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CECH THEORY: ITS PAST, PRESENT, AND FUTURE 

DAVID A. EDWARDS AND HAROLD M. HASTINGS1 

ABSTRACT. We survey the development of Cech Theory with an 
eye towards certain recent developments in the homotopy theory of 
pro-spaces. 
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1. Introduction. The main problem in topology is the classification of 
topological spaces up to homeomorphism. Recall that two topological 
spaces X and Y are said to be homeomorphic if there exist continuous 
maps / : A"-» F a n d g : Y-+ A" such that/og = l r a n d g o / = lx. This prob
lem is very difficult. As is usual in mathematics, when one is faced by a 
very difficult problem, one first tries to solve an easier problem. Hence 
arises homotopy theory. The main problem in homotopy theory is the 
classification of topological spaces up to homotopy equivalence. Recall 
that two continuous maps/, g: X-+ Fare said to be nomotopic, denoted 
f ^ g, if there exists a continuous map F: X x [0, 1] -> Y such that 
F(x, 0) = f(x) and F(x, 1) = g(x). Two topological spaces Zand Fare now 
said to be homotopy equivalent (or to have the same homotopy type) if 
there exists continuous maps / : X -• F and g: Y -> Xsuch that fog ~ \Y 

and gof ~ 1^. This is still too hard a problem in general. So one first 
attacks the problem for a particularly nice class of topological spaces, 
namely compact polyhedra. Poincaré was the first person to systemati
cally study the classification problem for polyhedra. In [136], Poincaré 
associated certain numerical invariants (namely, the Betti and torsion 
numbers) to a complex. These invariants are homotopy type invariants 
and can often be used to show that two complexes do not have the same 
homotopy type. During the late 1920's, under the influence of E. Noether, 
Poincare's constructions were reinterpreted as defining the integral homol-
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ogy groups of a complex. Now that finite complexes were reasonably well 
understood, the stage was set for the attack to "approximate" bad spaces 
by nice spaces, for example, complexes. In §2, we will describe the early 
(1925-1945) development of these ideas by Alexandroff, Lefschetz and 
Christie. In §4, we will describe the recent (1968-) rebirth and further devel
opment of these earlier ideas initiated by Borsuk and called by him shape 
theory. In §3, we will describe how very similar ideas were developed by 
Algebraic Geometers during the period 1950-1970 in their attempts to 
prove the Weil conjectures. In §5, we will describe a more sophisticated ap
proach to the homotopy theory of pro-spaces [70] called Steenrod Homo-
topy Theory. §6 consists of a list of open problems. 

2. Cech Theory. During the late 1920's, P. Alexandroff [7] showed that 
any compact metric space can be approximated by an inverse sequence 
of finite complexes. More precisely, Alexandroff defined a projection 
spectrum to be an inverse sequence of simplicial complexes and onto sim-
plicial maps, 

v /o v , fi Ao <— Ai* - •••> 

and showed that every compact metric space was the topological inverse 
limit of some projection spectrum (the topological inverse limit of a 
sequence 

^ 0 * A l < • • • 5 

is the subspace of the product II^O^Y consisting of points (xQ, x1? . . . ) 
such that fi(xi+i) = x{). Alexandroff also showed that the projection 
spectrum can be chosen in the following way. An open covering of a topo
logical space X is a family {Va}aŒA of open subsets of X such that U a(=AVa 

= X. The nerve of { Va}, N{ Va}a^A, is an abstract simplicial complex having 
as vertices the elements of A and as typical «-simplex an (n + l)-tuple (a0, 
cc\9 . . . , ccn) of elements of A such that the intersection f}?=0Va. is non
empty. Figure (2.1) below illustrates the notion of the nerve of a covering. 

6 ^ ^ ' K U U ^3,6 U K5,2 = S1 
5 Y~y 2 

4 3 

VIA 

(^1,4^5.2) / \ (VlAiV^) = N{VlA, K3i6, K5)2}. 
V5,2 ^3,6 

( * 5 . 2 , ^3,6) 

Figure (2.1) 
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A covering { Wß}ßeB is said to refine { Va}aeA if there exists a refining map 
v\B -+ A such that Wß c Vv(ß). A refining map v induces a simplicial 
map v* : N{ Wß} -> N{ Va} in the obvious manner. Alexandroff showed 
that every compact metric space X admits a sequence of finite open cover
ings {V2}a<=A„ a n d refining maps vn : An+1 -> An such that the sequence of 
nerves 

N{V°}J±N{V$< 

is a projection spectrum with inverse limit homeomorphic to X. 
In [40] Cech extended Alexandroff's ideas to more general topological 

spaces by associating to any topological space its inverse system (indexed 
by a partially ordered directed set) of nerves of finite open coverings. This 
definition is only useful for compact spaces; for general spaces one should 
use the inverse system of nerves of all open coverings. Another problem 
is that the refining maps are not unique (though they are unique up to 
homotopy since any two are contiguous). One way around the nonunique-
ness problem is to follow Dowker [55] and to define a second type of nerve 
associated to any covering {Ua} of a space X. Define the Vietoris nerve of 
{Ua}, VN{Ua}, to be the abstract simplicial complex whose vertices are 
the points of X and whose typical «-simplex is an (n -f l)-tuple of points 
(x0,xh ...,xn) of X such that for some a, {x0, ..., xn} c Ua. If {Wß} 
refines {£/«}, then the identity map on ^determines a canonical simplicial 
map VN{Wß} -• VN{Ua}. Unlike Alexandroff's nerve, the Vietoris nerve 
is no^easy to visualize. This is the price one must pay in order to "rigidify" 
the Cech construction. On the other hand Dowker [55] showed that 
N{Ua} and VN{Ua} have the same homotopy type. 

In [114] Lefschetz penetrated deeply into the problems involved in the 
study of locally compact infinite complexes and of compact metric spaces. 
We refer the reader to [114, p. 295-297, 325-328, 334]. In Chapter VI of 
[115] Lefschetz studies inverse systems of complexes which he calls nets. 
A systematic study of the homotopy theory of nets was given by Lef-
schetz's student D. Christie in his Princeton doctorial dissertation (see 
[50]). 

3. Étale Homotopy Theory. In [178] Weil made several conjectures 
which have had a profound effect on the development of algebraic 
geometry in the past twenty-five years. It became clear that what was 
needed in order to attack the Weil conjectures was a suitable theory of 
varieties in characteristic p and a good cohomology theory such that 
non-singular varieties satisfied Poincaré duality and a Lefschetz fixed 
point theorem. Grothendieck undertook the development of such a 
theory. We now describe some of the ideas he introduced. 

DEFINITION 3.1. A Grothendieck topology r on a category C consists of 
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a category C = Cat(V) and a set Cov (r) of families {Ut- ->& U}ieI of 
maps in Cat (z) called coverings (where in each covering the range U of 
the maps fc is fixed) satisfying : 

1. If <f> is an isomorphism, then{^} G Cov (T). 
2. If {U{ - U}eCow(z) and {V{j -+ tfJeCovfr) for each /, then 

the family { F l7 -* £/} obtained by composition is in Cov (r). 
3. If {Ui -> t /}eCov(r) and K-• C/eCatfr) is arbitrary, then the 

fiber product U{ x u F exists and {Ut- x v V -+ V) G COV (r). 

3.2. The Classical Grothendieck Topology. Let I be a topological 
space and let Cx be the category whose objects are the open subsets of X 
and whose morphisms are given by 

cx(u,v) = ^[{U(tV 

[the inclusion map, if U c V. 
Define Cov (TX) by : {Ua -> £/} G COV (r*) if and only if U A = C/. In 
this case, condition 3 of (3.1) just states that the restriction of a covering 
is a covering. 

3.3. The Étale Topology of Schemes. If X is a scheme, then there are 
serverai natural Grothendieck topologies one can associate with X. In 
particular, besides the Zariski topology Zx, one also has the étale topology 
Ex. One takes as objects of the étale topology on X, not only the Zariski 
open subsets U of X, but also surjective étale mappings V -> U (an étale 
map should be thought of as a finite covering space). 

If V -+f X and W -** Xzre objects of Ex, then Ex(f, g) is the set of 
morphisms from Kto Wover X, i.e., the set of commutative diagrams 

V > W 

\ / -
X 

Unlike the classical case (3.2), Ex(f9 g) may have more than one element. 
{ Va ->/« Ua} is a covering in Ex if U af(K) = U. (See [11] or [12] for more 
details concerning Grothendieck topologies and the étale topology.) 

DEFINITION 3.4. If % is a Grothendieck topology, then a contravariant 
functor from Cat (r) to the category of abelian groups, Ab, is called a 
presheaf of abelian group on r. A presheaf F on z is a sheaf if it satisfies 
the following extra condition : 

For each Ue Cat (r), and each {U( -+fi U} G COV (r), and each family 
{Si\SieF(Ui) with FfaKS,-) = Ffe)(5y) in F(tf, x^C/y), there is a 
w«/̂ w^ Se F(U) such that i ^ - ) (S) = 5,- in F(C/,-). Here %x and ^2 are the 
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natural projections on Ut- x u Uj. In fancier language, we require that 
the sequence of sets 

F{u) J ™ , n,F([/>.) =£^U n F{Ui x v Vj) 
F(n2) ij 

be exact. 
Let P(T) denote the category of presheaves on z and let S(z) denote the 

full sub-category of P(z) consisting of sheaves on z. (See [120] for basic 
categorical language.) The natural inclusion S(z) -> P(z) has an adjoint 
#: P(z) -+ S(z). If Fe P{z\ then #(F) = F# is called the sheaf associated 
to F. P(z) and S(z) are abelian categories (abelian categories are categories 
having many of the formal properties of the category of abelian groups; 
see [120]). 

If C is an abelian category, then an object / of C is said to be injective 
if the contravariant functor A »-> C(A, I) is an exact functor from C to Ab 
(equivalently, whenever A -* B is a monomorphism in C, the induced map 
C(B, I) -» Q/(, / ) is surjective). The category C is said to have enough 
injectives if every object in C can be embedded in an injective object. 
The categories P(z) and S(z) have enough injectives. If C has enough 
injectives, then every AeC has an injective resolution, i.e., there exists 
a long exact sequence 

(3.5) 0—>A-^P-^n^... 

with each /* injective. If T is a covariant additive left exact functor from 
C to Ab (or, more generally, to any abelian category), then applying 
Tto (3.5) yields a (non-exact) chain complex 

(3.6) 0 —> T(P) ^ l T(F)T-^ ... 

The cohomology groups of (3.6), 

RPT(A) = HP(A, T) = Ker T(iP) / Im T{i^) 

depend (up to isomorphism) only on T and A and not on the choice of 
injective resolution (3.5). RPT is called thepth right derived functor of T. 
R°T = Tand, if A is injective, RPT(A) = 0 for/? > 0. 

If r is a Grothendieck topology and £/ G Cat(?r), then U determines 
covariant functors T7^: p(z) -> Ab and T7^: 5(r) -> Ab and their derived 
functors RPTPU and RPFf/. If A" is a scheme and Ex is the étale topology 
for X and F is an étale sheaf on X (i.e., on Ex), then RPFX(F) is called 
the étale cohomology of X with coefficients in F and will be denoted by 
HePt(X; F). RPFp

x(F) is called the Cech cohomology of X with coefficients 
in Fand will be denoted by HP(X; F). Hft is the 'good' cohomology theory 
which was needed in order to attack the Weil conjectures—an attack 
which has now been successfully completed by Deligne [52]. In general, 
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the Cech and étale cohomology theories differ; but there is always a 
spectral sequence connecting them. 

The above difinition is pretty, but it is difficult to compute with. The 
following is a more traditional definition of H. Let {V{ -•& X) be an étale 
covering of X and 

where 'JJ_' denotes coproduct, i.e., disjoint union. Form the 'simplicial 
object' (see [126]) 

(3.7) VB V xxVm V xxV xx V—. 

Applying F to (3.7) yields the cosimplicial abelian group 

(3.8) F{V)^F{VxxV)m-. 

Taking alternating sums of the coface maps in (3.8) yields the cochain 
complex 

(3.9) F(U)-^F(V xxV)-^-». 

The cohomology groups of (3.9) will be denoted Hk(V -> X\ F). W -> X 
is said to refine V -+ X if there exists a commutative diagram 

Such a v, called a refining map, induces a homomorphism Hk(V -> 
X; F) ->v* Hk{W-+ X\ / ) , which turns out to be independent of the choice 
of refining map. One thus obtains a direct system of abelian groups 
{Hk(V->X; F)} indexed by the directed set of étale coverings of X 
ordered by refinement. One now defines 

H*(X; F) = colim {Hk(V -+ X\ F)}. 
(coverings of X) 

The reason that one obtains Cech cohomology instead of étale coho
mology by this construction is that there are not enough étale coverings 
of X. We only used the coverings in order to obtain the simplicial objects 
(3.7). A hypercovering of X is a simplicial object 

(3.10) v. = (KO e vlm v2 •••) 

in Ex such that the canonical maps V° -> X and Vn+l -• (Cosk„ V.)n+X 

are coverings (see [13]). Simplicial objects of the form (3.7) are not, in 
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general, cofinal in the collection of all hypercoverings of X. The homotopy 
category of hypercoverings of X, HR(X)9 forms a filtering category (a 
concept more general than directed set; in particular, instead of at most 
a unique morphism /' -• /, one is merely required to have for any pair 
of morphisms /' =S /, a morphism i" -» /' =£ / such that the compositions 
/" =£ i are equal). For a hypercovering V., we can form, as above, coho-
mology groups Hk(V.; F). One now obtains 

Hk
et(X; F) = colim {H*(V.\ F)}. 

(hypercoverings of X) 

While the above construction is adequate for obtaining the étale 
cohomology of schemes, it does not yield other homotopy type invariants. 
What one would really like is a Cech-like construction which associates 
an inverse system of complexes to any scheme. Here is such a construction 
[13, p. I l l ] (see [116] for an alternative construction). An object F in a 
Grothendieck topology z is called connected if V is not the initial object 
^, and V has no non-trivial coproduct decomposition, i.e., V = V\ _|]_ V2 

implies Vt = (j) for exactly one /. z is called locally connected if every 
object of r is a coproduct of connected objects. Associating to an object 
its set of connected components yields a functor % : z -• Sets. Applying 
% to the hypercovering V. of (3.10) yields a simplicial set 

(3.11) n(V.) = (ff(KO) e tf(Ki) m 7ü(V*) •••). 

One thus associates to every locally connected scheme ^ t h e inverse system 

(3.12) Xet = Ï[EX = WV.)}V.ŒHR{X) 

in the homotopy category of simplicial sets, Ho(5,S), indexed by the filter
ing category HR(X). One would like this association to be functorial. For 
this purpose one must first define an appropriate category of inverse 
systems. Such a definition is implicit in [50] and was first made explicit in 
[88]. To any category C there is an associated category pro-C whose objects 
are inverse systems {A^^j in C indexed by filtering categories /and whose 
morphism sets are defined by 

pro-C({^}7, {BJ}J) = lim7 colim, {C(Ai9 Bj)}. 

In pro-C cofinal objects are isomorphic; hence, the isomorphism class of 
{At} in pro-C is its 'germ at oo'. (See the appendix of [13] for a systematic 
discussion of pro-theory.) Now let Schemes/C denote the category of locally 
connected schemes. Then the étale construction defines a functor 

(3.13) Schemes/C - ^ pro-Ho^S). 

Similarly, the ordinary Cech construction defines a functor 
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(3.14) Top - ^ pro-Ho(SS). 

Étale (Cech) homotopy theory is the study of the invariants one can 
associate to schemes (topological spaces) using the functor E(C). The first 
step in this study is a systematic investigation of the algebraic topology of 
pro-Ho(SS) (the algebraic topology of Ho(SS) is developed in [127]). 
This was largely accomplished by Artin and Mazur in [13]. 

Basic to much of the work in [13] is the extension of the functorial 
Postnikoff decomposition from SS to pro-SS. If X e SS, then one has a 
simplicial set, the nth coskeleton of X, Cosk„Z obtained from X by "killing 
homotopy" in dimensions greater than or equal to n. CoskM can be made 
into a functor Cosk„ : SS -> SS (see [13]). Combining the Cosk„ for various 
n yields a functor *\:SS-> pro-SS defined by \ (X) = X* = {CoskMZ}. 
t| extends to a functor 4: pro-SS -» pro-SS, where {XaY = {Coskw^a}. 
From now on we work with the pointed categories SS*, Ho(SS*), etc. 
For X = {Xa} e pro-SS*, we define the homotopy and homology pro-
groups of A^as 

7Z„(X) = {ic„(Xa)} G pro-Groups 

and 

Hn(X; A) = {Hn(Xa; A)} G pro-Ab, where A G Ab. 

With the above notation, the "Fundamental Theorem of Covering 
Spaces" and the "Hurewicz Theorem" are easily extended to pro-SS* 
(see [13]; also compare with [76], [117], [113]). On the other hand, the 
"Whitehead Theorem" is much more subtle. Let/: X -> 7 be a morphism 
in pro-SS0 (SSQ is the category of pointed, connected simplicial sets) such 
that/*: 7cn{X) -> 7tn{Y) is an isomorphism of pro-groups for all n. Then, 
Artin and Mazur [13; p. 37] showed that/always induces a homotopy 
equivalence of Postnikoff systems (i.e., / " : X* -> Y* is invertible in 
pro-Ho(SS0)), but may not itself be a homotopy equivalence. A simple 
counter-example is the unique map from {V*>»S*}«>o t 0 a point. Under 
appropriate finite dimensional or "movable" assumptions, it is possible 
to show t h a t / itself is a homotopy equivalence (see [13, Theorem (12.5)], 
[133], [122], [64], [67], [132], [61], [80], [70, §5]). In [701 a fibration F^ 
E -> fß in pro-SSo is constructed (using an interesting map of Adams [3]) 
such that F is contractible (i.e., homotopy equivalent to a point) but / i s 
not a homotopy equivalence. 

In [13; §12] Artin and Mazur considered the problem of comparing 
the classical homotopy type, XcU of a scheme Xover the complex numbers 
with its étale homotopy type Xet. They showed [13; Corollary 12.10, p. 
143] that, under reasonable hypotheses, Xet is canonically isomorphic 
(in pro-Ho(C^o)) to the profinite completion of Xcl. The Artin-Mazur 
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definition of the profinite completion of a CJF-complex is the epitome of 
the basic philosophy of Cech theory: namely, to approximate a bad object 
by an inverse system of nice objects. 

DEFINITION 3.15. A complete class C of groups is a full subcategory of 
Groups satisfying: 

a. O G C ; 

b. A subgroup of a C-group is in C. Moreover, ifO-+A^>B-*D-+0 
is an exact sequence of groups, then B e C if and only if A e C and D e C, 

c. If A, Be C, then the product AB of A with itself indexed by B is in C. 

EXAMPLES 3.16. The class of finite groups, or of finite groups whose 
orders are products of primes coming from a given set of primes, are com
plete classes of groups. 

Now let Cho(CWQ) denote the full subcategory of Ho(CW0) consisting 
of pointed CW-complexes whose homotopy groups are all in C. (Note: 
We pass freely back and forth between the equivalent categories 110(550) 
and Ho(CW0) by using the singular and geometric realization functors 
(see [127]).) For Xe CW0, let (XI C) denote the homotopy category of 
C-complexes under X, i.e., the objects of (XI C) are homotopy classes 
of maps X -> W, with We CHo(CWQ), and a morphism in (XI C) is a 
commutative diagram (in Ho(CWQ)) 

X 

A 
W > W. 

(X i C) is a filtering category. Hence, the functor (X -> W) *-* W deter
mines a pro-object, X, in pro-CHo(C^o)» called the C-completion of X. 
In fact, the C-completion determines a functor A pro-Ho(CJF0) -> 
pro-CHo(C^o) which is adjoint to the natural inclusion pro-CHo(C^o) 
-* pro-Ho(CW0). When C is the class of finite groups, X is called the 
profinite completion of X. 

REMARK 3.17. One can also obtain a functor M: Top -• pro-Ho(C^) 
by associating to X e T o p the pro-object of complexes under X. M is 
naturally equivalent to the Cech functor, Cn\ Top -> pro-Ho(CW), based 
upon "numerable coverings" (compare [123]). 

The tools described above were developed by Grothendieck, Artin and 
others with applications to algebraic geometry and number theory in mind. 
But they have also turned out to have important applications to algebraic 
topology. In his work on the Riemann-Roch-Hirzebruch Theorem, 
Grothendieck was led to associate to a scheme X the abelian group K(X) 
of vector bundles over A" (see [119]). In [17] Atiyah and Hirzebruch trans-
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lated Grothendieck's AT-theory into topological X-theory. This ^-theory 
has led to the solution of many important topological problems ; the most 
spectacular being Adams' solution of the vector field problem on spheres 
[5] and Atiyah and Singer's solution of the index problem for elliptic 
operators [18]. In [16] Atiyah introduced another important closely related 
group J(X\ In attempting to compute J(X), Adams, made a conjecture. 
In [140] Quillen presented a program for proving Adams' conjecture. He 
showed that a characteristic p version of the Adams' conjecture was im
mediately provable and that one could lift the characteristic p Adams' 
conjecture back to characteristic 0 by using certain comparison theorems 
of Artin and Mazur (see [13]; p. 143-146). Quillen's program was com
pleted by Friedlander [77] (see also [78], [141]). In [161] Sullivan showed 
that the Adams' conjecture was a special case of the much more general 
phenomena of "Galois symmetry" in the étale homotopy theory of alge
braic varieties (the Galois group of the algebraic numbers over the ration-
aïs acts on any rational variety V (continuously in the étale topology, but 
discontinuously in the classical topology) and, hence, acts on its étale 
homotopy type Vet). Sullivan's work was motivated by his interest in the 
structure of manifolds and by his previous work on the Hauptvermutung 
[163]. He was led to the study of the homotopy types of certain classifying 
spaces which naturally arise in geometric topology (such as Gl PL, see [30] 
for a readable survey). He quickly discovered that the prime 2 and the odd 
primes had to be treated differently. This led him to introduce the idea of 
fracturing homotopy theory into mod-/? components. These techniques 
have become very important in recent work in algebraic topology (see for 
example [25] and [96], or, for an elementary survey, [97]. 

4. Shape Theory. In the late 1960's Borsuk sparked an avalanche of in
terest in the study of the global homotopy properties of compacta (see 
[124] for a survey of the early development (through 1971) of shape 
theory). Borsuk's original formulation of the shape theory of compact 
subsets of Hilbert space [24] lacked the flexibility of Christie's formula
tion [50], but it had the advantage of being more geometric. This added 
geometry was quickly capitalized upon by Chapman in [41]. 

Let 

-n( - i , | )=e=n[- l . i4 
(Recall that Anderson (see [10]) has shown that s is homeomorphic to 
the Hilbert space /2). Following [24], [124] and [41], one defines the 
fundamental category or shape category, Sh, as follows. The objects of 
Sh are compact subsets of s. If X and Y are compact subsets of s, then a 
fundamental sequence/: X -> Y is defined as a sequence of maps/„ : Q -> Q 
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with the property that for every neighborhood V of Y in Q there exists 
a neighborhood U of X in Q and an integer n0 such that for n, n' ^ n0, 
the restrictions fniU and/„/ ) t / are homotopic in V. Note that/„(Z) does 
not have to be contained in Y; it only has to be near Y. Two fundamental 
sequences / , / ' : X -» Y are considered homotopic, / ^ / ' , provided that 
for every neighborhood V of Y in Q there exists a neighborhood U of 
X'mQ and an integer tf0 such that for n ^ n0,fniU andfnflLr are homotopic 
in K The morphisms in Sh are now taken to be homotopy equivalence 
classes of fundamental sequences. These definitions should be compared 
with those of Christie and Grothendieck. Two compacta X and Y con
tained in S are said to have the same shape if they are isomorphic in Sh, 

In [41] Chapman proved the following beautiful theorem. 

THEOREM 4.1 (CHAPMAN COMPLEMENT). If X and Y are compacta in s, 

then X and Y have the same shape if and only if their complements Q\X and 
Q\ Y are homeomorphic. 

Following earilier work of Chapman [43], Geoghegan and Summerhill 
[82], Hollingsworth and Rushing [98], Venema [173] proved the following 
finite dimensional version of Chapman's complement theorem. 

THEOREM 4.2 ([173]). Let X, Y cz Rn, n ^ 6, be compacta satisfying the 
inessential loops condition {an imbedding condition) whose shape dimensions 
are in the trivial range (i.e., 2 Dim (X) + 2 :g n). Then, X and Y have 
the same shape if and only if Rn\X and Rn\ Y are homeomorphic. 

COROLLARY 4.3 ([82]). Two compact submanifolds ofRn whose dimensions 
are in the trivial range have the same homotopy type if and only if their 
complements are homeomorphic. 

These complement theorems suggest that there might be an intimate 
relationship between the shape theory of compacta in s and the proper 
homotopy theory of complements in Q of compacta in s (e.g., given a 
Lefschetz fundamental complex L for X a s one can show that L x Q 
is homeomorphic to Q\X, and hence that L and Q\Xhavç the same proper 
homotopy type). Following Chapman [41] we define a map / : X -• Y to 
be proper if for each compactum B c Y there exists a compactum A c= X 
such that f(X\A) a Y\B. Then proper maps / , g: X -> Y are said to be 
weakly properly homotopic if for each compactum B c Y there exists 
a compactum A a X and a homotopy (dependent on B) F = {Ft} : X x 
[0, 1] -> Y suchthat F0 =f Fx = g, and F((X\A) x [0, 11] cz Y\B. If, in 
fact, there exists a proper map / : X x [0, 1] -> Y which satisfies F0 = f 
and Fi = g, then we say that / and g are properly homotopic. We thus 
obtain two categories, Ho(P) and w-Ho(.P), whose objects are comple
ments in Q of compacta in s and whose morphisms are proper homotopy 
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equivalence classes of proper maps and weak proper homotopy equiva
lence classes of proper maps, respectively. 

THEOREM 4.4 ([41]). There is a category isomorphism T from Sh to 
w-HoCP) such that for each object X e Sh, T(X) = Q\X. 

REMARK 4.5. The reason that Sh is isomorphic to w-Ho(P), and not to 
Ho(P), is because Borsuk's shape theory corresponds to Christie's theory 
of weak net—net homotopy classes of maps and not to a possible theory 
of strong net—net homotopy classes of maps (see §5). 

A natural question to ask is whether every weak proper homotopy 
equivalence is in fact a proper homotopy equivalence. We do not know 
the answer to this question; but we can show [71] that every weak proper 
homotopy equivalence is weakly properly homotopic to a proper homo
topy equivalence. See also Problem 2 of §6. 

Chapman and Siebenmann [41] [48] have considered the problem of 
finding a boundary for an open g-manifold (a g-manifold is a metric 
space which is locally homeomorphic to Q : see [9] for a survey of infinite 
dimensional topology through 1970). If W is a g-manifold, then W is 
said to admit a boundary if there exists a compact ß-manifold M and a 
compact Z-set X a M such that W is homeomorphic to M\X (X a Y 
is a Z-set in Y if for each open subset U in F, the inclusion U\X -> U 
is a homotopy equivalence [8] ; every compactum in s or in Q\s is a Z-set 
in Q ; likewise if X has infinite codimension or if X is a subset of dMk 

where Mk is a finite dimensional manifold). The finite dimensional version 
of this problem has been studied in [31], [150], [98] and [171]. The infinite 
dimensional problem studied by Chapman and Siebenmann is closest 
in spirit to the work of Tucker [171]. 

An obvious necessary condition for W to admit a boundary is that 
its end, E(W) = {W\C\C is a compactum in W}9 be isomorphic in 
pro-Ho(ANR) to the shape of some compactum X c s9 Sh(Z) = {U\U 
is open in Q and X c U} (this is an alternative approach to shape the
ory ; see [76]). The end of W is said to be tame if it has the shape of a compac
tum (one actually has to work in a pointed setting, but for simplicity of 
exposition we suppress this fine point). In [48] Chapman and Siebenmann 
develop and obstruction theory for tame ends such that: 1. W admits 
a boundary if and only if the obstructions associated to E(W) vanish; 
2. If W admits a boundary, then for any compactum X such that Sh(X) ^ 
E(W), there exist a compact g-manifold M with X a Z-set in M such 
that M\Xis homeomorphic to W, i.e., any compactum in the shape class 
of E(W) can be stuck on at oo to W\ 3. All possible obstructions are 
realized. 

REMARKS 4.6. For the finite dimensional problem studied by Sieben-
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mann is [150], the natural definition of tame end would be that the end of 
W have the shape of a (pointed) closed manifold. But with this definition 
not all obstructions are realized. Thus, Siebenmann was led to define a 
tame end to be one which is dominated in pro-Ho(^AT/?0) by a finite 
complex. He was then able to obtain a good obstruction theory in dimen
sions ^ 6. (This viewpoint will probably appear in the revised version of 
Siebenmann's thesis if the revised version ever appears). 

In [181] West has considered the problem of classifying principal 
compact Lie Group actions on Q0 and % the Hilbert Cube and the Hilbert 
space with a point deleted (note that s0 *s homeomorphic to s but that 
QQ is definitely not homeomorphic to Q). West first shows that any com
pact Lie Group G can act principally on QQ. Let C(G) = G x [0, \]/G x 
{0} be the cone on G. The natural left action of G on itself extends to an 
action with unique fixed point (the cone point) on C(G). The countable 
product Ilf C(G) is homeomorphic to Q [182] [183]. Hence we obtain a 
natural action of G on Q having a unique fixed point, the infinite vertex v. 
The restricted action of G on Q0 = nî°C((7)\{v} is free and principal 
(in the sense of Cartan [39]). Crossing QQ with s we obtain a principal 
action of G on s = s0 (the reason for working with s0 instead of s is that 
other natural ways of obtaining principal actions naturally occur on 
% e.g., the natural Z2-action on s0 obtained by sending J H —X on S 
and then deleting the unique fixed point 0. The actions described above 
will be called the standard actions on Q0 and sQ and any action not con
jugate to a standard action will be called exotic. 

Let p and a be two principal actions of G (a compact Lie group) on s. 
We will say that the actions are nice if the quotient spaces s0/p and s0/a 
are 5-manifolds (e.g., if G is finite, then this is always the case). In any 
case, since s0 in contractible, sjp and s0/a are both classifying spaces for 
G. Let/ : s0/p -> s0/a be a map such that the induced bundle/*(%a) over 
s0/p is isomorphic to the bundle (s0, p) (see [102]). Since fis a homotopy 
equivalence, if SQ/CT and s0la are both ^-manifolds, then / i s homotopic to 
a homeomorphism g (Henderson [95] has shown that any homotopy 
equivalence between ^-manifolds is homotopic to a homeomorphism). 
One thus obtains the diagram (4.7) of principal G-bundle isomorphisms 

SQ * > S0 1 > S0 

(4.7) 

So/p > s0/p — > s0/a 

h = <jj o (j) is an equivariant homeomorphism from (% p) to (% a); hence 
p and a are equivalent actions of G on % Thus, all nice actions of G on 
So are standard. 

g*{°) 
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The g 0 case is much more subtle. The main reason for this is that it is 
not true that a homotopy equivalence of g-manifolds is always homotopic 
to a homeomorphism. Instead, one has West's result [182] that every 
oo -simple homotopy equivalence of g-manifolds is properly homotopic to 
a homeomorphism. (One must first extend Siebenmann's oo-simple homo
topy [149] from locally finite simplicial complexes to g-manifolds by 
using either Chapman's triangulation theorem for g-manifolds [44] (i.e., 
every g-manifold M is homeomorphic to K x g for some simplicial 
complex K) or else Chapman's recent extension of simple homotopy 
theory to ANR's [45] (which itself rests on West's result [184] that any 
locally compact ANR is a CE image of a g-manifold (a proper map 
f:X -• Y is CE if for every y e 7, f~\Y) has trivial shape)). Note that the 
converse of West's result (i.e., every map which is properly homotopic to 
a homeomorphism is oo-simple) has been proven by Chapman [46] and 
implies the topological invariance of Whitehead Torsion (i.e., every 
homeomorphism is oo-simple).) Now let p and a be two principal actions 
of G on g0. Then West [181] has shown that there is a unique simple 
structure on Q0/p and on Qo/a. Hence, any proper homotopy equivalence 
/ : Qolp -"> ÖO/Ö" *s *n fac* °°-simple. The only thing holding up the com
pletion of the proof that p and a are equivalent is the fact that we do not 
know that Q0/p and QQ/a have the same proper homotopy type (they 
certainly do have the same homotopy type since they are both BG's). 
West originally expected to show that Q0/p and g0/<j are proper homotopy 
equivalent by using an infinite dimensional proper Whitehead theorem 
of E. Brown [30]; but the authors [72] have constructed a counter-example 
to Brown's theorem. Using a proper Whitehead theorem of the authors 
and some geometric constructions involving telescopes, the authors [70] 
have been able to show that (nice) p and a are equivalent if and only if 
their ends, E(Q0/p) and E{QQja), have the same shape. This still leaves 
open the question of the existence of exotic actions. If G is a finite group, 
then West showed [181] that E(QQ/p) is a pro-system whose universal 
covering has trivial shape. Call an inverse system {Xa} an Eilenberg-
MacLane pro-space if its inverse system of covering spaces, {Xa}> has 
trivial shape, and let K(G, 1) be the standard Eilenberg-MacLane space 
(see [127]). If {Xa} is not shape equivalent to K(G, 1), then we will call 
it an exotic Eilenberg-MacLane pro-space. If p is an exotic action of 
G on g0, then E(Q0lp) is an exotic Eilenberg-MacLane pro-space. The 
authors [70] have constructed uncountably many exotic K(Z2, 1); but 
we still do not know if there are any exotic Z2 actions on g 0 (on the other 
hand, work of Tucker [172] implies the existence of uncountably many 
different Z actions on g0). 

In [151] Siebenmann has introduced the concept of open /-regular 
neighborhoods as a natural generalization of polyhedral regular neighbor-
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hoods. Let ^ be a compactum in a metric space Y. An /-nest for X is a 
system NQ c A^ cz • •• of neighborhoods of X in Y such that, given any 
neighborhood W of X, there exists for each m ^ 0 an ambient isotopy of 
F, fixing Y\Nm+i and a neighborhood of X, which pushes Nm into PF. Any 
neighborhood of X in F expressible as U m>oNm, where {ATm} forms an 
/-nest, is called an /-regular neighborhood of X in Y. /-regular neighbor
hoods are open and unique up to isotopy if they exist at all (more precisely, 
if U and U' are /-regular neighborhoods of X in F, then there exists an 
isotopy gt: U -> F, 0 ^ t ^ 1, fixing a neighborhood of X, so that g0 is 
the inclusion and g\(U) = U'). Now let Y be an ^NÄ and define the 
extrinsic shape of X in 7 by ExShpf -> F) = {C/\Z|^ c t/ c F and U is 
open}. If X has an /-regular neighborhood U, then it is easy to see that the 
natural inclusion X -> U must be a shape equivalence. Hence, a necessary 
condition for J^ to admit /-regular neighborhoods in an ANR Y is that X 
have the shape of an ANR (and hence of a C^-complex). Under certain 
conditions this necessary condition is also sufficient. In particular, Sieben
mann has proven the following results. 

THEOREM 4.8 ([151], [153]). Let Y be a topological manifold without 
boundary of dimension n ^ 5, and let X be a compactum in F. Then, X 
admits open I-regular neighborhoods in Y if either of the following conditions 
hold: 

i) ExSh (X -> F) has the shape of a finitely dominated complex', 
ii) Y\X is l-LC at X, Dim X g n — 3, and X has the shape of a complex. 

THEOREM 4.9 ([153]). Let Y be a Q-manifold and let X be a compactum 
in F. Then, X admits open I-regular neighborhoods in Y if and only if 
ExSh(Ar -+ F) has the shape of a finitely dominated complex. If X is a Z-set 
in Y, then it is sufficient {since, for Z-sets, ExSh(X -• F) = Sh(A")) to 
require that X have the shape of a complex. 

THEOREM 4.10 ([153]). Let Y be an S-manifold and X a compactum in F 
Then, X admits open I-regular neighborhoods in Y if and only if X has the 
shape of a complex. 

REMARK 4.11. In the above theorems, the assumption that E x S h ^ -• F) 
has the shape of a finitely dominated complex is equivalent (see below) to 
assuming that ExSh(A" -• F) is shape dominated by a finite complex. 

Wall [176] has shown that there exists a connected complex Z which is 
homotopy dominated by a finite 2-dimensional complex P, but which is 
not homotopy equivalent to any finite complex. Let Z d <± u P be the domi
nation maps with d o u homotopic to the identity on Z. Let Xbe the inverse 
limit of the sequence 
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(4.12) pu°d_pu^ p< 

Then X has the shape of Z [66]. Hence, X is a 2-dimensional compactum 
which has the shape of a complex but not the shape of any finite complex; 
we call such compacta strange compacta (by [184] X cannot be an ANR, 
whether X can have the homotopy type of a complex is still an open (and 
interesting) question). [Ferry has recently shown that any space homotopy 
dominated by a compactum has the homotopy type of a compactum.] By 
embedding X nicely in the 5-sphere, S5, and taking the complement S5\X, 
one obtains [66] a very simple and heuristic construction of an open 
5-manifold having a strange end (an end is strange if it is tame but does 
not admit a boundary). The proof that S5\X has a strange end is non-
trivial and rests heavily on Siebenmann's theory of /-regular neighbor
hoods. 

A natural and geometrically important question is: When does a pro-
complex {Xa} have the shape of a complex Kl This question includes as 
special cases the questions: 1. When does a topological space Zhave the 
shape of a complex Kl 2. When does the end, E(M), of a locally compact 
ANR M have the shape of a complex Kl Given a pro-complex {Xa} we 
must first find a candidate for K, i.e., we desire to associate to {Xa} a 
complex K and a (shape) map q: K -> {Xa} such that K is the complex 
which best approximates {Xa} up to shape; in particular, if {Xa} has the 
shape of a complex, then q should be a shape equivalence. Consider first 
the geometrically most important case of a tower {Xn}. Let Exco{Xn} de
note the tower of fibrations obtained from {Xn} by inductively converting 
the bonding maps of {Xn} into fibrations. If we take the topological inverse 
limit of Ex°°{Xn}, then we do not, in general, obtain a space having the 
homotopy type of a complex. So, instead, we first apply the singular 
functor S: CW -+ SS to Ex°°{Xn}, then take the simplicial inverse limit, 
and then apply the geometric realization functor R: SS -> CW to finally 
obtain 

holim {Xn} = R o lim o S o Ex°°{Xn} 

and a natural map (in pro-Ho(CW)) h: h o l i m ^ } -• {Xn}. A similar 
procedure can be followed for more general inverse systems (see [69] and 
[70] ; Bousfield and Kan give a different (more mysterious) construction in 
[25]). Then the following result is proved by Edwards and Geoghegan in 
[65]. 

THEOREM 4.13. Let {Xa} e pro-CW0 and let h: holim {Xa} -+ {Xa} be the 
natural map in pro-Ho(CH/

0). Then h is an isomorphism in pro-Ho(C^o) 
if either of the following conditions hold: 

A. {Xa} is dominated in pro-Ho(C W0) by a complex P; 
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B. supa{Dim (Xa)} < oo and for all * è 1, {iut-(Xa)} ̂  l im^rc ,^ )} 
in pro-groups. 

REMARKS 4.14. The first thing that one must show is that h induces 
isomoprhisms on homotopy pro-groups. This is proved by first showing 
that lims vanishes on stable pro-groups and then applying a spectral 
sequence argument (first given by Porter in [138]; for towers the argument 
is easier and was first given in [68]). In case A. one then applies Brown's 
Representability Theorem [34] to show that {Xa} has the shape of a com
plex K. The ordinary Whitehead Theorem now shows that h is a shape 
equivalence. In case B. one then uses the Artin-Mazur t| -Whitehead 
Theorem [13; p. 37] (see §3) and [176] to show that holim {Xa} has the 
homotopy type of a finite dimensional complex. The extra "coherence" 
data in h (see [25; p. 297]) allows one to use the proof of the Whitehead 
Theorem in [64] to conclude that A is a shape equivalence. 

REMARKS 4.15. Using [31], Geoghegan and Lacher [81] were able to give 
a geometric proof that a finite dimensional l-UV (i.e., pro-7U\(X) cz 0) 
compactum X whose integral Cech cohomology H*(X; Z) is finitely gen
erated has the shape of a finite complex. Siebenmann has a geometric 
proof (unpublished)—using his theory of /-regular neighborhoods—that 
finite dimensional compacta and ends with stable pro-homotopy groups 
are themselves stable, i.e., have the shape of a (not necessarily finite) com
plex (he also has cohomological criteria using cohomology with coeffi
cients in the integral group ring Z[rcx{X)\). The stability proof given in [65] 
has the advantage, over the geometric proofs just mentioned, that it is 
more general, easier, and only uses algebraic topology to prove a theorem 
in algebraic topology. See [80] for the most recent and simplest proofs of 
the stability and Whitehead theorems. 

REMARKS 1.16. A strong shape (see §5) version of the domination 
theorem (case A.) was given by Porter in [138]. Dydak [59] has shown that 
a pointed connected movable compactum X such that pro-^JT) ^ TCJJX) 

is stable (TUW(P) s [\4>oS'*, />]). 
The philosophy of Cech Theory can also be used in the study of compact 

topological groups. A Lie Series is an inverse system of compact Lie 
groups {Ga}. {Ga} is said to be associated with a compact topological 
group G if G and lima{Ga} are isomorphic as topological groups. Lie 
Series are the topological group analogue of Alexandroff 's projection 
spectra (see §2), and just as Alexandroff was able to show that any 
compact metric space has projection spectra associated to it, Pontrjagin 
was able to show that any compact metric group has Lie Series associated 
to it. (Note: The metric hypothesis is unnecessary, and, of course, the 
group case is much deeper than the space case.) Using [[75]; Theorem 
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11.9 p. 287] one can show that any two projection spectra for a com-
pactum have the same shape, i.e., are isomorphic in pro-Ho(CW). Keesling 
(private communication) has recently shown that any two Lie Series for 
a compact group are isomorphic in pro-Lie Groups. More generally, 
since the category of Lie Groups under a topological group G, (G I Lie 
Group), is a filtering category, one has a natural functor L: Top Groups -> 
pro-Lie Groups. Keesling has begun the study of the shape theory of 
compact topological groups using Lie series (see for example [107] and 
[108]; [108] contains a very interesting example which was used by the 
authors in [70] to show that lim1 does not necessarily vanish on uncount
able pro-groups which satisfy the Mittag-LefBer condition). The authors 
have shown [73] that the inverse system of classifying spaces {BGa} 
associated to a Lie Series {Ga} for G classifies (in an appropriate sense) 
the isomorphism classes of principal G fibrations (in the sense of [51]) 
over compacta (recall that the classifying space BG only classifies principal 
G fibre bundles in general, though, by a result of Gleason [84], if G is a 
compact Lie group, then every principle G-fibration over a compactum 
is a principal (/-fibre bundle). 

Some analysts have recently shown interest in Cech Theory. J. Taylor 
[165, 166, 167] has considered the general problem of determining the 
relationship between the structure of a commutative Banach algebra A 
with identity and the various Cech invariants of its maximal ideal space 
A(A) (A(A) is always a compact Hausdorff space—usually horrible). The 
following are some typical results of this theory (stated by Taylor in [165], 
though not necessarily due to him). 

THEOREM 4.17. The Gelfand transform induces isomorphisms: H°. 
Q(A) ~ H°(A(A); Z), where Q(A) denotes the additive subgroup of A 
generated by the idempotents ; 

H1. A~l/exp(A) ~ Hl(A(A)\ Z), where A~l is the invertible group of A 
andexp(A) is the subgroup consisting of elements with logarithms in A; 

H2. Pic(A) ~ H\â(A)\ Z), where Y\c(A) is the Picard group of A 
(i.e., the invertible group of the semi-group of isomorphism classes of 
finitely generated projective, A-modules under tensor product): 

K°. K0(A) ^ K°(A(A)\ where KQ(A) is the Grothendieck group of the 
semi-group of isomorphism classes of finitely generated projective A-modules 
under direct sum and K° is the Cech extension of the Atiyah-Hirzebruck 
K-theory (which happens to equal K°(A(A))9 the Grothendieck group of 
isomorphism classes of finite dimensional complex vector bundles over 
à(A)). 

THEOREM (4.17) turns out to be a corollary of the following. 

THEOREM 4.18 ([167]). Let F be a closed complex submanifold of a domain 
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U c O . Then one can define a subset AF of An (if A is semi-simple, then 
AF = {a e An\ the joint spectrum a is contained in F}) such that if F is a 
discrete union of complex homogeneous spaces, then AF is locally path 
connected and the Gelfand transform induces a bijection 

x*{AF) * [A(A), F], 

REMARKS 4.19. Taylor makes the following observations in [165; p. 5]. 
Theorem (1.18) can be used to relate the homotopy invariants of the 
form [A(A), F] to the structure of A whenever F is a space which has the 
homotopy type of a complex homogeneous space or of a direct limit of 
complex homogeneous spaces. The invariants that arise in ^-theory are 
all of this form. On the other hand, while the functors HP( — ; Z) of Cech 
cohomology have the form A »-* [A, K(Z, p)] for spaces K(Z, p) (the 
Eilenberg-MacLane spaces), only for p = 0, 1, 2 can these spaces be 
approximated by complex homogeneous spaces. Taylor has recently 
informed us that he can now identify H3(A(A); Z) with a Brauer group 
of A. Is it possible that Theorem (4.18) can be extended to more general 
F by replacing KQ(AF) with the set STCQ(AF) of "Steenrod" path components 
of AF(SKQ(AF) is equal to the set of strong net homotopy classes of maps 
from a point to AF in the sense of Christie [50] (see §2, §5 and below)]. A 
similar situation has arisen in some recent work of I. Craw. He is develop
ing a "Galois theory" for commutative Banach Algebras A and hoped to 
relate a Galois group of A to the fundamental group of A(A). Unfortu
nately, this only worked when A(A) was locally nice. What is probably 
needed is the Steenrod fundamental group of A(A), s%i(A(A)) and an 
associated theory of covering spaces. (A similar situation probably also 
holds in algebraic geometry: where they presently use the fundamental 
pro-group, they might be able to use a strong étale fundamental group; 
see [76], [117], [1], [13]; also see [131]; p. 114 for a possible application 
of Steenrod homology (see below)). 

Taylor is interested in the Banach Algebra M(G) of all finite regular 
Borei measures on a locally compact abelian group G under convolution 
multiplication. M(G) and A(M(G)) are very complicated. However, M(G) 
contains a relatively simple subalgebra MX(G) — ®t L(GT), where T 
ranges over topologies on G which dominate the original topology and 
for which G is still a locally compact topological group, and L(GT) is 
the algebra of measures absolutely continuous with respect to Haar 
measure on Gt (Note: the L(GT) depend upon the topology on G, but 
M(G) depends only upon the Borei structure on G; it is for this reason 
that MX(G) is much simpler than M(G)). Taylor has shown that the 
natural map of maximal ideal spaces, /*: A(M(G)) -> J(MX(G)), induced 
by the inclusion map /: Mi(G) -» M(G), is a Œ-map. Hence, by a Vietoris 
theorem implicit in [112],/* induces an isomorphism on Cech cohomology. 
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This isomorphism, Theorem (4.17), and computations of the Cech coho-
mology of Mi(G), yield some information about the structure of M(G). 
Taylor [165] then asked whether /* also induces an isomorphism of Cech 
^-theory, and, more generally, is it in fact a shape equivalence. One can 
show that i* induces a 4-isomorphism (unpointed) in shape theory, and 
hence, if J(M(G)) and A(Mi(G)) were finite dimensional (or if /* were 
movable (see [74] and [67], then /* would be a shape equivalence (a 
geometric proof that every CE-map between finite dimensional compacta 
is a shape equivalence is given in [148]). Unfortunately, these conditions 
do not appear to apply here—in particular, the maximal ideal spaces are 
infinite dimensional—and it is known that many finite dimensional results 
fail for infinite dimensional spaces. The infinite dimensional counter
examples almost all derive from the work of Adams [2, 3, 4, 5] or alter
natively, Toda [170]. 

THEOREM 4.20. ([3, p. 22]). Let p be an odd prime, g: S2^1 -+ S2i~l 

a map of degree pf, and Y the Moore space S2^1 [} g e
2(* (thus K( Y) = Zpf). 

S2rY will denote the 2r-fold suspension of Y with r = (p — l)pf~l. Then, 
for suitable q, there is a map 

A:S2rY-+ Y 

which induces an isomorphism 

A*: K(Y) -* K(S2rY). 

Therefore the composite 

As = A o S2rA o S*rA o . . . o S2r(s-1) A : S2rsY -> Y 

induces an isomorphism of K, and hence is essential for every s. 

The inverse system 

{YJ^- S2rY^- SirY< •••} 

and its inverse limit, XA, can be used to obtain counter-examples to the 
extension of many finite dimensional results, e.g., the Hopf Classification 
Theorem and the Shape Whitehead Theorem (see [104], [98], [56], [72]). 
Taylor [164] showed that one could define a CE-map / : XA -> Q. Since 
XA does not have trivial shape but Q does, this shows that not every 
Œ-map is a shape equivalence. (Keesling [109] turned this around to 
obtain a Œ-mapg: Q -+ XA, thus obtaining a trivial shape decomposition 
of Q whose decomposition space is not an absolute retract; compare 
[111].) Thus the question of whether /* is a shape equivalence cannot 
be settled by general results concerning mappings. See also recent work 
of S. Mardesic and T. B. Rushing [125, 126] D. Coram and P. Duvall, 
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Jr. [49], J. Bryant and C. Lacher [38], L. Husch [100, 101], R. Goad [85], 
and T. C. McMillan [129] on shape fibrations and CE maps. 

Besides the Cech AT-theory studied by Taylor, other generalized Cech 
cohomology theories and generalized Steenrod homology theories are 
being studied by analysts. In [6] Alexander and Yorke have proven a global 
version of the Hopf Bifurcation Theorem for autonomous differential 
systems. One of their main tools is the use of the generalized homology 
theory called framed bordism (see [159]), its associated Cech cohomology 
theory, and the relative Alexander duality between them. Recall that 
Alexander duality states that if X is a compactum in Sw, and p and q are 
non-negative integers for which p -f q = n — 1, then there is a natural 
isomorphism 

H<p(S"\X; Z) = MX; Z), 

where H% denotes homology with compact supports. A similar duality 
theorem holds for generalized theories. In [156] Steenrod sought a similar 
duality theorem relating HP(Sn\X; Z) to some homology theory of X. The 
resulting homology theory is now called the Steenrod homology theory 
and will be denoted by SH*. Because the inverse limit functor is not exact, 
Cech homology fails, in general, to satisfy the Eilenberg-Steenrod [75] 
exactness axiom; but it compensates for this failure by instead satisfying 
the continuity axiom, i.e., if {Xn} is a projection spectrum for X, then the 
natural map H*{X) -» limn{H*(Xn)} is an isomorphism. Milnor [130] has 
shown (see also [154]) that Steenrod homology theory satisfies all the 
Eilenberg-Steenrod axioms plus the following substitute for the continuity 
axiom : There is a natural short exact sequence 

(4.21) 0 - liml{Hq+l(Xn)} -+ *Hq(X) -> \imn{Hq{Xn)} -> 0. 

(If {Gn} is an inverse sequence of groups and S: UnGn -> UnGn is the 
shift map given by 

S(gi, g2, •••) = (gi - Pi(g2% g2 ~ P2(gs\ •*•), 

wherepn: Gn+i -+ Gn is the bondinghomomorphism, thenlimw{Gw} is the 
kernel of S and lim^G^} is the cokernel of S. The fact that SH* satisfies 
all the Eilenberg-Steenrod axioms plus (4.21) is actually due to Steenrod 
(unpublished).) Milnor also shows that SH* is uniquely characterized up 
to natural equivalence by the Eilenberg-Steenrod axioms, (4.21), plus 
invariance under relative homeomorphism. Kaminker and Schochet [105] 
have made the following definition. 

DEFINITION 4.22. A generalized Steenrod homology theory consists of a 
sequence h* = {hn\ne Z) of co variant, homotopy invariant functors 
from the category of compact metric spaces to abelian groups satisfying 
the following axioms: 
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(E) If {X, A) is a compact metric pair, then the natural sequence 

hn{A) -+ hn(X) - hn(X/A) 

is exact for all n. 
(S) There is a sequence of natural equivalences 

an:hn -> hn+1 o S 

called suspension, where S is unreduced suspension. 
(W)lf X = limw{Vy=i^y} is t n e strong wedge of a sequence of pointed 

compact metric spaces, then the natural projections X -• Xj induce an 
isomorphism 

A* W - n A*(*>). 

REMARKS 4.23. An interesting problem is to give a construction for 
extending a generalized homology theory h* defined for compact CW-
complexes to a generalized Steenrod homology theory sh* defined for all 
compact metric spaces (or beyond?). In §5 we outline a general solution 
to this problem. Brown, Douglas and Fillmore [36, 37] (see below) have 
constructed a Steenrod ^-theory. In light of the work of Alexander and 
Yorke, the development of a Steenrod bordism theory might yield divi
dends in the study of differential equations. Steenrod homology theories 
do not, in general, factor through the shape category; but they factor 
through the strong shape category (see §5). 

DEFINITION 4.24 ([36]). Let H be a separable complex Hilbert space, 
L(H) the algebra of bounded linear operators on H, K(H) the ideal of 
compact operators on H, A(H) the Calkin algebra L(H)/K(H), T: L(H) -> 
A(H) the quotient map, X a compactum and C(X) the C*-algebra of con
tinuous complex valued functions on X. An extension of ^ b y C(X) is a pair 
(E, <ß), where E is a C*-subalgebra of L(H) that contains K(H) and the 
identity operator, and ci is a *-homomorphism of E onto C(X) with kernel 
K. Extensions (Eu < )̂ on Hi and (E2, ^2) o n H2 are equivalent if there 
exists a *-isomorphism cp : Ex -> E2 such that (j)X = < 2̂0- The set of equiva
lence classes of extensions of K by C(X) is denoted by ExtpQ. Let 

(ExtOO if «is odd 
nK ) lExtOSX)if/7iseven. 

Brown's Bott Periodicity Theorem for Ext [35] (i.e., there is a natural 
isomorphism Bp: Ext^S2^) -> ExtpQ) together with results from [36] 
yields the following result (see [105]). 

THEOREM 4.25. E* is a generalized Steenrod homology theory on the 
category of compact metric spaces. The coefficient groups are given by 
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hAÒ)~\0 if« is odd. 

Brown, Douglas and Fillmore have used Ext to prove the following strik
ing generalization of a classical result of H. Weyl and J. von Neumann. 

THEOREM 4.26 ([36]). Every normal element S e A(H) determines a class 
[S] e Ext (a(S))9 where a(S) is the spectrum of S. Two such normal elements 
S, Te A(H) are unitarily equivalent if and only if a(S) = a(T) = Xand 
[S] = [T] in Ext (X). A normal element Se A(H) is the image of anormal 
operator Ne L(H) if and only if[S] = 0 in Ext (a(S)). 

REMARKS 4.27. The Brown-Douglas-Fillmore theory of E* can probably 
be extended to yield a theory Ell which would realize Steenrod homology 
with coefficients in R. This would be done in the following manner. A von 
Neumann algebra B is a *-subalgebra of L(H) which is closed in the weak 
topology. Many of the standard results of functional analysis, such as the 
spectral theorem, hold in von Neumann algebras (see [146]). If the center 
of B consists of scalar multiples of the identity operator, then B is called 
a factor. Murray and von Neumann [134] showed that one could define a 
"dimension" function on the lattice of projections of a factor with values 
in one of the following sets: 

{0,1,2, . - . , / !} , 

{0, 1,2,..., oo}, 

[0, n], 

[0, oo], 
{0, GO}. 

Factors of type \n are isomorphic to M(n, C), and factors of type 1^ are 
isomorphic to L(H). Factors of type IIW, 11^, and Illoo do occur, but are 
not unique (see [103] for a survey of the history of factors). Now let B be 
a factor of type 11^ Then B ® L(H) is a factor of type 11^ and we have a 
natural inclusion L{H) -> B ® L(H). Let Kn denote the closure of the 
ideal of operators of "finite" rank in B ® L(H), An the "Calkin" algebra 
B ® L(H)/Kn, and Fn the "Fredholm" operators TC~\G{B ® L(H)/KU)). 
Fi is a classifying space for AT-theory [15] and Fn is a classifying space for 
a ^-theory based upon type II-bundles [28] or, equivalently, for Hev( — ; R) 
= © H2k( — ; R). The natural inclusion Fî -> F n induces the Chern 
character. If one now defines Ext11^) by using extensions of Ku byC(X), 
one should be able to obtain the appropriate analogs of theorems (4.25) 
and (4.26). 

We conclude this section with a fascinating conjecture of J. Wagoner. 
If R is a ring with unit, then Quillen has defined a classifying space BR+ 

In = 

II, = 

Hco = 

Illoo = 
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whose homotopy groups, KÌ(BR+), are defined to be the algebraic ^-groups 
of R, K;(R) (see [83]). If R is a topological ring, then BR+ inherits a natural 
topology from that on R. Wagoner conjectures that for appropriate R 
(such as Qi) the compactly generated shape homotopy groups of BR+ 
(see [158], [144]) are isomorphic to the continuous algebraic ^-groups of R. 
By using a delooping BR of BR+ [175], he can show that the compactly 
generated shape homotopy groups of BR are isomorphic to the continuous 
algebraic ^-groups of R; it is the failure of Hurewicz fibrations to yield 
long exact sequences of shape homotopy groups ([74]) which makes 
Wagoner's conjecture a conjecture and not a theorem. 

5. Steenrod Homotopy Theory. In [139] Quillen gave the following axio-
matization of homotopy theory. 

DEFINITIONS 5.1 [142, p. 233-235]). A closed model category is a category 
C endowed with three distinguished families of maps called cofibrations, 
fibrations, and weak equivalences satisfying the axioms CMÌ-CM5 below. 

CM\. C is closed under finite projective and inductive limits. 
CM2. Iff and g are maps such that g/is defined, then if two off, g, and 

g/are weak equivalences, so is the third. 
Recall that the maps in C form a category AC having commutative squares 
for morphisms. We say that a map fin C is a retract of g if there are mor-
phisms <j)\f' -> g and <p : g -> fin AC such that $$ = lf. 

CM3. If f is a retract of g and g is a fibration, cofibration, or weak 
equivalence, so is/. 

A map which is both a fibration (resp. cofibration) and weak equivalence 
will be called a trivial fibration (resp. trivial cofibration). 

CM4. (Lifting). Given a solid arrow diagram 

(5.2) 

the dotted arrow exists in either of the following situations: 
(i) / is a cofibration and/? is a trivial fibration; 

(ii) / is a trivial cofibration and p is a fibration. 
CMS. (Factorization). Any map/may be factored in two ways: 

( i ) / = pi, where / is a cofibration and/? is a trivial fibration; 
(fi)/ = pi9 where / is a trivial cofibration and/? is a fibration. 

We say that a map /: A -• B in a category has the left lifting property 
(LLP) with respect to another map p : X -• Y and p is said to have the right 
lifting property (RLP) with respect to / if the dotted arrow exists in any 
diagram of the form (5.2). An object X of C is called cofibrant if the map 
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<j) -> X ((f) is the initial object of C which exists by CMX) is a cofibration 
and fibrant if X -* e (e is the final object) is a fibration. If 4̂ v A, in,- : .4 -> 
,4 V ,4, / = 1, 2 is the direct sum of two copies of ,4, we define a cylinder 
object for A to be an object'^ together with maps d{: A ->- ̂ 4b / = 0, 1, 
and cr: Az -+ A such that 30 + 9j: A V 4̂ -> ^ is a cofibration, <j is a 
weak equivalence and tf-3,- = IA, i = 0, 1. Here 30 + 3i denotes the unique 
map with (30 4- 3i)in,- = 3,_x. If/, g e C(̂ 4, B), a /<?/f homotopy from/to g 
is defined to be a map A: ̂  -» 2?, where Al is a cylinder object for A, such 
that A30 = / a n d / ^ = g. f is said to be left homotopic to g if such a left 
homotopy exists. When A is cofibrant, the relation "is left homotopic to" 
is an equivalence relation [139; Lemma 4, §1] on C(A, B). The notions of 
path object and right homotopy are defined in a dual manner. If A is 
cofibrant and B is fibrant, then the left and right homotopy relations 
on C(A, B) coincide and we denote the set of equivalence classes by [A, B]. 
We let %Ccf denote the category whose objects are the objects of C which 
are both fibrant and cofibrant with izCcf{A, B) = [A, B]9 and with compo
sition induced from that of C. The homotopy category Ho(C) of a closed 
model category is defined to be the localization (see [79]) of C with respect 
to the class of weak equivalences. The canonical functor %\ C -* Ho(C) 
induces %\ 7uCcf -» Ho(C) which is an equivalence of categories [139]; 
furthermore, TT(/) is an isomorphism in Ho(C) if and only i f / i s a weak 
equivalence. If C is pointed, i.e., the initial object equals the final object, 
then loop and suspension functors and families of fibration and cofibra
tion sequences exist in Ho(C). 

EXAMPLES 5.3. (A). (Simplicial). The category SS of simplicial sets is the 
prototype for Quillen's theory of model categories. Fibrations in SS are 
Kan fibration (see [127]), cofibrations are (dimensionwise) injective maps, 
and weak equivalences are those maps which become ordinary homotopy 
equivalences after the geometric realization functor R: SS -^ CW is 
applied. If A is a category, then sA, the category of simplicial objects over 
A, is often a model category (see [139; Chapter 2, §4]); in particular, 
simplicial groups, simplicial abelian groups, simplicial rings, etc. are 
closed model categories. Simplicial/rate sets do not form a model category. 
K. S. Brown [34] and the second author [91] have shown that Kan's cate
gory of simplicial spectra (see [185]) is a closed model category. 

(B). (Topological). Let Top denote the category of topological spaces 
with cofibrations and fibrations defined by the homotopy-extension and 
covering homotopy properties, respectively, and weak equivalences defined 
to be ordinary homotopy equivalences. Then, Str^m [160] showed that 
Top is a closed model category. The similar structure on CG, the category 
of compactly generated spaces [158], has also been shown to be a closed 
model category [92]. Let Sing denote the category of topological spaces 
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with the following singular structure : cofibrations are pushouts of inclu
sions of subcomplexes of C ̂ -complexes, fibrations are Serre fibrations, 
weak equivalences are weak homotopy equivalences (i.e., maps inducing 
isomorphisms for the functions [K, — ], where K is a finite complex). Then 
Sing is a closed model category [139; Chapter 2, §3]. Furthermore, the 
adjoint functors Sing#?±s SS induce an equivalence of homotopy theories 
Ho(Sing) R+±s Ho(SS). 

Question. Are there closed model structures on Top and on Schemes 
corresponding to Cech theory and étale theory? 

(C). (Algebraic). Let A be an abelian category with sufficiently many 
projectives and let C = C+(A) be the category of differential complexes 
K = {Kq, d: Kq -* Kq_i) of objects of A which are bounded below, i.e., 
Kq = Ofor q < 0. Then [139] C is a model category where weak equiva
lences are maps inducing isomorphisms on homology, where fibrations are 
the epimorphisms in C, and where cofibrations are the monomorphisms / 
such that Coker i is a complex having a projective object of A in each 
dimension. Every object in C is fibrant and the cofibrant objects are the 
projective complexes. Ccf is what is denoted K~(P) in [89], where P is the 
additive sub-category of projectives in A, while Ho(C) is the derived 
category D~(A) or D+(A). 

APPLICATIONS 5.4. Quillen [142] defines rational homotopy theory to be 
the study of the rational homotopy category, Hoö(Sing2), obtained from 
the category of 1-connected pointed spaces by localizing with respect to 
the family of those maps such that %*f® Q is an isomorphism. He then 
proves that rational homotopy theory is equivalent to the homotopy 
theory of reduced differential graded Lie Algebras over g, Wo(DGL{), 
and also to the homotopy theory of 2-reduced differential graded cocom-
mutative coalgebras over Q, Ho(DGC2). In particular, he obtains pairs of 
adjoint functors 

Sing2 ±5 DGLX <=; DGC2 

which induce natural equivalences 

HoQ(Sing2) ±5 HoiDGL^ *+ Ho(DGC2). 

Furthermore, these equivalences have the property that the graded Lie 
algebra TZ*-\(X) ® Q under Whitehead product and the homology coalge
bra H*(X; Q) of a space X are canonically isomorphic to the homology of 
the corresponding differential graded Lie algebra and coalgebra, respec
tively. He thus obtained simple algebraic models for rational homotopy 
theory and also simultaneously solved certain problems posed by Thorn 
and Hopf (see [142]). 
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Qullen observed in [139; Chapter II, p. 9.3] that the Artin-Mazur theory 
of pro-Ho(SS) did not fit his framework, i.e., pro-Ho(&S) is not the 
homotopy category of a model structure on pxo-SS. Porter [138] seems to 
have been the first person to define and use the "correct" strong pro-
homotopy category, Ho^ro-SS). Let 2 be the class of morphisms in 
pro-SS which may be represented by level (weak) equivalences. Then 
Porter defines HoCpro-SS) = (pro-SS) [i^1], i.e., localize pro-SS at 2. In 
[90] Hastings showed that pro-SS admits a natural closed model structure 
with homotopy theory Ho^ro-SS). More generally, the following results 
are proved in [70] for a fairly wide class of closed model categories which 
includes all those we actually care about. 

THEOREM 5.5. The categories O (where / is a cofinite directed set) and 
pro-C admit natural closed model structures. In C7, cofibrations and weak 
equivalences are defined degreewise, and fibrations are defined by the right-
lifting-property. These classes of maps are extended to pro-C by forming the 
appropriate retracts and composites. 

Our structures are natural in the following sense. 

THEOREM 5.6. The inclusions C -> C7 and C -> pro-C preserve model 
structures. The inverse limit functors lim: C1 -^ C and lim: pro-C -> C 
preserve fibrations and trivial fibrations. 

THEOREM 5.7. The inclusions Ho(C) -> Ho(C7) and Ho(C) -> Ho(pro-C) 
admit adjoints holim: Ho(C7) -> Ho(C) and holim: Ho(pro-C) -> Ho(C). 

REMARKS 5.8. Edwards and Geoghegan (unpublished, see [70]) gave 
a geometric description of Ho(Tow-Top) (objects are inverse systems 
indexed by the natural numbers) using infinite mapping telescopes, i.e., 
fundamental complexes. 

Bousfield and Kan [25] gave another closed model structure on C7 

with the same homotopy category; however, Theorem (5.6) fails for their 
structure. Grossman [86] gave a coarser closed model structure on 
Tow-SS. 

The natural functor %: Ho(pro-C) -> pro-Ho(C) is not an embedding. 
Let C* be a "nice" pointed closed model category. 

THEOREM 5.9. Let {Xi} and [Yj] be objects ofTow-C*. Then, there is a 
natural short exact sequence of pointed sets 

0^1im}colim,{Ho(C*)(A;., Yj)} 

— Ho(Tow-C,)({^}, {Yj}) 

-^Tow-Ho(C s !c)({X,},{ry})-.0. 

REMARK 5.10. Grossman [87] proved Theorem (5.9) in his coarser 
setting. 
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THEOREM 5.11. Let X, Ye Tow-C, and let f: X -» Y be an isomorphism 
in Tow-Ho(C). Then there is an isomorphism g: X -> Y in Ho(Tow-C) 
with 7z{g) = f in Tow-Ho(C). Hence, the isomorphism classification of 
towers is the same in Tow-Ho(C) and in Ho(Tow-C). 

REMARK 5.12. Dydak [62] has constructed an example of a morphism 
/ in Ho(Tow-SS) which is invertible in Tow-Ho(S'S) but not invertible 
in Ho(Tow-SS). 

Following Quillen [139; Chapter II, §5], let C be a model category and 
let Cab be the category of abelian group objects and homomorphisms in C. 
Assume the abelianization Xab of any object X of C exists so that there 
are adjoint functors 

(5.13) C^Cab, 

were / is the faithful inclusion functor. Assume also that (5.13) induces 
functors 

Lab 

(5.14) H o ( C ) ^ H o ( C J , 
Ri 

where Lab (Ri) is called the left (right) derived functor of ab (/) (see [139; 
Chapter /, §4]). Finally assume that Ho(C^) satisfies the following two 
conditions : 

(5.15,4) The adjunction map 0:A -> 02A is an isomorphism for all 
A e HQ(Cab). 

(5.155) If 

A' _L> A -U A" -?-> 2A' 

is a cofibration sequence, then 

02A' ~iod~l > A-i-+A"-^ 2A' 

is a fibration sequence. 

DEFINITION 5.16. The cohomology groups of an object Xe Ho(C) with 
coefficients from an object A of Ho(Cab) are defined to be 

H«M(X; A) = colim^Lab (X), 0«+N2NA] 

= c o l i m i , Ri 0^N2NA}. 

If C is pointed, then 

(5.17) H%{2X; A) = H^(X; A). 

I f X - > y - > C - > 5 - - - i s a cofibration sequence, then there is a long 
exact sequence 
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(5.18) - H%(C; A) - H^Y; A) -> H*(X; A) - 1 H^(C; A) -> . 

If A" -• A -> A" -> 2Ä is a cofibration sequence in Ho(5aÄ), then there 
is a long exact sequence 

(5.19) - H^X; A') - H^(X; A) - Jïj/JT; , 4 " ) ^ # ^ ; A') - . 

DEFINITION 5.20 ([139]). An object of Ho(C) of the form Ri(A) is called 
a generalized Eilenberg-MacLane object and the object Lab(X) e Ho(C^) 
is called the homology of X 

The formula 

(5.21) HM*\ A) = [Lab (X), A] 

is a universal coefficient theorem, and 

(5.22) HU*', A) = [X; Ri(A)] 

is a representability theorem for cohomology. 

REMARKS 5.23. Quillen proves [139; Chapter II, §5, Theorem 5] that 
his model category cohomology groups, Hfa are canonically isomorphic 
with the Grothendieck sheaf cohomology groups H^GT (see §3). 

Consider the case C = SS. Then SSab = s(Ab), the category of simplici-
al abelian groups, and Lab (X) = Xab = ZX, the simplicial free abelian 
group generated by X. Also, 7Ct-(Xab) = [5% ZX] = H{(X\ Z), justifying 
calling Xab the homology of X. Furthermore, if A is a discrete abelian 
group, then Ri(^) = K(A, O) = A, and hence, #^Of; A) = #«pf; ,4), 
thus justifying calling Ri(A) a generalized Eilenberg-MacLane object. 
For Xe SS*, ZX is the simplicial free abelian group generated by X 
modulo the subgroup generated by the base point. Then, the natural 
map X -• ZX induces the Hurewicz homomorphism 

KiiX) - TiiiZX) = Ht(X; Z). 

We have cohomology with coefficients; what about homology with 
coefficients? Let R be a commutative ring with identity, and RX the 
associated simplicial free /^-module generated by X. Then nt(RX) ~ 
Ht(X; R). Hence, RX may be called the ^-homology of X. 

More generally, we may obtain generalized homology and cohomology 
theories as follows. Consider the diagram of categories and functors 

ab 

SS* < . ' SSab = s(AB) 

Stab Stab 

ab 

Sp ; = ± SPaS = Sp(Ab); 
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here Sp denotes Kan's category of simplicial spectra (see Examples (5.3) 
(A)), Sp(Ab) the category of simplicial abelian group spectra (see [185]), 
and Stab is the stabilization functor. There is an induced diagram of 
homotopy categories 

(5.24) 

Ho(SS*) < ab » Ho(SSab) = Ho(s(Ab)) 

Ho(Sp) T==I Ho(Sp J = Ho(Sp(^)). 

(The functor u associates to a simplicial spectrum X the Oth stage PX(0) 
of the associated ß-prespectrum (see [185]).) 

We have thus factored Quillen's homology functor 

ab:YLo(SS*)^ Ho(sAb) 

through the stable category Ho(Sp). But Ho(Sp) is already an abelian 
category which satisfies conditions (5.15,4) and (5.155). In fact, Alex 
Heller [93] showed that the functor 

(5.25) Stab: Ho^S*) -* Ho(Sp) 

is the universal homology theory on SS% (actually Heller worked in the 
categories of pointed C ̂ -complexes and CW spectra, but the associated 
homotopy categories are equivalent to Ho(5*SHc) and Ho(Sp), respectively). 

We therefore consider the functor Stab: Ho(SS*) -• Ho(Sp) as a 
strengthened Quillen homology theory. Of course the associated homology 
groups Ho(Sp)(Stab(S*), Stab(Z)) are just the stable homotopy groups 
of X, 7tst(X). G. W. Whitehead's theory of generalized cohomology and 
homology theories (see [185]) is now available. If E denotes a simplicial 
spectrum, the is-homology and is-cohomology groups of a simplicial 
set X are given by 

Ei(X) = [S'", X A E]9 and 

Ei(X) = [X A S-», E] 

(we suppress the stabilization and write [ , E] for Ho(Sp) ( , E)). We 
call the simplicial spectrum X A E the E-homology of X. 

If E is the Eilenberg-MacLane spectrum K(Z) = Z(S°) in Sp(Ab), 

X A K(Z) = X A Z(S<9 - ZX 

where ~ denotes equivalence in Ho(Sp). This connects the Quillen and 
generalized homology theories. 

We now consider the case C = pro-SS*. There is a commutative 
diagram 
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pro-s(Ab) 

pro-SS* > (pro-SS*)ab, 

where ab: pro-SS* -* pro-s(,46) is defined levelwise. Also Lab ({Xa}) = 
{ZXa}. Define the Steenrod homotopy, homology, and cohomology 
groups of {Xa} by 

%({*«}) = [S*9 {Xa}] = Ho(pro-SS*) (S«, {*„}), 
(5.26) *Hq({Xa}; Z) = [S«, {ZXa}], 

'H*({Xa}\ {Aß}) = c o l i m ^ J Q ; Q*+*2»{Aß}]. 

More generally, for a simplicial spectrum (or even a pro-simplicial spec
trum) E 

(5 21) ^ W ) = [ ^ (*« A E}] = Ho(pro-Sp)(S% {JTa A E}\ 
1 * j *m{xa}) = [{A; A s-<}, E]. 

One applies the above theory to topology and algebraic geometry by 
rigidifying the Cech and étale constructions by using pointed coverings 
(see [99]) to obtain functors 

In particular, for a pointed topological space X, one defines 
s%i(X) = 7üt(C(X)) = [# , C(X)] = Ho(pro-SS*) ( # , C(X)) 

and 

'E£X) = T T X C W A E) = Ho(pro-Sp*) (5«, C( I ) A £). 

These definitions yield good Steenrod homotopy and generalized homol
ogy theories for compact topological spaces [70], and possibly for schemes 
using a rigid étale functor. D. S. Kahn, Kaminker, and Schochet [105] 
give another construction of Steenrod homology for spaces. 

Another geometric application is to proper homotopy theory. Let P 
denote the proper category of locally compact spaces and HP the usual 
proper homotopy category. P is not a model category; e.g., there are not 
enough fibrations in P. On the other hand, there are natural full embed-
dings of P into closed model categories. 
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The associations 

X~{(X,X\C)}~(X^{X\C}\ 

where Xe P and C varies over compact subsets of X, determines functors 

P - ^ pro-Maps(Top) -U Maps (pro-Top). 

Both pro-Maps (Top) and Maps (pro-Top) are closed model categories 
[70] and / and j o / are easily seen to be full embeddings. One gets induced 
functors 

HP - ^ - Ho(pro-Maps (Top)) -il> Ho(Maps (pro-Top)). 

The functors /* andy* o /^ are full embeddings when restricted to HPANR. 
One can now study proper shape theory in either of the following ways 
(see [19] and [21] for a Borsuk style approach to proper shape theory). 

1. First make P into a model category and then get rid of local pathol
ogy, i.e., study the functors 

P —* pro-Maps (Top) —> Maps (pro-Top)) 

pro-Maps(SS) — Maps (pro-SS)) 

2. First get rid of local pathology (by using the Cech functor based upon 
canonical coverings [154] and then go into a model category, i.e., study the 
functors 

P - ^ pro-PANR —• pro-Maps(Top) —> Maps(pro-Top). 

It is clear that there is much work left to be done in developing Steenrod 
homotopy theory and its applications. 

6. Open Problems. We conclude this survey with the statements of some 
open problems that we find particularly interesting. 

PROBLEM 1. Does there exist a tower X = {Xn} of pointed connected 
complexes such that: 

i. {fti(Xn)} is pro-isomorphic to a finite group and {Xn} is pro-homotopy 
equivalent to a point; 

ii. {Xn} is pro-homotopy equivalent to the end of a locally finite simpli-
cial complex? 

REMARKS. We can show that no tower of finite complexes can satisfy /; 
but we do know how to construct infinite examples which satisfy condi
tion /, but not condition ii. The reason we are interested in Problem 1 is 
that we can reduce West's problem of classifying free finite groups actions 
on Q0 to it. 
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PROBLEM 2. Does there exist a compactum which is shape dominated by 
a complex, but does not have the shape of any complex? 

REMARKS. Dydak has constructed a tower of connected complexes 
which is Cech homotopy dominated by a complex, but not Cech homotopy 
equivalent to any complex. (Such phenomena can never occur in Steen-
rod homotopy theory.) Edwards and Geoghegan [66] have shown that 
such phenomena cannot occur in pointed Cech homotopy theory. Dydak's 
example also shows that there is no unpointed Brown's theorem. Dydak's 
example warns us that we have to be very careful about basepoints in 
Cech homotopy theory. Similar questions have been raised by McMillan 
concerning the relationship between pointed and unpointed movability 
(see Ball's survey article [20] for a discussion of this and other related 
geometric questions.) 

PROBLEM 3. When does a shape fibration admit e-cross sections which 
are embeddings? 

REMARKS. In [49] Coram and Duvall introduced the notion of an ap
proximate fibration between compact ANR's, and showed, for instance, 
that the fibers of an approximate fibration had constant shape and that 
any map which could be approximated by fibrations was, in fact, an ap
proximate fibration. Later work investigated when an approximate fibra
tion could in fact be approximated by fibrations [85], [100], [101] and when 
they couldn't [100, 101]. More recently, Mardesic and Rushing [125, 126] 
have extended these ideas to compacta by introducing the notion of a 
shape fibration. The above problem is a generalization of the question of 
when a Cis-map between compact manifolds can be approximated by 
homeomorphisms. The problem was stated to us by Rushing, and he and 
his students have some preliminary results. Along the same lines, one 
wonders if one could develop a simple shape theory analogous to simple 
homotopy theory by using hereditary shape equivalences? [There has 
been recent work on this problem by Ferry and Hastings and Holling-
sworth.] Also, Lacher and others have been using approximate fibrations 
to "resolve the singularities" of homology manifolds. 

PROBLEM 4. Does there exist a geometric model of real homotopy 
theory? 

REMARKS. In [53], Sullivan and company define algebraic models of 
rational and real homotopy theory. They show that their algebraic model 
of the rational homotopy theory of X is equivalent to studying its rational 
Postnikoff tower {Q5X} in Ho (Tow-SS*). Problem 4 asks if there is some 
analogous construction for real homotopy theory; possibly to be ob
tained by "completing" the rational Postnikoff tower to obtain a "real" 
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Postnikoff tower which might be some sort of tower of simplicial spaces. 
Similarly, one might also hope to obtain geometric models of "p-adic" 
homotopy theory. 

As a final remark, we observe that pathological compacta have been 
recently arising more frequently in applied mathematics; for example, as 
the strange attractors of dynamical systems [128] [M-O], and as "fractals" 
in Mandelbrot's [121] theory of random sets. Where there occur compacta, 
can shape theory be far behind? 
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