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SINGULAR NONLINEAR EVOLUTION EQUATIONS 

R. E. SHOWALTER* 

ABSTRACT. Sufficient conditions are given to obtain existence and 
uniqueness of strong solutions to u'(t) + A(u(t)) 3 f(t) on (— oo, 0) 
where A is a maximal monotone operator in Hilbert space. Applica­
tions to certain nonlinear problems for partial differential equations 
are described. 

1. Introduction. We shall consider nonlinear evolution equations of the 
form 

(1.1) ~jp- + MO + A<t)) 3f(t), - oo < / < 0, 

in a Hilbert space H, where ju e R, the real numbers, and A is a maximal 
monotone operator in H [2]. The solution will be obtained in the Hilbert 
space 34?m of functions u: (— oo, 0) -• H which are square-summable with 
the measure e~2(0t dt for appropriate co e R. That is, u e W)f((—co9 0), H), 
the class of functions u in j ^ m whose (strong) derivatives u' belong to J?^ 

We first show that the linear operator "(djdt) + ft" is maximal mono­
tone on j ^ œ when y. + oo è 0. Then we obtain 

THEOREM 1. Let A be maximal monotone in H, ,4(0) B 0 and co + y > 0. 
For each fe W]^2{{— oo, 0), H) there exists a unique solution we 
^ ( - o o , 0 ) , H ) * / ( l . l ) . 

For a restricted class of maximal montone operators, the subdifferen-
tials, we obtain a corresponding result. Let <p: H -• R U {+00} be a 
proper, convex and lower semicontinuous function. The operator on H 
defined by 

d<p(u) = {/e H: (/, v - u)H S p(v) - <p(u) for all v e H} 

is a maximal monotone d<p called the subdifferential of <p [2]. 

THEOREM 2. Let <p: H -• [0, +00] be convex and lower semicontinuous 
with <p(uQ) = Ofor some u0 e H. The operator "(d/dt) + y + dcp" is maxi­
mal monotone on ^^ in each of the following situations: (a) y è 0, 
2(o + y ^ 0 û«d 0/?e of y = 0 or <p(0) = 0 or 00 < 0; (b) y < 0, there is a 
p ^ 2 swc/z fAaf 0>(AH) ^ P<p(u) for all X^ 1, and 2co + py > 0. //; //? 
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addition, co/u ^ 0, then for each feJtf'a there exists a unique solution us 
W);%(- oo, 0),H) of (1.1). 

Both of these Theorems will be obtained from known results (e.g., 
from [2]) on the perturbation of maximal monotone operators in Hilbert 
space. Related results for (1.1) were given in [1], [7], [8, pp. 505-511] and 
[10]. 

The preceding results apply immediately to the singular equation 

(1-2) ~ ^ - + /uv(s) + AW)) 3 *('), -oo£s0<3<Sl, 

where b is a locally-integrable positive function on the interval (% s{). 
The effect of the singularity at s0 and sx can be determined by the change-
of-variable t = B(s) where B is an absolutely continuous primitive of b 
on (% Sx). Thus, v is a solution of (1.2) if and only if the function u = 
v o B~l satisfies (1.1) on the interval (B(s0), Bfa)). If B(s0) > - oo, then the 
Cauchy problem is appropriate for (1.2). If B(sQ) = - oo, then (1.2) is 
uniquely resolved (without initial data) by applying Theorem 1 or Theorem 
2. Also see Theorem 6 of [5]. 

Related results for periodic solutions of (1.1) follow from the above 
when fx > 0. For example, if f e L2((—T, 0), H), then its T-periodic ex­
tension belongs to jf^ for every œ < 0. Choosing co = — ja/2, we apply 
Theorem 2 to obtain a solution of (1.1) which is T-periodic since fis T-
periodic. Theorem 1 similarly applies when / G Wl>2 (( — T9 0), H) and 
f(-T)= f(0). See [2] for related results. 

2. The Singular Problem. Let L^ be the operator on jf^ defined by 
LJu) = du/dt - cou with domain D(LJ = W)f ( ( - oo, 0), H). 

PROPOSITION. LW is maximal monotone on 3^^ and for each u G D(L^) 
we have 

lim e-^uif) = 0 
f__oo 

in H. Finally, for each X > 0 we have (X + LJw = /ifand only if 

(2.1) i/(0 = P /($>?<*-»><*-<> ds, - oo < t < 0. 
J —oo 

PROOF. We first consider the case of w = 0. Suppose X > 0 and 
(X + L0)u = / . Then 

eXtu(t) - ehu(s) = | f(r)elrdr, s < t <; 0, 

|e*'n(/) - eXs<s)\2H ^ f \f(r)\2 dr -^j(e2U - e2^ 
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so lim^_00 eXtu(t) = c exists in H and we have 

u(t) = cer* + P f(s)eu*-» ds, t g 0. 
J —oo 

Below we show the second term is in jf0; the first term belongs to jf0 only 
if c = 0 so we obtain (2.1) for u e D(L0). 

Now let /e j f 0, X > 0, and define u by (2.1) with co = 0. The indicated 
integral converges because/e 34?0

 an<i £2As is integrable on (— oo, t). Note 
that 

x V £?*<*-<> & = i, ;tw(o = f y f r M ^ * - » } *» 
J —oo J —oo 

so the convexity of £ »-» | £ |^ implies 

(2.2) ^2|«(0|lf â f I / W I M ^ « - » } * . 
«J —oo 

This gives by Fubini's theorem 

^||«|5.a è f° f° \f(s)\% te«-» dtds è \\f\\^, 
J —oo J s 

so w e Z)(L0)and /l||w||^0 g ||/||jr0. This shows (A + £o)_1 i s bounded by 1/A 
for each X > 0, hence, L0 is maximal monotone on jf0. Finally, from (2.2) 
we obtain 

(2.3) 4<(0M P \f(s)\%ds,t^0, 
J —oo 

so «( — oo) = 0. This finishes the case co = 0. 
For the general case note that/e jif^ if and only if fe-œt e j$?Q and from 

above we have for X > 0, (X + LJu = ((A - co) + A))w = / i f and only if 

hence 

J —oo 

J —oo 

Thus (A 4- A»)-1 is bounded on Jf a by 1/A for each X > 0, thereby showing 
Lw is maximal monotone, and l im^^ e-^uit) = 0 as above. 

REMARKS. From (2.3) we obtain the uniform bound 

sup{e-«<|W(0|/,} ^ | | / |k/^1 / 2^>*°> 

where u = (X + LJ-1/. (See [5, 7, 8] for related results). 
For each /^eR with o> + ju > 0 we have L_^ = L0 + ju strongly mono­

tone on tfa\ 
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((L0 + p)u, u)^w ^ (a + //)|H|äv ueD(L0). 

This implies the uniqueness claims in both of the theorems. 

PROOF OF THEOREM 1. Define the maximal monotone operator sé on 
œœ by v G sé(u) if v(0 G A(u(t)) for a.e. / < 0. Then (1.1) is of the form 

(2.4) L » + sé(u) + (œ + fi)u af 

in Jf w. We approximate sé by the Lipschitz monotone sé x
 a n d consider 

the family of problems 

(2.5) LJud + sé lui) + (œ + / ^ = / , A > 0. 

From Theorem 2.4 of [2] it follows that (2.4) has a solution if and only if 
{^x(ux)}x>o is bounded. But Lemma 2.5 of [2] shows {W }̂A>O is bounded so 
it suffices to show {LwwA}A>0 is bounded in j ^ œ . To this end, let h > 0 and 
extend/and hence, the solution of (2.5) to (— oo, h) appropriately. Then 
we have (by monotonicity of Ax) 

y 4t N ' + h) " ^(°l^ + VH* + A) - ^(01?/ 
<W + h) -f(t\ux{t + h) - ux(t))H 

i r i < \f(t + A) - / " (0 | l / + (/i + û>)|tt(/ + A) - */(0|à , 2 i / i + û) 

f ^ 0. 

From this follow the estimates 

-^{\ux(t + h)- «XOft*<«-»») <S - _ L _ | / ( / + A) -f(t)\%eWi, 

\ux(t + h) - ux(t)\% e<r-«>t ^ \Ux(T + h) - ux(?)\2
He<i>-»>* 

+ ~ ^ $'r\f(s + A) - f(s)\2
H eW ds, t < 0. 

Since fj. — co ^ — 2co we have by the Proposition 

lim \ux(z)\z
H e^-^T ^ lim \UX(T)\% e~2<ur = 0 

r-»—co T~>—oo 

so from above we have 

\ux{t + h)-ux(t)\*He-*»t 
^ —— f I f(s + h) - f(s)\2

H e'*"5 <?</*+"> (i~s^ ds, 
ft + Ù) J -co ' ' 

f° \ux{t + h)-ux{t%e-*«<dt 
J —CO 
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^ — ! — f° \f(s + h) - f(s)\2
H e-*™ [°e(ß+«>) <*-'> dt ds 

fi + CO J -oo ' ' J s 

Dividing by h2 and letting h -> 0 we obtain 

(2.6) 
dt < 

1 
dt 

, * >0, 

and this yields the desired result. 

PROOF OF THEOREM 2. Define the convex lower semicontinuous 0: j ^ œ 

- [0, oo] by 

0(w) = I (p(u(t))e-2u)t dt. 
J —CO 

Since 0(wo) = 0, it is proper. Note 0(0) < oo if co < 0 or ^(0) = 0. We 
shall apply Proposition 2.17 of [2] to show L0 + /a + 30 is maximal mono­
tone; thus, if X > 0 and [I + X(L0 + fi)]ux = u, it suffices to prove there is 
a constant C such that 0(ux) ^ 0{u) + AC for all sufficiently small I > 0. 
From our Proposition above we have the representation 

(2.7) ux{t) = f° u(s) exp(J-*j^ (s - o V 1 ds. 

Since 

1 +*Mt r. expi ( j - / ) U - 1 & = (1 + V) - 1 , 

we multiply (2.7) by 1 + Xju and apply the convex p to obtain 

» expf l-±-^± 2 û^-(s - 0 J (1 + A/i/^e-2- &. 

From Fubini's Theorem follows 

1 + Ifx + 2coÀ 

= I (p(u(s)) ev r i / ^ 
J —CO 

1 + Aju 
0((1 + ^ K ) 

g f ^(«(5))e-2^ f° exp(_L±Jg + 2wk (s - o) ( l + X/i + 2coAM) * A 

è 0 («), 

where ^ > 0 is so small that all coefficients are positive, so a rescaling of 
u, ux gives 
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If fi = 0, the desired estimate holds (with C = 0) for any œ ^ 0. If ju > 0, 
we use the convexity of 0 at 0 to obtain 

w ' - 1 + ^ + X2œ V 1 + Xfj. \ + Xfi J 

1 
1 + X(/i 4- 2Û>) 

r{0(W) + ^0(O)} 

so the desired estimate holds if ju 4- 2a> ^ 0. Finally, if // < 0, then 
(1 4- Xft)~l > 1 so from (2.8) follows 

0(ux) ^ [1/(1 + X(ß + 2o>))(l + A/i)^-i](P(i/) 

and the coefficient will be less than one for all X sufficiently small. (Use the 
binominal expansion and the hypothesis p/u 4- 2o) > 0.) The preceding 
shows L0 4- ju 4- 30 is maximal monotone. With the above hypotheses, 
if cojLi ^ 0, then œ 4- fi > 0. So the operator is strongly monotone on tf^ 
and, hence, surjective. 

3. Applications to PDE. We briefly describe certain applications of the 
preceding results to the existence theory of nonlinear problems in partial 
differential equations. Such problems have motivated many developments 
in the theory of maximal monotone operators, so applications like those 
below are naturally anticipated. These examples were presented in [3], to 
which we refer for detailed proofs and supplementary material, and they 
are not intended to be best possible in any sense but serve only to suggest 
the types of results that can be so obtained. 

Let Q be an open set in R» with boundary r an (n — l)-dimensional 
manifold and Q on one side of r. Hm(Q) denotes the usual Sobolev space 
of (equivalence classes of) functions u e L\Q) such that each derivative 
Dau G L\Q) when order \a\ S m- Hff{Q) consists of functions u e Hm(Q) 
for which the trace on T7 of each derivative up to order m — 1 vanishes a.e. 
on r, and H~m(Q) is the dual of Hff(Q). Finally v is the unit exterior nor­
mal on r and djdv is the corresponding normal derivative (trace) on T7. 

EXAMPLE 1. Lety^ andy2 be functions R -> [0, oo] which are convex, 
proper and lower semicontinuous withy^O) = 0, k = 1, 2. Denote their 
respective subdifferentials by ßh = djk; thus, ßl9 ß2 are general maximal 
monotone operators in R with ßk(0) a0 , k = 1, 2. Let H = L2(Q), and 
define 

(3.1) <p(u) = 1 Jö(|Vt/|2 + e|n|2 + 2j\(u)) dx + ^j2(u) ds 
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with effective domain 

D(<p) = {us m(0):ji(u)eL\Q)andy2(w)eL\D}. 

The number e > 0 will be prescribed below. Then <p is convex, proper and 
lower semicontinuous on H and its subdifferential is characterized by 
fe d<p(u) if and only if u e H2(Q) and 

— du + eu + /3i(w) a / a.e. on Q, 

(3 2Ì 
| ^ + ß2(u)3 0 a.e. on/7 , 

where J denotes the Laplacian in Q. 

COROLLARY 1. Let co > 0. Then for each f e W^2((-oo,OX Iß(Q)) there 
exists a unique u e W]*2((—co9 0), L2(Q)) such that for a.e. t < 0 we have 
«(., t)eH\Q)and 

-~- - au + ßi(u)sf a.e. o n û x ( - oo,0), 

(3.3) 
4 p 4- /32(w) 9 0 a.e. on T7 x ( - oo, 0). 

Assume in addition there is ap §; 2 such that 

(3.4) y ^ r ) ^ XP Mr) for allX^l,reR. 

Then the above holds for each f e ^ ( L 2 ( £ ) ) . 

PROOF. Choose ju such that — co < fi < 0 and set e = — // . The first 
part is immediate from Theorem 1 applied to the convex function (3.1); 
cf. (3.2). The second part follows from Theorem 2(b) by choosing 
-2ù)/p < ft < 0. 

REMARKS. The solution of (3.3) satisfies 

lime-»<||«(.,0|L2(o) = 0. 
t-*—oo 

This follows from our proposition above. 
In like manner we can discuss more general equations, specifically, those 

for which du/dt has coefficient l/b(t) as in (1.2) and the nonlinear A is 
monotone in its principle part. The boundary condition in (3.3) contains 
the three classical types and is of interest even when ß2 or ß2

l is a function. 
Variational inequalities arise from (3.3) when ßx, ß2 are "multivalued"; 

[6, Ch. 1] contains a general discussion. We mention two cases in regard 
to(3.4). First, if /3(0) = ( - oo, 0] and ß(r) = 0 for r > 0, then v 4- ß(u)a0 
if and only if u ^ 0, v ^ 0 and uv = 0. The corresponding applications 
include problems of semi-permeable constraint [6], the one-phase Stefan 
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free-boundary problem [9], and optimal stopping time problems [1]. 
Second, if /3(0) = ( - oo, 0], ß(r) = 0 for 0 < r < 1, and ß(l) =[0, oo), 
then v + ß(u) B 0 if and only if one of u = 0 and v ^ 0, 0 < u < 1 and 
v = 0, or u — 1 and v ^ 0. This corresponds to certain problems of con­
trol ("climatization" in [6]). Note that the convex j , ß = dj, satisfies (3.4) 
in the first case but not in the second. 

EXAMPLE 2. Let j : R -+ [0, oo] be a convex, proper and lower semicon-
tinuous function with y(0) = 0. Assume that the subdifferential ß = dj is 
onto R. Choose H = H~l{Q) and define 

(p(u) = \ j{u)dx 

with domain D(cp) = {u e Ll(Q): j(u) e Ll(Q)}. Then <p is convex, proper 
and lower semicontinuous on H and its subdifferential is characterized by 
fe d(p(u) if and only if ( — zJ)_1/e ß(u) a.e. on Q. Recall — A is an isomor­
phism of HliQ) onto H-\Q). Thus we have 

d(p(u) = { - Jv: v G Hl
0(Q), v(x) G ß(u(x)) a.e. x e Q). 

For e > 0 (to be chosen below) we consider 

<Pe(u) = <p(u) + (e/2) [u, u]ff-H0), u G D(<p\ 

where the scalar-product on i/_1(ö)is given by <w, ( — J)-1w>. We similarly 
obtain 

d(p£(u) = {eu — Aw v G H\(Q), v(x) G ß(u(x)) a.e. xe Q}. 

The proof of Corollary 1 gives the following. 

COROLLARY 2. Let œ > 0. For eacA / G ^ 2 ( ( - O O , 0), H-\Q)) there 
exists a unique pair u G W];2{{— OO, 0), H~l(Q)) and v G JtfJflliQ)) such 
that u(-, t)e Ll(Q)for a.e. t < 0 and 

(3.5) a / 

v e /3(w) a.e. o« û x (-00, 0). 

If we assume in addition that j satisfies (3.4), then the above holds for each 
fejPJiH-KQ)). 

REMARKS. AS before, we have the asymptotic behavior 

lime--'||W(-,0|U-i(O) = 0 . 

Applications of (3.5) include the porous media equation and two-phase 
Stefan problems [4, 8]. 
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