c, ¢ B}. If |[}] = m, then
by Lemma 4.2, |Cl(4)| = m and if |I;] = m, then |CI(B)| = m. Therefore
we may assume that |I;| < mand [l;] < m. Let I = {a < p; c, € 4 | B};
then |I| = m. Since A and B are abelian,c, € Z(S) for all ¢ e I. Let T =
{ay, by; a € I'); then T is nilpotent of calss two.

Let F be a maximal torsion-free subgroup of Z(T'). Then T/F is periodic
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(1.4) and if T/F contains an abelian subgroup X/F such that |X/X;| = m,
then X will be the required abelian subgroup of 7. So by considering
T/F, we may assume that T is a periodic FC-gorup.

For each a €/, choose a prime P, dividing the order of c¢,. Then by
replacing a, and b, by appropriate powers, we may assume that ¢, has
order P, and {a,, b,) is a finite p,-group.

Let I, = {¢ € I; c, has order p} and let |I,| = m, so that 3} ,m, = m.
If each my,, is finite, then m = 8,; but in this case we have infinitely many
distinct elements c,, contrary to G’ being finite. Thus m, is infinite for some
primes p. Let the set of distinct ¢,’s of order p have cardinality n,. Then
XM, < ntandso theset P = {p; m,is finite and n, < m,} is nonempty.
If O = {P; m, is infinite and n, = m,}, then 3 com, = 3 con, < m.
Therefore 3] ,cpit, = m.

Foreachpe P,let T, = {a,, b,; a € I,»; we show that T, has an abelian
subgroup X, such that |X,/(X,)7| = m, and hence if X = Dr,.pX,, we
have |X/X7| = X ,.pm, = m. We may therefore assume that T = {a,, b,;
a € Iy is a p-group, [a,, b,] = c, has order p, |I| = nt and the set of dis-
tinct ¢,’s has cardinality less then m.

Let D be a basic subgroup of the abelian p-group 4 = {a,; a€l).
Then D is a direct product of cyclic groups D = Dr,.;{d;> and DA?
= A ([5], pp. 139, 144) so that |J| = |A/A?| = m. Since there are fewer
than m distinct ¢,’s, those ¢,’s which are contained in Dinvolve fewer than
m components. Thus there is a subset J* of Jwith |J — J*| < m and if
D* = Dr,;.;{d;), then no element of C = {c,; a€l) is contained in
D*. Also |D: D*| < mandsoif B = {b,;ael),

ID*: D* () C(B)| = |D: D (| C(B)| = |4/4# = m.
We now define elements x, € D*, y, € B, for & < p, such that

[Xar Xg] = [V Yol = [xao gl = 1, if & # B,
[Xe> Vol = 2, € C — {1}.

Suppose that we have obtained the elements xg, y; for all § < « and let
So = (X, yg; B < ay;then [S,| < mandif C, = C1(S,), then |T: C,| < m.

Since |B: B ) C,| < m, there is a normal subgroup E of T such that
B < EBNC, and |E| < m. Now |D*: D* | C(F)| < m and |D*:
D* ) C(B)| = m. Therefore |D*: D* | C(B N C,)| = m. Also |D*:
D* 1 C,| < m and so there is an element x, € (D* | C,) — C(B C,).
That is, there is also an element y, € B (| C, such that [x,, y,] # 1.

Thus the elements x,, y,, a < p, can be constructed. By the condition
on D* no element z, is in X = {x,; & < p). By Lemma 4.2, |X/X7| = m,
as required.


file:///A/AP/

FC-GrROUPS 57

5. Examples. We give two examples to show that, in a sense, our results
are best possible for the class of FC-groups.

EXAMPLE 5.1. If m is a non-limit, then there is an FC-group G with|U[Ug|
< m for all subgroups U of G but |G/Z| = m.

Ehrenfeucht and Faber [1] constructed an extraspecial p-gorup of order
m in which each abelian subgroup has order less than m. In this group any
subgroup of order m contains G’ and so is normal; thus |U/Ug| < m for
allU = G.

In this group the abelian subgroups 4 maximal subjectto 4 | G’ = 1
each have m conjugates and so we do not have a counterexample to the
possible conjecture: |G/Z| < m if and only if |Cl(4)| < m for all (abelian)
subgroups A of G. The main problem here is the seemingly difficult one of
relating the two conditions |G: Ng(U)| < mfor all U £ G and |G: Cg(U)|
< m for all U £ G. Some of the difficulties involved in this question are
discussed in Theorem D(i) and §5 of [9].

EXAMPLE 5.2. If m is a non-limit, then there is an FC-group G such that
|AG: A| < wm for each abelian subgroup A of G, but |G'| = m.

Let X = (x,; @ < p) and Y = {(y,; a < p) be two Ehrenfeucht-
Faber p-groups of cardinality m with central elements xg, yg, respectively.
Define G to be the join of X and Y in which

L, @ # 6,
[Xw yﬁ] _{za’ Q= ﬂ,

where z, is a central element of order p.

Suppose U is a subgroup such that |[UG’/G’| = m. Then the projection
of U onto either XG’/G’ or YG'/G’ has cardinality m and so U’ # 1. Thus
every abelian subgroup A satisfies the condition |4G’/G’| < m and hence
|[4/(A N G) < m.But4 | G’ <1 Gandso |4/A;| < m. Hence, by Lem-
ma 2.3, |4¢: A| < m for each abelian subgroup 4. But G’ = {z,; a < p)
has cardinality .
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